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This paper studies the coordination of production and shipment schedules for a single stage in the supply
chain. The production scheduling problem at the facility is modeled as belonging to a single process. Jobs
that are located at a distant origin are carried to this facility making use of a finite number of capacitated
vehicles. These vehicles, which are initially stationed close to the origin, are also used for the return of the
jobs upon completion of their processing. In the paper, a model is developed to find the schedules of the
facility and the vehicles jointly, allowing for effective utilization of the vehicles both in the inbound and
the outbound. The objective of the proposed model is to minimize the sum of transportation costs and
inventory holding costs. Issues related to transportation such as travel times, vehicle capacities, and wait-
ing limits are explicitly accounted for. Inventories of the unprocessed and processed jobs at the facility
are penalized.
The paper contributes to the literature on supply chain scheduling under transportation considerations

by modeling a practically motivated problem, proving that it is strongly NP-Hard, and developing an ana-
lytical and a numerical investigation for its solution. In particular, properties of the solution space are
explored, lower bounds are developed on the optimal costs of the general and the special cases, and a
computationally-efficient heuristic is proposed for solving large-size instances. The qualities of the
heuristic and the lower bounds are demonstrated over an extensive numerical analysis.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction and related literature

Supply, production and delivery are among the key functions
for manufacturing companies. Although these functions are man-
aged independently in many traditional systems, recent studies
in supply chain management show that there is significant oppor-
tunity for savings if the related decisions are coordinated
(Dawande, Geismar, Hall, & Sriskandarajah, 2006; Hall & Potts,
2003; Thomas & Griffin, 1996). Coordination of decisions among
the various stages and functions of the supply chain is an issue that
prevails at different phases of planning. Examples include coordi-
nation of decisions in the following areas: innovation, pricing at
the strategic level; inventory control, lot sizing at the tactical level;
scheduling at the operational level. Our focus in this study is on
coordination of scheduling decisions involving production as well
as inbound and outbound transportation.
We consider a setting consisting of two close warehouses–one
for unprocessed jobs and the other for processed jobs, and a pro-
duction facility far away from the warehouses. Shipment schedules
of incoming materials and outbound delivery schedules in any sys-
tem are linked to the production schedule through the inventories
of unprocessed and processed jobs, respectively. In the specific set-
ting of interest, the inventory holding costs for both types of jobs at
the production facility, transportation costs and times between the
facility and the warehouses are significant. Therefore, planning for
effective interaction of the schedules for the production facility and
the vehicles, serves as an important tool for lowering total inven-
tory holding and transportation costs.

Our study is motivated by the practice of a worldwide home
appliance manufacturer in Turkey, which imports a significant
amount of its raw materials and exports a major portion of its
end products. The company uses maritime transportation for
import and export. The manufacturing facility is located inland
whereas the two warehouses–one for holding the imported raw
materials and one for holding the end products to be exported,
are located at the harbor. Transportation of materials between
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the manufacturing facility and the harbor is done via containers.
Traditionally, the company arranges for transportation after the
production schedule is made. This hierarchical decision making
results in many containers being used only one way and traveling
empty the other way. The company thinks that transportation
costs can be reduced significantly if the inbound and outbound
shipment schedules are coordinated so that the containers are uti-
lized both ways. This kind of planning offers an opportunity but at
the same time it turns out to be a challenge, because there is a limit
on the time that a vehicle can be held at the facility, and the cost of
holding the materials at the facility is high.

Motivated by the above practice, we study the problem of
jointly finding the production schedule of the facility and the
schedules of a finite number of capacitated vehicles subject to a
waiting limit constraint at the facility. This waiting limit may orig-
inate in practice due to the length of the vehicle hire period. The
objective is to minimize the total inventory holding and trans-
portation costs for a certain number of unprocessed jobs to travel
from an origin to a distant facility, get processed and return back
to the origin. All vehicles are assumed to be identical, but jobs
are allowed to occupy different amounts of space in the vehicles.

It is important to note that, the problem solved in this paper
relates to a simplified version of the problem faced by the appli-
ance manufacturer in question. As opposed to the real practice
where multiple components form a final product, our model
assumes that one inbound job is converted into one finished job
after processing. This aspect of the proposed model makes it more
applicable in a setting where jobs travel to and from a subcontrac-
tor for some of their operations to be performed. We refer to the
subcontracting operations in the appliance manufacturer men-
tioned above and in the textile industry in U.S., as examples. The
manufacturer in question outsources a portion of injection mold-
ing processes from subcontractors. Plastic fibers are sent to a sub-
contractor and the molded parts are then shipped back to the
factory. As another example, some US textile manufacturers cut
fabrics in the country and ship the cut fabrics to a low wage coun-
try, such as Mexico, for assembly. The assembled products are then
returned back to US for finishing. Sen (2008) reports that, there are
international agreements between US and Mexico on reducing the
duty for outsourcing activities in the textile industry. In a setting
where subcontracting is in place, our model may be of use if the
objective is to minimize the sum of transportation costs and the
inventory holding costs at the subcontractor.

Supply chain scheduling with transportation considerations has
received significant attention over the past decade (e.g., Chang &
Lee, 2004; Chen & Vairaktarakis, 2005; Li & Ou, 2005; Tang &
Gong, 2008, 2009; Tang, Gong, Liu, & Li, 2014; Wang & Cheng,
2009). A common property of the studies in this area is that they
model the factory as a single machine or parallel machines, and
consider the scheduling of a group of jobs taking into account
transportation times, capacities and/or costs in the inbound and/
or the outbound. For the purpose of this paper, we classify the lit-
erature in terms of part of the supply chain where the transporta-
tion issues are modeled (i.e., inbound and/or outbound of the
factory), and the objective function considered. As reviewed by
the latest survey by Chen (2010), most papers focus on the delivery
side (e.g., Agnetis, Aloulou, & Fu, 2014; Chang & Lee, 2004; Chen &
Pundoor, 2006; Chen & Vairaktarakis, 2005; Gao, Qi, & Lei, 2015;
Koc, Toptal, & Sabuncuoglu, 2013; Li, Vairaktarakis, & Lee, 2005;
Toptal, Koc, & Sabuncuoglu, 2014; Wang & Cheng, 2006; Wang &
Lee, 2005; Zhong, Dósa, & Tan, 2007). A few take into account
inbound transportation (e.g., Tang & Gong, 2009; Tang et al.,
2014), or both the inbound and the outbound transportation
(e.g., Li & Ou, 2005; Tang & Gong, 2008; Wang & Cheng, 2009).
Another feature that differentiates these studies from one another,
is the objective function they consider. Many of the papers
reviewed, optimize a scheduling related objective such as func-
tions of makespan, completion time of jobs, or total tardiness
(e.g., Chang & Lee, 2004; Gao et al., 2015; Li & Ou, 2005; Li et al.,
2005; Tang & Gong, 2009; Tang et al., 2014; Wang & Cheng,
2006, 2009; Zhong et al., 2007) whereas others take account of a
combined measure of transportation costs and scheduling objec-
tives (e.g., Chen & Pundoor, 2006; Chen & Vairaktarakis, 2005;
Wang & Lee, 2005).

An important feature of our study is that we model transporta-
tion issues both in the inbound and the outbound of the production
facility. To our best knowledge, Li and Ou (2005), Tang and Gong
(2008), and Wang and Cheng (2009) are the only few papers with
this consideration. Tang and Gong (2008) study a coordinated
scheduling problem that involves a single batching machine with
the objective of minimizing the sum of makespan and an increas-
ing function of total number of batches. Li and Ou (2005) andWang
and Cheng (2009) consider minimization of makespan as an objec-
tive whereas our study aims to minimize total inventory holding
and transportation costs. Moreover, our study differs from Li and
Ou (2005), Tang and Gong (2008) and Wang and Cheng (2009) in
the characteristics of the settings, concerning the number of vehi-
cles used and the locations they operate in-between. Both Tang
and Gong (2008) and Wang and Cheng (2009) assume that there
are two vehicles–one for carrying items in the inbound from the
warehouse to the factory, and one for carrying items in the out-
bound from the factory to a single customer location. It is impor-
tant to emphasize that in both of these settings, different
vehicles are utilized for the inbound and the outbound transporta-
tion, whereas, we consider a more restrictive case in which same
vehicles handle the transportation in both directions. In this
regard, Li and Ou (2005) is the only paper that exhibits some sim-
ilarities to ours. They model the availability of one vehicle traveling
between a factory and a warehouse where both the unprocessed
and processed jobs are held.

Our paper builds on the idea of planning the schedules of a lim-
ited number of vehicles between two locations so that as many
vehicles as possible are utilized both ways. Decreasing the number
of trips made by the vehicles not only helps the total costs to be
reduced, but it also brings down transport-related air pollution
and the need for energy consumption. Although our primary focus
is to solve the underlying production and transportation schedul-
ing problems jointly in the specific setting of interest, we would
like to note that some recent papers also study the different solu-
tion approaches resulting from sequentially solving the subprob-
lems in varying settings (e.g., Agnetis et al., 2014; Toptal et al.,
2014). In the paper, we show that the problem under consideration
is NP-Hard in the strong sense. Therefore, analyzing this problem is
both practically important and theoretically challenging.

In the next section, we begin with a detailed description of the
problem and present a mixed integer linear programming formula-
tion. In Section 3, we establish the computational complexity of the
problem and present lower bounds on the optimal value of the
objective function. We also present some properties of a class of
solutions for the general case and a special case of the problem.
This is followed by a description of the proposed heuristic in Sec-
tion 4. In Section 5, we report the results of a computational study.
Finally, in Section 6 we conclude the paper.
2. Problem definition and formulation

The system under consideration consists of two warehouses
and a production facility. The warehouses, the first for unprocessed
jobs and the second for end products, are close to each other.
Therefore, they can be considered as in the same location, that is
the origin. The production facility is far away from the warehouses.
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Unprocessed jobs are transferred from the first warehouse to the
production facility and end products are transported from the facil-
ity to the second warehouse with m identical vehicles. Job i, in its
unprocessed state, occupies a space of s1i units in a vehicle. Simi-
larly, it occupies a space of s2i units in a vehicle after it gets pro-
cessed. The capacity of a vehicle is K units. Waiting time of a
vehicle at the production facility is limited to l time units. A tour
is referred to as the run made by a vehicle which starts and ends
at the first warehouse, and visits the production facility and the
second warehouse in that order. All vehicles are initially located
in close proximity to the first warehouse. Total duration of a tour,
excluding the waiting time, loading and unloading times, is called
tour time and denoted by s. The production facility is modeled as a
single machine. An unprocessed job i requires pi time units of pro-
cessing at the facility. Loading and unloading times are negligible.

A transportation cost c is incurred whenever a vehicle makes a
tour, regardless of the number of jobs carried. Job i incurs an inven-

tory holding cost of h1
i per unit time it waits at the facility before its

processing starts. Similarly, the inventory holding cost of job i per

unit time it stays at the facility after it gets processed is h2
i . No

inventory holding cost is incurred for the jobs while they are being
transported on the vehicles. The objective is to minimize the sum
of inventory holding costs at the facility, and inbound and out-
bound transportation costs. A feasible solution to this problem
should include the schedules of the vehicles and the production
facility, and an assignment of the jobs to the vehicles for both
inbound and outbound transportation. Before presenting the
model, we introduce below additional notation for decision
variables.

N : Set of jobs

ri : Starting time of the processing of job i: 8i 2 N :

ai : Arrival time of job i to the facility: 8i 2 N :

di : Departure time of job i from the facility: 8i 2 N :

sij :
1; if job i is to be processed before job j

0; otherwise

(
8i; j 2 N

at : Arrival time of the vehicle in tour t to the facility:

t ¼ 1;2; . . . ;2 Nj j
dt : Departure time of the vehicle in tour t from the facility:

t ¼ 1;2; . . . ;2 Nj j

wt :
1; if tth tour is utilized

0; otherwise

(
t ¼ 1;2; . . . ;2 Nj j

xit :
1; if job i arrives at the facility with tour t

0; otherwise

(

8i 2 N ; t ¼ 1;2; . . . ;2 Nj j

yit :
1; if job i departs from the facility with tour t

0; otherwise

(

8i 2 N ; t ¼ 1;2; . . . ;2 Nj j
M : A very big number

The problem is first modeled as a nonlinear integer program.
Then, an effective way for its linearization is proposed.

min
X
i2N

h1
i ðri � aiÞ þ

X
i2N

h2
i ðdi � ðri þ piÞÞ þ c

X2 Nj j

t¼1

wt

subject to

rj P ri þ pi �Mð1� sijÞ 8i; j 2 N ð1Þ
ri P ai 8i 2 N ð2Þ

ri þ pi 6 di 8i 2 N ð3Þ

sij þ sji ¼ 1 8i; j 2 N ð4Þ

X2 Nj j

t¼1

xit ¼ 1 8i 2 N ð5Þ

X2 Nj j

t¼1

yit ¼ 1 8i 2 N ð6Þ

X
i2N

xits1i 6 Kwt t ¼ 1;2; . . . ;2 Nj j ð7Þ

X
i2N

yits
2
i 6 Kwt t ¼ 1;2; . . . ;2 Nj j ð8Þ

wt P wtþ1 t ¼ 1;2; . . . ;2 Nj j � 1 ð9Þ

atþm P dt þ s t ¼ 1;2; . . . ;2 Nj j �m ð10Þ

dt P at t ¼ 1;2; . . . ;2 Nj j ð11Þ

dt 6 at þ l t ¼ 1;2; . . . ;2 Nj j ð12Þ

ai ¼
X2 Nj j

t¼1

atxit 8i 2 N ð13Þ

di ¼
X2 Nj j

t¼1

dtyit 8i 2 N ð14Þ

ri;ai; di; at; dt P 0 8i 2 N ; t ¼ 1;2; . . . ;2 Nj j ð15Þ

sij;wt ; xit; yit 2 f0;1g 8i; j 2 N ; t ¼ 1;2; . . . ;2 Nj j ð16Þ
The first and the second terms of the objective function are

inventory holding costs for unprocessed and processed jobs,
respectively. The third term corresponds to the transportation
costs. Constraint set (1) assures that there is no overlap of the pro-
cessing of different jobs. The set of constraints in (2) and (3) restrict
the processing of a job to be between its arrival and departure
times. The sequence of jobs is maintained by Expression (4).
Expressions (5) and (6) ensure that each job is assigned to a tour
for its arrival to and departure from the production facility. Vehicle
capacity constraints are modeled by (7) and (8). Expression (9) is
used for an orderly indexing of the tours. Expressions (10)–(12)
establish the link between arrival and departure times of the tours.
Finally, (13) and (14) make sure that arrival and departure times of
the jobs are consistent with the arrival and departure times of the
tours they are assigned to. Even though the constraint sets as
defined by Expressions (13) and (14) are nonlinear, they can easily
be linearized as follows:

ai P at � ð1� xitÞM 8i 2 N ; t ¼ 1;2; . . . ;2 Nj j

ai 6 at þ ð1� xitÞM 8i 2 N ; t ¼ 1;2; . . . ;2 Nj j

di P dt � ð1� yitÞM 8i 2 N ; t ¼ 1;2; . . . ;2 Nj j

di 6 dt þ ð1� yitÞM 8i 2 N ; t ¼ 1;2; . . . ;2 Nj j
Since the vehicles are identical, there is no need to provide a dif-

ferent schedule for each vehicle. Instead, we index the tours and
decide on the arrival and departure times of each tour. The maxi-
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mum number of tours is 2jN j, in which case each job arrives and
departs with a different tour. The indexed tours are assigned to
vehicles in a uniform manner. If there arem vehicles, the first vehi-
clemakes the 1st, ðmþ 1Þst, ð2mþ 1Þst; . . . tours, the second vehicle
makes the 2nd, ðmþ 2Þnd, ð2mþ 2Þnd; . . . tour, etc. Without loss of
generality, we assume that vehicle k makes the tours kþmj where
j 2 Zþ [ f0g. An optimal solution of the above integer program is
post-processed and translated to an optimal solution of the original
problem. The post-processing is briefly assigning arrival and depar-
ture times of the tours to the vehicles. If tour k is utilized (i.e.,
wk ¼ 1), its arrival and departure times, to and from the production
facility, are taken as those of vehicle k at the first time it is used.
Similarly, if tour kþmj is utilized, then vehicle k is used at least
jþ 1 times, and the ðjþ 1Þst arrival and departure times of this
vehicle can be inferred from those of tour kþmj.

We would like to remark that our formulation considers a case
where vehicles are stationed at the origin. Expressions (10)–(12) in
our model should be replaced with the following in case vehicles
are stationed at the manufacturer. In addition, a1 should be set to s.

dtþm P at t ¼ 1;2; . . . ;2 Nj j �m ð17Þ

at P dt þ s t ¼ 1;2; . . . ;2 Nj j ð18Þ

at 6 dt þ sþ l t ¼ 1;2; . . . ;2 Nj j ð19Þ
3. Analysis of the problem

The problem in its most general form is clearly NP-Hard in the
strong sense as it incorporates a bin-packing problem. Because, dif-
ferent sized items have to be placed in capacitated vehicles, and
the total costs increase with number of vehicles utilized. In the
proof of Theorem 1, we show that even in the special case in which
all items occupy the same space in the vehicles, the problem is
strongly NP-Hard. Therefore, the rest of our analysis aims at iden-
tifying some properties of optimal solutions, with the objective of
reducing the set of feasible solutions. We also propose some lower
bounds on the optimal objective function value. The proofs of all
the theorems and propositions of the paper are presented in
Appendix A.

Theorem 1. Thedecisionversionof theproblem(referred to asproblem
P) is NP � Complete in the strong sense even in the special case of one
vehicle and identical inventory holding cost rates among jobs.

The mathematical program in Section 2 formulates the problem
of interest in its most general form. This leads to many alternative
solutions. However, some of these solutions can be further elimi-
nated by the following observation: Vehicles are allowed to wait
l time units at the production facility. This may lead to alternative
solutions in which some vehicles arrive early at the production
facility or depart late without affecting the rest of the schedule
and without exceeding the waiting time limit. In the rest of the
paper, we do not consider such alternative solutions that involve
unnecessary waiting of the vehicles at the production facility. More
specifically, we look into only the feasible solutions with the fol-
lowing characteristics:

� Every tour t departs from the production facility at
dt ¼ max at ; dðtÞ

� �
. Here, dðtÞ is the latest completion time of pro-

cessing among those of all the jobs that depart from the produc-
tion facility with tour t (if no such job exists, dðtÞ is taken as 0).

� Every tour t arrives at the production facility at at ¼ minðdt ;rðtÞÞ
where rðtÞ is the earliest start time of processing among those of
all the jobs that arrive to the production facility with tour t (if
no such job exists, rðtÞ is taken as 1).
We note that a solution may be optimal even though
dt > max at ; dðtÞ

� �
for some tour t as long as dt 6 at þ l. Similarly, a

solution may be optimal even though at < minðdt ;rðtÞÞ for some
tour t as long as at P dt � l. However, we eliminate these solutions
for practical purposes. Furthermore, due to the identicalness of the
vehicles, indexing the tours with wt ¼ 1 such that a1 6 a2 6 . . ., an
assignment of vehicles to the tours can be made for any solution to
also have d1 6 d2 6 . . .. We now continue our analysis with some
lower bounds on the optimal objective function value.

3.1. Lower bound scheme

In this section, we propose two lower bounds on the optimal
value of the objective function. The first lower bound, which is pre-
sented in Corollary 1, concerns the general case where there may
be more than one vehicle. The second lower bound, which is pre-
sented in Corollary 2, applies to the case of one vehicle. Recall that,
the objective function is composed of inventory holding and trans-
portation costs. Given the number of tours, which will be denoted
byx, transportation cost is fixed and is equal to c �x. Note thatx

may range from max
P

i2N s1
i

K

� �
;

P
i2N s2

i
K

� �� �
to 2jN j. For a specified

value ofx, Theorems 2 and 3 introduce lower bounds on inventory
holding costs considering the general case and the one-vehicle
case, respectively. A lower bound on the objective function value
of an optimal solution in each case is then given by the minimum,
over all possible x values, of the sum of lower bound on inventory
holding costs and the value c �x. The lower bounds in Corollaries
1 and 2 rely on this fact.

We start with presenting a lower bound on inventory holding
costs for the general case.

Theorem 2. Given the number of tours, i.e.x, the following is a lower
bound on the total inventory holding costs:

LB0
I ðxÞ ¼

XjN j

i¼1

pðiÞ
Xbi�1
x c

k¼1

h1
ðjN jþxkþ1�iÞ þ h2

ðjN jþxkþ1�iÞ
� 	

Here, bxc refers to the largest integer that is smaller than or equal to

x; pðiÞ is the ith longest processing time, h1
ðiÞ is the ith largest inventory

holding cost rate of any unprocessed job, and, h2
ðiÞ is the ith largest

inventory holding cost rate of any processed job.
Next, based on the above theorem, we present a lower bound on

the objective function value of an optimal solution.

Corollary 1. A lower bound on the total cost of an optimal solution is
given by

LB1 ¼ min

max

P
i2N s1

i
K

� �
;

P
i2N s2

i
K

� �� �
6x62jN j

fLB0
I ðxÞ þ cxg:

The following theorem provides a lower bound on inventory
holding costs for the one-vehicle case.
Theorem 3. Given the number of tours, i.e.x, the following is a lower
bound on the total inventory holding costs when there is a single
vehicle:

LB00
I ðxÞ ¼

XjN j

i¼1

Ii s� pið Þminðh1
i ; h

2
i Þ þ

Xi�1
xb c

k¼1

pðiÞh
0
ðjN jþxkþ1�iÞ

8<
:

9=
;:

Here, h0
i ¼ jh2

i � h1
i j, h0

ðiÞ is the ith largest value of h0
i , pðiÞ is the ith longest

processing time and Ii is an indicator variable with the following
value:
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Ii ¼
1; if s > pi > l

0; otherwise:

�
Based on Theorem 3, the following corollary provides a lower

bound on the objective function value of an optimal solution when
m ¼ 1.
Corollary 2. In case of a single vehicle, a lower bound on the total cost
of an optimal solution is given by

LB2 ¼ min

max

P
i2N s1

i
K

� �
;

P
i2N s2

i
K

� �� �
6x62jN j

fmaxðLB0
I ðxÞ; LB00

I ðxÞÞ

þ cxg: ð20Þ
3.2. A special case: jobs occupying identical size on vehicles and having
identical inventory holding cost rates

A special case of the problem is when all jobs occupy the same
amount of space in the vehicles (i.e., s1i ¼ s1 and s2i ¼ s2 for all
i 2 N ) and have the same inventory holding cost rates (i.e.,

h1
i ¼ h1, h2

i ¼ h2 for all i 2 N ). Recall that, Theorem 1 and its proof
imply that even in this special case, the problem is NP-Hard in the
strong sense. The next two corollaries, which will be presented
without proof, follow from Theorems 2 and 3. In these corollaries,
we provide lower bounds on total inventory holding costs given
the number of tours for the cases of multiple vehicles and one vehi-
cle. Lower bounds on total costs can in turn be found as in Corol-
laries 1 and 2. Following these corollaries, we continue our
analysis for this special case by presenting some properties of opti-
mal solutions.

Corollary 3. Given the number of tours, i.e.x, the following is a lower

bound on the total inventory holding cost when h1i ¼ h1, h2i ¼ h2 for
all i 2 N :

LB0
I ðxÞ ¼

XjN j

i¼1

bi� 1
x

cpðiÞ

( )
ðh1 þ h2Þ:

Here, bxc refers to the largest integer that is smaller than or equal to x,
and, pðiÞ refers to the ith longest processing time.
Fig. 1. Block structure of a solution.
Corollary 4. Given the number of tours, i.e.x, the following is a lower
bound on the total inventory holding costs when there is a single vehi-

cle and h1
i ¼ h1, h2

i ¼ h2 for all i 2 N :

LB00
I ðxÞ ¼

XjN j

i¼1

Ii s� pið Þminðh1
;h2Þ þ i� 1

x


 �
pðiÞjh1 � h2j

� �
:

Here, pðiÞ refers to the ith longest processing time and Ii is an indicator
variable with the following value:

Ii ¼
1; if s > pi > l
0; otherwise:

�
The sequence of jobs in their nondecreasing order of arrival

times to the facility is referred to as the inbound transportation
sequence. As several items may arrive to the facility in the same
vehicle, an inbound transportation sequence related to a produc-
tion sequence may not be unique. The sequence of jobs in their
nondecreasing order of departure times from the facility is referred
to as the outbound transportation sequence. Similarly, an outbound
transportation sequence related to a production sequence may not
be unique. The following two theorems jointly imply that there is
an optimal solution in which inbound and outbound transporta-
tion sequences are in compliance with the production sequence.
Proposition 1. Every feasible solution can be converted to an
alternative one in which for all job pairs ði; jÞ, if job i precedes job j in
the production sequence, job i arrives at the facility no later than job j.
Proposition 2. Every feasible solution can be converted to an alter-
native one in which for all job pairs ði; jÞ, if job i precedes job j in
the production sequence, job i departs from the facility no later than
job j.
Proof. Similar to that of Proposition 1. h
Propositions 1 and 2 and their proofs imply that there exists an

optimal solution in which if job i precedes job j in the production
sequence, then job i arrives at the facility and departs from the
facility no later than job j does. This can be accomplished by a pair-
wise interchange of job assignments to the vehicles for their
inbound and outbound transportation. The following two proposi-
tions present additional properties involving the jobs that arrive at
and depart from the production facility together.

Proposition 3. If h1 < h2, there exists an optimal solution in which
jobs that arrive at and depart from the production facility together, are
processed in LPT (Longest Processing Time first) order.
Proposition 4. If h1
> h2, there exists an optimal solution in which

jobs that arrive at and depart from the production facility together
are processed in SPT (Smallest Processing Time first) order.
Proof. Similar to that of Proposition 3. h
4. Heuristic procedure

A mathematical model has been presented in Section 2 for the
problem of interest. Even in small-sized instances, this model has
very long solution times (e.g., in the order of a week for 10 jobs).
The proposed lower bounds and the characteristics of the optimal
solutions decrease the computational times significantly. However,
they are still too long to be considered as practical. In this section,
we present a beam-search based heuristic to obtain solutions for
large-size problems in shorter amount of time.

In the development of the heuristic approach, we restrict our
analysis to the set of solutions which exhibit a certain property.
Upon the analysis of the optimal solutions for some small sized
instances (i.e., up to 10 jobs), we have detected that the following
property reveals itself commonly: A job arriving with the tth tour
either departs with the same tour (i.e., tour t) or the next tour (i.e.,
tour t þ 1). Moreover, the sequence of jobs in the production
schedule can be grouped into blocks such that the first block con-
sists of the jobs that both arrive and depart with the first tour, the
second block consists of the jobs that arrive with the first tour and
depart with the second tour, and so on. We refer to this character-
istic of a sequence as a block structure. In Fig. 1, an illustration of a
sequence displaying this structure is presented. The arrows point-
ing inwards the figure coincide with inbound transportation times
and the arrows pointing outwards coincide with the outbound
transportation times.
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It is important to note that the set of solutions restricted to the
above property does not always include an optimal one. However,
numerical evidence shows that the cost of an optimal solution
under this policy is close to that of a global optimum in many
cases. In our computational tests, we observed that in more than
97% of the 960 5-job instances, there is an optimal solution satisfy-
ing the block structure. In the remaining instances, in which there
is no optimal solution satisfying the block structure, the average
and the maximum gap between the optimal objective function
value and the cost of the best solution satisfying the block struc-
ture are 2.46% and 6.50%, respectively.

In the next three propositions, we present some characteristics
of an optimal solution exhibiting the block structure.

Proposition 5. In a lowest-cost solution among those satisfying the
block structure, the jobs within the same block are processed in WSPT
(Weighted Shortest Processing Time first) order where the weight of a

job is calculated as wi ¼ h2i � h1i , i.e., jobs are processed in nonde-

creasing order of h2i �h1i
pi

. Furthermore, if there is some idle time in a

block, the jobs with h2i < h1i are processed consecutively before idle

time, and the jobs with h2
i > h1i are processed consecutively after idle

time.

If all the jobs have the same inventory holding cost rate (i.e.,

h1
i ¼ h1 and h2

i ¼ h2 for all i 2 N ), Proposition 5 implies that the
jobs in the same block are processed in LPT (Longest Processing

Time first) order if h1
< h2, and in SPT (Shortest Processing Time

first) order if h1
> h2. Before we present further details about the

heuristic, we provide two more properties that hold in the special
case introduced in SubSection 3.2.

Proposition 6. For a setting where h1 P h2, consider an optimal
solution which exhibits the block structure. In this solution, if two jobs
arrive at the facility together but depart from the facility with different
tours, then the processing time of the job which departs later must be
greater than that of the other.
Proposition 7. For a setting where h2 P h1, consider an optimal
solution which exhibits the block structure. In this solution, if two jobs
depart from the facility together but arrive at the facility with different
tours, then the processing time of the job which arrives earlier must be
greater than that of the other.
Fig. 2. An illustration o
Proof. Similar to that of Proposition 6. h
The main idea behind the proposed heuristic is to find a lowest-

cost solution among those that satisfy the block structure, which is
not necessarily optimal for the original problem. Furthermore, the
procedure for finding an optimal solution that exhibits the block
structure is based on beam search. Therefore, the output of the pro-
posed procedure constitutes a heuristic solution for this problem
as well.

The heuristic evolves over a search tree with the following char-
acteristics: At level 0 of the search tree, there is a single node with
no information, that is the root node. We first branch on the
number of tours x. Note that x may range from

max
P

i2N s1
i

K

� �
;

P
i2N s2

i
K

� �� �
to 2jN j. Fig. 2 illustrates part of the

search tree for a sample problem with

max
P

i2N s1
i

K

� �
;

P
i2N s2

i
K

� �� �
¼ 1. Conditioning on the value of w,

Theorem 2 implies that LB0
I ðxÞ þ cx is a lower bound on total

costs when m > 1. Similarly, Theorem 3 suggests that
maxfLB0

I ðxÞ; LB00
I ðxÞg þ cx is a lower bound on the total costs

when m ¼ 1. In subsequent parts of the search tree, we branch
on different blocks for a given x value, and at each level, we con-
sider the assignment of a job to one of the blocks. Fig. 2 shows how
further branching is performed at the second level conditioning on
x ¼ 4. Note that, in this case, there are seven blocks, each block
referring to a different pair of assignments of a job to a tour for
its inbound and outbound transportation. For example, when a
job is assigned to block 2–3, it is implied that the job arrives at
the facility with the second tour and leaves the facility with the
third tour. In general, if there are x tours, then there are 2x� 1
number of different blocks that a job can be assigned to.

We refer to the tree structure that emanates from a node at the
first level a subtree. Notice that, there are at most 2jN j number of
subtrees in a search tree. Our search for the best solution over the
search tree gives full consideration to all the subtrees in the order
of increasing x. However, only a certain number of nodes are kept
for further consideration at each level of a subtree. Therefore, our
search for the best solution conditioning of a value of x, unfolds
in accordance with the beam search approach. The number of
nodes that are explored further at each level of the subtree is a
parameter of this approach, and is referred to as the beam width.

Since the subtrees corresponding to different values of x are
explored sequentially, a feasible solution may be obtained from
the search of each subtree. The total costs associated with such
f the search tree.



Table 1
Parameter settings.

Parameter Levels

pi U[1,100]
s1i pi + U[0,20]

s2i pi + U[0,20]

h1
i

0, pi + U[10,50]
2
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feasible solutions set upper bounds on the minimum cost. There-
fore, if a lower bound at any node in upcoming steps of the search
exceeds the smallest upper bound, then this node is pruned. The
nodes at the first level of each subtree (i.e., the second level of
the main search tree) store partial solutions incorporating the pos-
sible assignments of the job with the longest processing time to a
block. In general, at level i ði ¼ 1; . . . ; jN jÞ of a subtree, an assign-
ment of the ith longest job to a block is made. We would like to
note that in assigning jobs to blocks, two issues are taken into
account. First, the vehicle capacity constraints should not be
exceeded. Secondly, the waiting time of a vehicle at the facility
should be less than or equal to the limit l. When a new assignment
is made to a block, the sequence of the jobs in that block are
updated using Proposition 5, and if the new sequence improves
the lower bound, it is revised based on the underlying approach
of Theorems 2, 3 and their proofs.

The search for a solution conditioning on a x value, evolves
using the following approach recursively at each level of the corre-
sponding subtree: All the children nodes are created and their cor-
responding lower bounds are updated based on the partial
solutions they carry. The children nodes with lower bounds greater
than or equal to the objective value of the best known solution are
eliminated. Remaining partial solutions in the promising nodes are
then rapidly completed to a full solution. The completion algo-
rithm is simply scheduling the next job to the position where the
lower bound is minimum. The value of the global evaluation func-
tion for each child is the objective function value of the completed
solution. The children nodes are then sorted according to the global
evaluation function values. If a completed solution has a better
objective value than the best known solution, the smallest upper
bound is updated. When all the nodes at the current level are
examined, the most promising beam-width number of them are
chosen for further exploration. At this point, since more than one
child node originating from the same parent node can be kept for
further consideration, the proposed method constitutes a depen-
dent beam search.

After all jobs are assigned to blocks, the assignments are con-
verted to a schedule in terms of the arrival and departure times
of vehicles, and start and end times of processing. As an example
of such an assignment and how it is converted to a schedule, con-
sider the illustrative representation in Fig. 3. There are 5 jobs with
the following processing times: p1 ¼ 1, p2 ¼ 2, p3 ¼ 3, p4 ¼ 4 and

p5 ¼ 5. Assume also that h1
j ¼ h1 and h2

j ¼ h2 for j ¼ 1; . . . ;5. The
jobs are assigned to 3 blocks, which implies that the number of
tours is 2. Jobs 4 and 1 arrive at and depart from the facility with
the same tour. Job 5 reaches to the facility with the same tour as
of jobs 4 and 1, but it leaves the facility with the second tour. Jobs
3 and 2 arrive at and depart from the facility with the second tour.
Fig. 3 also shows the sequence of processing among the jobs that
are in the same block. That is, job 4 is processed before job 1,
and job 3 is processed before job 2. Proposition 5 hints that in this

example h1
< h2.

Let us first assume that there are 2 vehicles (i.e., m ¼ 2), tour
time is 5 units (i.e., s ¼ 5), and waiting time limit is 5 (i.e., l ¼ 5).
First, the tours are assigned to vehicles. Vehicle 1 makes the odd
numbered tours (1, 3, 5, . . .) and vehicle 2 makes the even num-
bered tours (2,4,6,..). Since there are only two tours, each vehicle
makes a single tour. Jobs 4,1 and 5 arrive at time 0 with vehicle
1, and the vehicle waits at the facility until the processing of job
1 finishes. At time 5, vehicle 1 departs from the facility with jobs
Fig. 3. An illustration of block assignments to jobs.
4 and 1. Job 5 is then processed until time 10. Vehicle 2 arrives
at the facility with jobs 3 and 2 at time 10, and the processing of
job 3 starts immediately. Job 2 follows job 3 starting at time 13
and jobs 5, 3 and 2 depart from the facility with vehicle 2 at time
15.

For the same assignment illustrated in Fig. 3, now assume that
only the number of vehicles and the tour time attain different val-
ues, those are m ¼ 1 and s ¼ 10. In this case, job 5 waits an extra 5
time units for the return of the vehicle and there is an inserted idle-

ness in the production schedule in front of job 5. Since h1
< h2,

idleness is inserted before job 5, otherwise the job has to wait
for 5 time units after its processing is completed.

We close this section by noting that beam search is an approach
that has been successfully used to solve various complex schedul-
ing problems. We cite Erenay, Sabuncuoglu, Toptal, and Tiwari
(2010) and Sabuncuoglu and Karabuk (1998) as examples of
beam-search applications in the scheduling area.
5. Computational experiments

In this section, we discuss the design and the results of our
numerical analysis. The objectives of this analysis are: (i) to test
how the lower bounds affect the running time of the optimization
model presented in Section 2, (ii) to assess the tightness of the
lower bounds, and (iii) to evaluate the quality of the proposed
heuristic.

With the above objectives in mind, we take the following
parameters as factors of analysis: inventory holding costs of unpro-

cessed jobs (h1
i ), waiting-time limit of vehicles at the facility (l),

vehicle capacity (K), number of vehicles (m), tour time (s), tour cost
(c), and number of jobs ( Nj j). In generating data, we follow the
guide provided by Hall and Posner (2001). The different levels of
the parameters used in the experimental analysis are summarized
in Table 1. As a result of generating 10 instances for each combina-
tion of factor levels, 11,520 instances have been solved.

The number of jobs in an instance is taken from the set
f5;10;20;30;40;50;60;70;80;90;100;200g and is referred to as
the size of the problem. The processing times of the jobs are sam-
pled from a discrete uniform distribution U½1;100�. The space that
a job occupies in a vehicle in the inbound and outbound, and the
inventory holding cost that it incurs at the facility before and after
processing are generated based on its processing time. More
specifically, we set s1i ¼ pi þ U½0;20� and s2i ¼ pi þ U½0;20� where
the second term in both expressions is a uniformly distributed ran-
dom variable between 0 and 20. The inventory holding costs of all
jobs in an instance before their processing start, take two levels;

zero or positive. That is, either h1
i ¼ 0 for all jobs i in an instance,

or h1
i ¼ pi þ U½10;50�. The value of an item is expected to increase

as it moves down in the supply chain. This, in turn, leads to an
increase in inventory holding costs. In our computational analysis,
hi
pi + U[10,50] + U[10,50]

l 0, 101, 5000
K 182, 364
m 1, 3
s 51, 153
c 10,000, 40,000
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h2
i values are generated to be greater than h1

i by setting

h2
i ¼ pi þ U½10;50� þ U½10;50�. Note that, this implies we have

h2
i ¼ h1

i þ U½10;50� when h1
i > 0 for all jobs.

The maximum time that a vehicle can wait at the facility (i.e., l)
assumes one of the following three values: 0, 101 and 5000. The
first and the third values represent extreme cases in which vehicles
are either not allowed to wait at all or the waiting-time limit is not
constraining. In between these two extremes, the waiting-time
limit is set to 2E½pi� ¼ 101, meaning that a vehicle can wait at most
two jobs on the average. In the experimental analysis, K takes two
levels: low and high. In the low capacity case (i.e., K ¼ 182), the
size of a vehicle is enough to carry three jobs on the average
(3E½s1i � ¼ 3E½s2i � ¼ 3E½pi� þ 30 � 182). In the high capacity case
(K ¼ 364), the size of a vehicle is large enough to carry six jobs
on the average.

We consider two levels for the number of vehicles, those are
m ¼ 1 and m ¼ 3. The tour time of a vehicle also takes two levels:
low (s ¼ 51) and high (s ¼ 153). The low level represents a situa-
tion where the average processing time of a job can barely be com-
pleted within the tour time. The high level represents a situation
where the processing of three jobs, on the average, can be com-
pleted within the tour time. The last factor in our analysis, that is
the tour cost, assumes two values; those are 10,000 and 40,000.

All the computational experiments have been carried out on a
2.6 GHz 8 x Intel Xeon E5430 Server running Debian Lenny
(5.0.7) with 8 GBs of physical memory. GAMS version 22.6 has
Table 2
Comparison of the computational times of the two models (CPU seconds).

1 2

h1
i ¼ 0 h1

i ¼
l ¼ 5000 l ¼ 10

1 C ¼ 10;000 m ¼ 1 1.52 0.81
K ¼ 182 s ¼ 51 0.83 0.74

2 C ¼ 10;000 m ¼ 1 2.59 1.13
K ¼ 364 s ¼ 51 1.73 0.65

3 C ¼ 10;000 m ¼ 3 0.95 1.38
K ¼ 182 s ¼ 51 0.46 1.00

4 C ¼ 10;000 m ¼ 3 2.62 1.16
K ¼ 364 s ¼ 51 1.93 1.19

5 C ¼ 40;000 m ¼ 1 1.09 0.72
K ¼ 182 s ¼ 51 0.72 0.64

6 C ¼ 40;000 m ¼ 1 0.35 0.35
K ¼ 364 s ¼ 51 0.35 0.31

7 C ¼ 40;000 m ¼ 3 0.90 1.23
K ¼ 182 s ¼ 51 0.54 0.85

8 C ¼ 40;000 m ¼ 3 0.28 0.34
K ¼ 364 s ¼ 51 0.41 0.32

9 C ¼ 10;000 m ¼ 1 1.23 0.91
K ¼ 182 s ¼ 153 0.67 0.80

10 C ¼ 10;000 m ¼ 1 2.45 1.20
K ¼ 364 s ¼ 153 1.41 0.81

11 C ¼ 10;000 m ¼ 3 0.90 1.39
K ¼ 182 s ¼ 153 0.59 1.09

12 C ¼ 10;000 m ¼ 3 3.01 1.86
K ¼ 364 s ¼ 153 1.87 1.07

13 C ¼ 40;000 m ¼ 1 0.81 0.78
K ¼ 182 s ¼ 153 0.58 0.67

14 C ¼ 40;000 m ¼ 1 0.31 0.39
K ¼ 364 s ¼ 153 0.35 0.29

15 C ¼ 40;000 m ¼ 3 0.62 1.14
K ¼ 182 s ¼ 153 0.59 0.99

16 C ¼ 40;000 m ¼ 3 0.35 0.38
K ¼ 364 s ¼ 153 0.38 0.28
been used to solve the mixed integer programming formulation
of the problem.

5.1. The effects of the lower bounds on the computational time

The integer programming models provided in Section 2 can only
be used to solve small size problems. This is due to the slow pro-
gress of the LP relaxations through the branch and bound tree.
The progress through the branch and bound tree can be improved
based on the lower bounds provided in Corollaries 1 and 2. Our
objective in this section is to test the effects of the results provided
in these corollaries on the computational time of the integer pro-
gramming formulation, under different problem parameters.

In order to see the effects of the lower bounds, all instances are
solved using the following two models:

Model I: Linearized version of the integer programming formu-
lation presented in Section 2.
Model II: Linearized version of the integer programming formu-
lation with the incorporation of the lower bounds.

In Model II, the following set of constraints are included in the
formulation to employ the lower bounding scheme:X
i2N

h1
i ðri � aiÞ þ

X
i2N

h2
i ðdi � ðri þ piÞÞ P ðwt � wtþ1Þ � LBðtÞ

t ¼ 1;2; . . . ;2 Nj j � 1;
3 4 5 6

0 h1
i ¼ 0 h1

i > 0 h1
i > 0 h1

i > 0
1 l ¼ 0 l ¼ 5000 l ¼ 101 l ¼ 0

1.67 5.43 4.29 9.54
0.89 5.39 2.68 4.43

3.30 14.15 5.43 14.92
1.85 12.29 3.93 6.32

1.40 25.89 8.91 11.75
1.16 19.76 7.50 7.73

3.93 82.72 9.20 21.12
2.16 55.64 6.53 13.36

1.27 1.94 1.47 2.22
0.58 1.90 1.00 2.14

0.31 1.68 0.95 2.27
0.42 1.27 1.52 1.48

1.58 5.40 2.87 2.86
1.23 3.18 2.09 3.49

0.37 10.96 1.26 2.91
0.36 3.43 1.44 1.23

1.04 3.69 2.66 35.70
0.63 4.16 2.85 0.79

3.29 10.45 5.17 59.11
1.28 11.38 3.20 4.02

1.59 31.43 10.60 9.16
1.07 25.11 6.46 8.45

3.65 112.29 9.10 21.43
2.75 37.05 8.21 11.04

0.64 1.13 1.13 1.22
0.68 1.15 1.15 0.58

0.31 0.98 2.01 0.74
0.38 1.71 1.72 0.89

1.11 6.14 3.18 2.32
1.13 6.33 3.00 2.87

0.38 12.41 1.08 2.71
0.44 7.60 1.38 1.65
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where LBðtÞ ¼ maxðLB0ðtÞ; LB00ðtÞÞ. The left hand side of the inequal-
ity is the total inventory holding cost. If the number of tours is t,
then ðwt � wtþ1Þ ¼ 1 and the total inventory holding cost is bounded
from below by LBðtÞ.

Table 2 presents the average solution times over 10 instances,
each with 5 jobs, for different combinations of the remaining
parameter values. The rows and the columns of the table corre-

spond to different settings of K , s, m, C and h1
i , l respectively. There

are two values in each cell. The first value is the average time spent
in CPU seconds to solve Model I and the second value is the average
time to solve Model II. As can be seen in the table, in general (i.e., in
more than 75% of the cells), the second value is smaller than the
first one. This indicates that the lower bounds save from computa-
tional time. In some cases, the computational time that Model II
requires is more than that of Model I. This may be due to the pos-
sibility that, in small problems, the additional computational bur-
den of processing extra constraints for lower bounds does not
justify their benefits. Another observation is that, if tour times
and tour costs are high, the effects of the lower bounds diminish
(see rows 13–16). Finally, our results imply that, with or without
the lower bounds, solving the problem is easier in settings where

h1
i ¼ 0 (see columns 1, 2 and 3).
Our findings in this section imply that, the lower bounds are

quite effective in decreasing the running time of the model pre-
sented in Section 2.
Table 3
Average percentage gaps of the lower bound and the cost of heuristic solution.

1 2

h1
i ¼ 0 h1

i ¼
l ¼ 5000 l ¼ 10

1 C ¼ 10;000 m ¼ 1 5.76% 8.32
K ¼ 182 s ¼ 51 0.00% 0.19

2 C ¼ 10;000 m ¼ 1 10.34% 10.80
K ¼ 364 s ¼ 51 0.07% 0.00%

3 C ¼ 10;000 m ¼ 3 5.76% 8.32
K ¼ 182 s ¼ 51 0.00% 0.19

4 C ¼ 10;000 m ¼ 3 10.34% 10.80
K ¼ 364 s ¼ 51 0.07% 0.00%

5 C ¼ 40;000 m ¼ 1 5.36% 7.81
K ¼ 182 s ¼ 51 0.00% 0.06%

6 C ¼ 40;000 m ¼ 1 7.09% 17.68
K ¼ 364 s ¼ 51 0.00% 0.09%

7 C ¼ 40;000 m ¼ 3 5.36% 7.81
K ¼ 182 s ¼ 51 0.00% 0.06%

8 C ¼ 40;000 m ¼ 3 7.09% 17.68
K ¼ 364 s ¼ 51 0.00% 0.09%

9 C ¼ 10;000 m ¼ 1 5.76% 8.32
K ¼ 182 s ¼ 153 0.00% 0.19

10 C ¼ 10;000 m ¼ 1 10.34% 10.80
K ¼ 364 s ¼ 153 0.07% 0.00%

11 C ¼ 10;000 m ¼ 3 5.76% 8.32
K ¼ 182 s ¼ 153 0.00% 0.19

12 C ¼ 10;000 m ¼ 3 10.34% 10.80
K ¼ 364 s ¼ 153 0.07% 0.00%

13 C ¼ 40;000 m ¼ 1 5.36% 7.81
K ¼ 182 s ¼ 153 0.00% 0.06%

14 C ¼ 40;000 m ¼ 1 7.09% 17.68
K ¼ 364 s ¼ 153 0.00% 0.09%

15 C ¼ 40;000 m ¼ 3 5.36% 7.81
K ¼ 182 s ¼ 153 0.00% 0.06%

16 C ¼ 40;000 m ¼ 3 7.09% 17.68
K ¼ 364 s ¼ 153 0.00% 0.09%
5.2. Quality of the lower bound and the heuristic with respect to the
optimal solution

In this section, we discuss our findings on the qualities of the
proposed lower bound and the heuristic. For this purpose, we com-
pare the lower bound and the cost of the heuristic solution to the
optimal objective function value. Due to the computational diffi-
culty in obtaining optimal solutions for larger size problems, we
base our analysis in this section on 5-job problems.

Table 3 presents a summary of the results. The values of m, s, K ,
C are changed over the rows and the values of h1

i , l are changed
over the columns. In each cell, two statistics are reported based
on 10 instances. The first statistic is the average gap between the
optimal objective function value and the lower bound. This corre-
sponds to the average percentage by which the lower bound is
smaller than the optimal cost. The second value is the average
gap between the heuristic solution and the optimal objective func-
tion value. Similarly, this corresponds to the average percentage by
which the cost of the heuristic solution is higher than the optimal
cost.

Considering all the 960 instances, those are the ones with 5
jobs, we find that the average deviation of the lower bound from
the optimal solution amounts to 9.5% of the latter. The maximum
gap over all the instances is 38.1%. Comparing columns 1–3 of
Table 3 to columns 4–6, respectively, we observe that when raw
3 4 5 6

0 h1
i ¼ 0 h1

i > 0 h1
i > 0 h1

i > 0
1 l ¼ 0 l ¼ 5000 l ¼ 101 l ¼ 0

% 4.45% 12.36% 12.92% 9.93%
% 0.00% 0.00% 0.00% 0.00%

% 7.98% 12.76% 13.32% 10.24%
0.00% 0.00% 0.00% 0.00%

% 4.45% 9.66% 11.62% 9.86%
% 0.00% 3.13% 1.54% 0.00%

% 7.98% 10.08% 12.03% 10.18%
0.00% 3.13% 1.54% 0.00%

% 4.20% 7.77% 9.99% 5.99%
0.00% 0.00% 0.09% 0.00%

% 4.80% 15.81% 20.57% 11.62%
0.00% 0.00% 0.08% 0.00%

% 4.20% 6.64% 9.44% 5.99%
0.00% 1.22% 0.45% 0.00%

% 4.80% 14.41% 20.42% 11.62%
0.00% 1.63% 0.29% 0.00%

% 4.45% 12.36% 12.92% 2.25%
% 0.00% 0.00% 0.00% 0.00%

% 7.98% 12.76% 13.32% 5.45%
0.00% 0.00% 0.00% 0.01%

% 4.45% 9.66% 11.62% 9.86%
% 0.00% 3.13% 1.54% 0.00%

% 7.98% 10.08% 12.03% 10.18%
0.00% 3.13% 1.54% 0.00%

% 4.20% 7.77% 12.07% 3.36%
0.00% 0.00% 0.28% 0.00%

% 4.80% 15.96% 24.74% 3.57%
0.00% 0.00% 0.16% 0.00%

% 4.20% 6.64% 9.44% 5.99%
0.00% 1.22% 0.45% 0.00%

% 4.80% 14.41% 20.42% 11.62%
0.00% 1.63% 0.29% 0.00%
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material inventory holding cost h1
i is zero, the lower bound is tigh-

ter in general. In fact, over all the instances with h1
i ¼ 0, the aver-

age gap is 7.88%, whereas, it is 11.12% over the remaining instances

where h1
i > 0. This is due to the way that the lower bound is con-

structed. Recall from Section 3.1 that, the lower bounds are com-
puted based on minimization of costs assuming momentarily

that either h1
i ¼ 0 or h2

i ¼ 0 for all i. Therefore, the lower bounds
are tighter in these cases.

It can also be observed from Table 3 that the average percentage
differences between the lower bound and the optimal costs in col-
umn 2 are higher than those in columns 1 and 3. Similarly, the
same measures in column 5 are higher than those in columns 4
and 6. This implies that performance of the lower bound is the
worst when the limit on the waiting time of vehicles, i.e. l, takes
its mid value. In extreme cases, those are when l is very large or
very small, lower bounds are closer to optimal costs. On a compar-
ison of row 1 with row 3, row 2 with row 4, and so forth, we also
conclude that the performance of the lower bounds increases with
increasing number of vehicles. Comparing row 1 with row 2, row 3
with row 4, and so forth, we observe that the lower bounds get clo-
ser to optimal costs with decreasing vehicle capacity. Finally, we

would like to point out that when h1
i > 0, m ¼ 1 and s ¼ 153 (see

the intersection of column 6 with rows 9, 10, 13, 14), the lower
bound is particularly close to the optimal solution. What differen-
tiates these instances from others is that, in finding a lower bound,
the part of Expression (20) that concerns inventory holding costs is
given by LB00

I ðxÞ for some value of w rather than LB0
IðxÞ.

In this section, we also report our results in terms of the quality
of the beam-search heuristic with respect to the optimal solution
for small-size problems. In the next section, we present the results
of a more extensive study incorporating larger size problems. In
order to decide the beam width parameter, pilot runs were taken
on sample instances of all sizes. The objective function values of
the heuristic solutions and CPU times spent for several beamwidth
values, were recorded. It was observed that the solution time
increases almost linearly as the beam width increases. However,
the objective function value does not change for beam width val-
ues greater than 8. Furthermore, the marginal contribution of
increasing the beam width beyond a value of 5, does not justify
Fig. 4. Effect of inventory holding costs on the heu
the increase in the computational time. Thus, we decided to fix
the beamwidth at a value of 5 in the remaining part of the analysis.

The second value in each cell of Table 3 is the average gap
between the heuristic and the optimal solution over 10 instances.
Considering all the instances with 5 jobs, the maximum and aver-
age gaps were found as 6.50% and 0.29%, respectively. On a com-
parison of the first three columns of Table 3 with the last three
columns, it can be observed that the heuristic performs better

when h1
i ¼ 0. In fact, the average gaps for cases with h1

i ¼ 0 and

h1
i > 0 are 0.034% and 0.55%, respectively. This may be due to the

fact that the heuristic makes use of the lower bounds, and the
lower bounds perform slightly better in these cases. Finally, when
rows with m ¼ 1 are compared to rows with m ¼ 3, it can be con-
cluded that the performance of the heuristic decreases with the
number of vehicles. The average gaps for single and multiple vehi-
cle cases are 0.03% and 0.555%, respectively.
5.3. Quality of the heuristic for large size problems

In this section, the quality of the proposed heuristic is assessed
in comparison to the lower bounds and over an extensive set of
problems.

We first start with analyzing the effect of inventory holding
costs on the performance of the heuristic. Fig. 4 shows the average
percentage difference between the heuristic solution and the lower

bound for varying levels of the job size and h1
i . Recall from Sec-

tion 5.2 that the average gap between the costs of the heuristic
and optimal solution was found as 0.29% over 5-job problems.
However, if the costs of the heuristic solutions are compared to
the lower bounds over the same set of instances, it is found that
the lower bound is less than the cost of the heuristic solution by
an average of 9.36% and 14.11% of the latter for the cases of

h1
i ¼ 0 and h1

i > 0, respectively. Thus, a significant portion of the
gap when heuristic solution is tested against the lower bound,
should be attributed to the difference between the lower bound
and the optimal solution. Fig. 4 shows that the instances with

h1
i > 0 lead to a larger average deviation of the heuristic from the

lower bound in comparison to the instances with h1
i ¼ 0.
ristic performance for different problem sizes.



Fig. 5. Effect of waiting limit on the heuristic performance for different problem sizes.

188 U. Koç et al. / Computers & Industrial Engineering 103 (2017) 178–192
Fig. 5 shows how the performance of the heuristic changes with
respect to waiting time limit l at varying levels of job size. The
average deviation of the cost of heuristic solution from the lower
bound is the largest at mid levels of the waiting time limit for prob-
lems with up to 50 jobs. Recall from Section 5.2 that, this is also
when the performance of the lower bound is the worst. For prob-
lems with 60 or more jobs, the average deviation is the largest at
low level of the waiting time limit.

The effect of vehicle capacities on the performance of the
heuristic is demonstrated in Fig. 6. When tour cost c is low, the
capacities have little effect because the vehicles are not always
fully utilized. When tour cost is high, vehicles are fully utilized to
decrease the total number of tours. In this case, vehicle capacities
become more constraining. The heuristic performs better at higher
values of tour cost combined with small vehicle capacities.

Considering all 10,560 instances (all instances except for 5-job
problems), we found that the cost of the heuristic solution deviates
from the lower bound by 19% on the average for smaller problems
(those with 10–50 jobs) and by 29% on the average for larger prob-
lems (those with 60–200 jobs). We would like to complete this sec-
tion with some results on the running time of the heuristic. Table 4
reports the average running time of the heuristic over all the
instances for each job size. A regression equation with the job size
(n) being the independent variable, implies that the running time
can be explained by a third degree polynomial (0:0004n3�
0:0288n2 þ 0:55n) with an R-squared value of 0.9977.
Fig. 6. Effect of tour cost and vehicle cap
6. Conclusions and future research

This paper studies the joint problem of finding the production
and vehicle schedules for inbound and outbound transportation
of a single stage in the supply chain. In the specific setting of inter-
est, a certain number of jobs are carried from an origin to a produc-
tion facility at a distant location and returned back to the origin
after their processing. There are multiple vehicles with limited
capacities and they can be utilized for both inbound and outbound
transportation. Inventory holding costs and transportation costs in
this setting are high, therefore, coordination of the schedules for
production and transportation is important.

Our paper falls into the area of supply chain scheduling with
transportation considerations. While many of the studies in this
area focus on just the delivery schedule and consider the joint
scheduling problem for a scheduling related objective, our study
models the shipment related constraints both in the inbound and
the outbound, and aims to minimize the sum of inventory holding
and transportation costs. In the paper, we first show that the prob-
lem under consideration is NP-Hard in the strong sense. We then
prove some properties of the solution space and develop lower
bounds on the optimal objective function value. Using these prop-
erties and lower bounds, we propose a heuristic based on beam-
search approach. Over an extensive computational analysis, we
demonstrate the qualities of the lower bounds and the heuristic.
We would like to note that our model does not explicitly account
acity on the heuristic performance.



Table 4
Average running time of the heuristic in seconds.

Job size Time spent

10 0.0121
20 0.4141
30 0.8727
40 2.9344
50 6.8372
60 16.7715
70 33.7393
80 60.6723
90 100.0391
100 166.5684
200 4012.2601
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for deadlines. However, under a situation where jobs have com-
mon deadlines all our analytical results hold, and the proposed
heuristic can easily be updated by assigning a job to a block only
if it does not lead to deadline violation for any of the affected jobs
in the current schedule.

The issue of coordinating the schedules for the production and a
finite number of capacitated vehicles which can be utilized both in
the inbound and the outbound, can be extended to other settings
as well. Immediate extensions include modeling the production
scheduling problem at a more detailed level and/or solving the
problem for different objective functions. Last, but not least, con-
flict and cooperation issues can be investigated in this setting by
modeling the existence of a decision maker, i.e., a trucking com-
pany, who owns the trucks and makes their scheduling decisions
(see Dawande et al., 2006 as an example).
Appendix A

A.1. Proof of Theorem 1

In the proof we consider the special case in which there is a sin-
gle vehicle, all jobs occupy the same amount of space within a
vehicle (i.e., s1i ¼ s1 and s2i ¼ s2 for all i 2 N ) and inventory holding

costs of all jobs are equal (i.e., h1
i ¼ h1, h2

i ¼ h2 for all i 2 N ). Clearly
the generalization is also NP � Complete. Proof is done by a reduc-
tion from 3-Partition (3P) problem. 3P is defined as follows.

3P: Given a set A of 3t elements, a bound B 2 Zþ, and a size
sðaÞ 2 Zþ for each a 2 A such that B=4 < sðaÞ < B=2 and such thatP

a2AsðaÞ ¼ tB, can A be partitioned into t disjoint sets
A1;A2; . . . ;At such that

P
a2Ai

sðaÞ ¼ B for i ¼ 1;2; . . . ; t (note that
each Ai must therefore contain exactly three elements from A)?

REDUCTION: Given an instance of 3P, the instance of P is con-
structed as follows: for each element a in set A, a job a is defined
in set N with processing time equal to sðaÞ. Thus, N ¼ A, Nj j ¼ 3t,

pa ¼ sðaÞ, s1 ¼ s2 ¼ h1 ¼ h2 ¼ 1 8aA, s¼ B, c ¼ 4tB, z� ¼ ðtþ1Þcþ c
2,

K ¼ 3, l¼ 0. We prove that there is a solution to 3P if and only if
there is a solution to P with objective less than or equal to z�.

Suppose that there is a feasible solution to P such that the cost z
is less than or equal to z�. We show that there also exists a feasible
solution to 3P. Since l ¼ 0, the vehicle is not allowed to wait at the
facility. Therefore, the first tour departs from the facility empty. As
K ¼ 3, the vehicle makes at least t þ 1 tours, with a transportation
cost of cðt þ 1Þ. Since z 6 z� < cðt þ 2Þ, the vehicle makes exactly
t þ 1 tours. Therefore, tour i (i ¼ 1; . . . ; t) carries exactly 3 jobs
(whose total processing times is denoted by ~pi) to the facility,
which should be processed by the time when the next arrival of
the vehicle. At tour i, whatever the processing sequence is, the
inventory holding cost incurred is at least 2~pi. This is because, each
job waits for the other two either after or before being processed

and h1 ¼ h2 ¼ 1. The total inventory holding cost is at least
2
Pt

i¼1~pi ¼ 2
P

a2Apa ¼ 2tB ¼ c=2, which means z ¼ z�, which in turn
implies the total inventory holding cost is exactly c=2. Note that
~pi 6 s, 8i. Otherwise, there would be an extra inventory holding
cost incurred by all three jobs waiting after or before being pro-
cessed.

Pt
i¼1~pi ¼ tB, thus, we should have ~pi ¼ s, 8i. Then, one can

obtain a feasible solution to 3P by taking Ai as the set which
includes the processing times of the jobs arriving with tour i. Con-
versely, if there exists a feasible solution to 3P, a feasible solution
to P can be obtained by assigning the jobs whose processing times
are the numbers in Ai to arrive with tour i and depart with tour
ðiþ 1Þ. Note that the parameter settings in the reduction are poly-
nomial in the size of the problem. Consequently, decision version
of P is NP � Complete in the strong sense. h

A.2. Proof of Theorem 2

Total inventory holding costs are composed of inventory hold-
ing costs for unprocessed jobs and processed jobs. For the proof
of the theorem, we will first find lower bounds individually for
each component, and later, we will sum them up. In reaching a
lower bound for unprocessed jobs, we will ignore the effect of
any scheduling decision on the inventory holding costs of the pro-
cessed jobs. This is equivalent to momentarily assuming that

h2
i ¼ 0 for all i 2 N . Likewise, in deriving a lower bound for pro-

cessed jobs, we will assume that h1
i ¼ 0 for all i 2 N .

Let us start with the inventory holding costs of the unprocessed

jobs. As the cost of unprocessed jobs is positive but h2
i ¼ 0 for all

i 2 N , in an optimal solution, the production facility will never
be idle as long as there is some job waiting to be processed. There-
fore, the inventory holding costs of unprocessed jobs are given byP

i2N
P

j2l1
i
h1
j pi, where l1

i is the set of jobs that wait for job i as

unprocessed. Since there are x tours, we have at most x jobs with
l1

i ¼ £, at most x jobs with jl1
i j ¼ 1, and so on. The expressionP

i2N
P

j2l1
i
h1
j pi is minimized when the jobs with longer processing

times have smaller
P

j2l1
i
h1
j values. That is, when the longestx jobs

are chosen to have l1
i ¼ £, the next longest x jobs are chosen to

have jl1
i j ¼ 1, and so on. Moreover, we distribute h1

j ’s to the sets

l1
i so that the smallest h1

j is assigned to the longest job among

all with jl1
i j ¼ 1, the second smallest h1

j is assigned to the second

longest, and so on. That is, the x jobs with smallest h1
j values are

distributed to the jobs with jl1
i j ¼ 1. For the jobs with jl1

i j > 1,

we assign one job from the smallest x h1
j ’s, one job from the sec-

ond smallest h1
j ’s, and so on. This leads to

X
i2N

X
j2l1

i

h1
j pi P

XjN j

i¼1

pðiÞ
Xbi�1
x c

k¼1

h1
ðjN jþxkþ1�iÞ

� 	
ð21Þ

where bi�1
x c represents jl1

ðiÞj, pðiÞ is the ith longest processing time

and h1
ðjÞ is the jth largest value among all h1

i ’s. Hence, the right side
of the above inequality is a lower bound on the inventory holding
costs of unprocessed jobs.

A lower bound on the inventory holding costs of the processed
jobs can be derived in a similar way. Let l2

i be the set of jobs that
wait for job i as processed. Then, the inventory holding costs of the

processed jobs are given by
P

i2N
P

j2l2
i
h2
j pi. With a similar argu-

ment as in the case of unprocessed jobs, we have

X
i2N

X
j2l2

i

h2
j pi P

XjN j

i¼1

pðiÞ
Xbi�1
x c

k¼1

h2
ðjN jþxkþ1�iÞ

� 	
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where bi�1
x c represents jl2

ðiÞj, pðiÞ is the length of the ith longest job

and h2
ðjÞ is the jth largest value among all h2

i ’s. The right side of the
above inequality is a lower bound on the inventory holding costs
of the processed jobs. Therefore, its summation with the right side
of Inequality (21) gives a lower bound on the total inventory hold-
ing costs for a given value of number of tours (i.e., x). h
A.3. Proof of Theorem 3

The proof of Theorem 3 follows based on a similar idea which
underlies the proof of Theorem 2. In general, a job may contribute
to the total inventory holding costs in two ways; one is due to the
waiting of the job for its delivery to the warehouse until the depar-
ture of next available vehicle (it may wait processed or unpro-
cessed), and the other is the inventory holding cost of a job while
it waits for the processing of the other jobs. Note that some of
these waiting times may overlap. Theorem 2 and its proof build
on a consideration of the second cause for waiting of any job.
Herein, we will also take into account the waiting of jobs for their
pickup until a vehicle becomes available. Notice that, this is easier
to do in case of one vehicle, because in this case, we know that the
time between the drop-off and pick-up of a job, if s > pj > l, is at
least s. The remaining part of the proof relies on this observation
and accounts for the two reasons of waiting.

If s > pj > l for some job j, the job has to wait for the return of
the vehicle as long as at least s� pj time units. Ignoring other jobs

at the facility momentarily, if h1
j < h2

j for some job j, the inventory
holding cost due to the waiting of this job for the return of the
vehicle can be minimized if the job is held unprocessed during
its waiting time. That is, the job contributes to the total inventory

holding costs in an amount of at least h1
j ðs� pjÞ. If h2

j < h1
j , the job’s

contribution to the total inventory holding costs is decreased if it is
held processed. This, in turn, leads to an inventory holding cost of

at least h2
j ðs� pjÞ. Thus, the inventory holding cost incurred by this

job due to the first reason is at least ðs� pjÞminðh1
j ;h

2
j Þ, and this is

valid for all jobs for which s > pj > l.

Note that summing up ðs� pjÞminðh1
j ;h

2
j Þ for all jobs, we already

include the waiting time of a job either in its unprocessed or pro-

cessed state. Recall that Theorem 2 proposes
PjN j

i¼1pðiÞ
Pbi�1

x c
k¼1

h1
ðjN jþxkþ1�iÞ þ h2

ðjN jþxkþ1�iÞ
� 	

as a lower bound on inventory holding

costs due to the waiting of the jobs for one another. The cost of
waiting due to the vehicle unavailability is incorporated in the
above calculations by considering a job’s state at which the inven-
tory holding cost rate is minimum. Therefore, the waiting of jobs in
their minimum cost state is already penalized. To that, we add the

term
P i�1

xb c
k¼1 pðiÞh

0
ðjN jþxkþ1�iÞ for each job to account for the incremen-

tal cost of waiting of jobs for one another, which has not been

incorporated in the ðs� pjÞminðh1
j ;h

2
j Þ term. h
A.4. Proof of Proposition 1

Let S be a feasible solution such that job i precedes job j in the
production sequence but arrives at the facility later (i.e., ri < rj

and aj < ai). We have aj < ai 6 ri < rj. Consider a new solution
S0 in which job i and job j are swapped for their assignment to vehi-
cles in the inbound transportation. That is, we now have a0

i ¼ aj

and a0
j ¼ ai, where a0

i and a0
j are the arrival times of jobs i and j in

solution S0, respectively. Note that S and S0 have the same outbound
transportation and production schedules. Let TCðSÞ denote the cost
of solution S. TCðSÞ and TCðS0Þ differ only in terms of inventory
holding costs of jobs i and j while they are waiting as unprocessed
at the production facility. It follows that TCðSÞ � TCðS0Þ ¼
ðri � ai þ rj � ajÞh1 � ðri � a0

i þ rj � a0
jÞh1 ¼ 0. Thus, S0 is equiva-

lent to S in its objective function value. Continuing in this fashion
and swapping the inbound vehicle assignments of all such ði; jÞ in
S, results in another feasible solution with the same objective func-
tion value. h

A.5. Proof of Proposition 3

We know from Propositions 1, 2 and their proofs that there
exists an optimal solution in which if job i precedes job j in the pro-
duction sequence, then job i arrives at the facility and departs from
the facility no later than job j. The proof of the current theoremwill

follow by showing that, if h1
< h2, in such an optimal solution, jobs

that arrive to and depart from the facility together are processed in

LPT order. Hence, in case of h1
< h2, there exists an optimal solu-

tion with the property stated in the theorem.
Take an optimal solution S in which inbound, outbound and

production sequences are in compliance. Note that, in this solution,
jobs that arrive to and depart from the production facility together
are processed consecutively. Assume, by contradiction, that S does
not comply with the theorem. Therefore, there exists at least a pair
of adjacent jobs i and j in the production schedule that arrive to
and depart from the facility together (ai ¼ aj, di ¼ dj), however,
job i precedes job j in the production schedule (ri < rj ¼ ri þ pi)
despite pi < pj.

Construct another feasible solution S0 from S by interchanging
jobs i and j in the production sequence. We now have
r0

j ¼ ri;r0
i ¼ r0

j þ pj, where r0
i and r0

j are the starting times of pro-

cessing of jobs i and j in S0, respectively. Note that, S and S0 are only
different in their production schedules of these two jobs. Let TCðSÞ
denote the total cost of solution S. We have

TCðSÞ � TCðS0Þ ¼ ðri � ai þ rj � ajÞh1 þ di � ðri þ piÞð
h
þdj � ðrj þ pjÞ

�
h2
i
� ðr0

i � ai þ r0
j � ajÞh1

h
þ di � ðr0

i þ piÞ þ dj � ðr0
j þ pjÞ

� 	
h2

i
;

which leads to

TCðSÞ � TCðS0Þ ¼ ðri þ rj � r0
i � r0

jÞðh1 � h2Þ ¼ ðpj � piÞðh2 � h1Þ:

Since pj > pi and h2
> h1, the above expression is greater than zero.

This implies TCðS0Þ < TCðSÞ, which contradicts with the optimality of

S. Therefore, if h1
< h2, jobs that arrive to and depart from the pro-

duction facility together in solution S, should be processed in LPT
order in every optimal solution. h

A.6. Proof of Proposition 5

We first show that if there is any idle time in a block, the last job

processed before the idle time starts, say job i, must have h2
i 6 h1

i .
Similarly, the first job processed after the idle time ends must have

h2
i P h1

i . If there is some idle time in a block after (before) some job
i, starting the processing of this job later (earlier) will decrease the

total costs by h2
i � h1

i (h
1
i � h2

i ) per time unit. Thus, for any job with

h2
i > h1

i , there will be no idle time after job i, and for any job with

h2
i < h1

i , there will be no idle time before job i.
Now, consider an optimal solution Swith two consecutive jobs j

and k such that j precedes k in the processing sequence and
h2j �h1j

pj
>

h2k�h1k
pk

. If there is idle time between these jobs, then h2
j 6 h1

j
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and h2
k P h1

k according to the above discussion. This implies
h2j �h1j

pj
6 0 6 h2k�h1k

pk
, which contradicts with

h2j �h1j
pj

>
h2k�h1k
pk

. If there is no

idle time between these jobs in S, define another solution S0 where
only jobs j and k are swapped in the production sequence. The dif-
ference between the total costs of solutions S and S0 is given by

TCðSÞ � TCðS0Þ ¼ ðpjh
1
k þ pkh

2
j Þ � ðpkh

1
j þ pjh

2
kÞ

¼ pkðh2
j � h1

j Þ � pjðh2
k � h1

kÞ;

which is greater than zero as
h2j �h1j

pj
>

h2k�h1k
pk

. Thus, S is not an optimal

solution. Note that together with the above discussion on idle time,
the WSPT property implies that, if there is idle time in a block, the

jobs with h2
i < h1

i are processed consecutively before idle time and

the jobs with h2
i > h1

i are processed consecutively after idle time
in the WSPT sequence. h

A.7. Proof of Proposition 6

Consider an optimal solution S which exhibits the block struc-
ture. Assume, in contradiction to the proposition, that there exist
two jobs u and v that arrive at the facility together, u departs earlier
than v, and pu > pv . Fig. 7 is an illustration of such a solution. A, B, C
and D in the figure refer to sets of jobs with certain common char-
acteristics. More specifically, A and B are groups of jobs that arrive
at the facility with job u at time t0 and leave the facility with job u
at time t1. Jobs in A are processed before job u and jobs in B are pro-
cessed after job u. Jobs in C and D also arrive at the facility with job
u, however, they leave the facility with job v and at time t2. In
mathematical terms,

ai ¼ t0 8i 2 A [ B [ C [ D [ fu; vg;

di ¼ t1 8i 2 A [ B [ fug;

di ¼ t2 8i 2 C [ D [ fvg:
Note that, any of the sets A, B, C and D may be empty.

Now, consider a new solution S0 that is formed by interchanging
the positions of jobs u and v in the production sequence and their
assignments to vehicles in the outbound transportation. Fig. 8 is an
illustration of such a solution.

Denoting ri as the starting time of processing of job i in solution
S, in the new schedule S0 we have

a0
i ¼ t0 8i 2 A [ B [ C [ D [ fu; vg;

r0
i ¼ ri 8i 2 A [ D;

r0
i ¼ ri � pu þ pv 8i 2 B [ C;

d0i ¼ t1 � pu þ pv 8i 2 A [ B [ fvg;
Fig. 7. An illustration of a solution in contradiction to Proposition 6.

Fig. 8. An illustration of the updated solution S0 .
d0i ¼ t2 8i 2 C [ D;

d0u ¼ t2; r0
u ¼ rv � pu þ pv ; r0

v ¼ ru:

As the number of tours in S0 remains the same as the one in S, the
total costs of the two solutions differ only in their inventory holding
cost component, and the difference is

TCðSÞ � TCðS0Þ ¼
X

i2A[B[C[D[fu;vg
ðri � t0Þh1 þ ðdi � ri � piÞh2

� ðr0
i � t0Þh1 � ðd0i � r0

i � piÞh2
;

which reduces to

TCðSÞ � TCðS0Þ ¼
X

i22A[B[C[D[fu;vg
ðri � r0

iÞh1 þ fðdi � d0iÞ þ ðr0
i � riÞgh2

:

When the values of di, r0
i, d

0
i are plugged in the above expression for

each group of jobs, it can be rewritten as

TCðSÞ�TCðS0Þ ¼
X
i2A

ðri �riÞh1 þft1 �ðt1 �pu þpvÞ

þ ðri �riÞgh2 þ
X
i2B

ðri �ðri �pu þpvÞÞh1

þfðt1 �ðt1 �pu þpvÞÞþ ððri �pu þpvÞ�riÞgh2

þ
X
i2C

ðri �ðri �pu þpvÞÞh1

þfðt2 � t2Þþ ððri �pu þpvÞ�riÞgh2

þ
X
i2D

ðri �riÞh1 þfðt2 � t2Þþ ðri �riÞgh2

þðru �ðrv �pu þpvÞÞh1

þfðt1 � t2Þþ ððrv �pu þpvÞ�ruÞgh2

þðrv �ruÞh1 þfðt2 �ðt1 �pu þpvÞÞþ ðru �rvÞgh2
:

After some cancelations and rearrangement of terms, the above
expression reduces to

TCðSÞ � TCðS0Þ ¼
X
i2A

ðpu � pvÞh2 þ
X
i2B

ðpu � pvÞh1

þ
X
i2C

ðpu � pvÞðh1 � h2Þ þ ðpu � pvÞh1
;

which is equivalent to

TCðSÞ � TCðS0Þ ¼ ðpu � pvÞ Aj jh2 þ Bj jh1 þ Cj jðh1 � h2Þ þ h1

� 	
:

Note that under the h1 P h2 condition of this proposition, we

assume h1
> 0 because, otherwise we would have h1 ¼ h2 ¼ 0,

which would be trivial. Combining with pu > pv , we conclude that
TCðSÞ � TCðS0Þ > 0. This contradicts with the optimality of S. h
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