
Performance Evaluation 115 (2017) 132–149

Contents lists available at ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

On compact solution vectors in Kronecker-based Markovian
analysis
P. Buchholz a, T. Dayar b,*, J. Kriege a, M.C. Orhan b

a Informatik IV, Technical University of Dortmund, D-44221 Dortmund, Germany
b Department of Computer Engineering, Bilkent University, TR-06800 Bilkent, Ankara, Turkey

a r t i c l e i n f o

Article history:
Available online 24 August 2017

Keywords:
Markov chain
Kronecker product
Hierarchical Tucker decomposition
Reachable state space
Compact vector

a b s t r a c t

State based analysis of stochasticmodels for performance and dependability often requires
the computation of the stationary distribution of a multidimensional continuous-time
Markov chain (CTMC). The infinitesimal generator underlying a multidimensional CTMC
with a large reachable state space can be represented compactly in the form of a block
matrix in which each nonzero block is expressed as a sum of Kronecker products of
smaller matrices. However, solution vectors used in the analysis of such Kronecker-based
Markovian representations require memory proportional to the size of the reachable state
space. This implies that memory allocated to solution vectors becomes a bottleneck as the
size of the reachable state space increases. Here, it is shown that the hierarchical Tucker
decomposition (HTD) can be used with adaptive truncation strategies to store the solution
vectors during Kronecker-basedMarkovian analysis compactly and still carry out the basic
operations including vector–matrixmultiplication in Kronecker formwithin Power, Jacobi,
and Generalized Minimal Residual methods. Numerical experiments on multidimensional
problems of varying sizes indicate that larger memory savings are obtained with the HTD
approach as the number of dimensions increases.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Modelling and analysis of multidimensional continuous-time Markov chains (CTMCs) is an area with ongoing research
interest. Handling of large state spaces is a major challenge in CTMC analysis approaches. When a system is composed of
interacting subsystems, it may be possible to provide a state-based mathematical model for its behaviour as a multidi-
mensional CTMC with each dimension of the CTMC representing a different subsystem and a number of transitions that
trigger state changes at certain rates. The product state space size of such a model grows exponentially in the number
of subsystems. In this kind of model, subsystems change state independently of states of other subsystems through local
transitions, or they change state synchronously with one or more of the other subsystems through synchronized transitions.
A subset of the Cartesian product of the subsystem state spaces forms the so-called reachable state space of the model. The
reachable state space of such amodel is determined by the combination of states in which the subsystems can be under local
or synchronized transitions [1,2]. Usually not all states of the Cartesian product are reachable because transitions prohibit
some specific combinations of subsystem states. However, in most models also the reachable state space grows quickly with
an increasing number of subsystems. It is important to be able to represent this reachable state space and the transitions

* Corresponding author.
E-mail addresses: peter.buchholz@cs.tu-dortmund.de (P. Buchholz), tugrul@cs.bilkent.edu.tr (T. Dayar), jan.kriege@cs.tu-dortmund.de (J. Kriege),

morhan@cs.bilkent.edu.tr (M.C. Orhan).

http://dx.doi.org/10.1016/j.peva.2017.08.002
0166-5316/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.peva.2017.08.002
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.peva.2017.08.002&domain=pdf
mailto:peter.buchholz@cs.tu-dortmund.de
mailto:tugrul@cs.bilkent.edu.tr
mailto:jan.kriege@cs.tu-dortmund.de
mailto:morhan@cs.bilkent.edu.tr
http://dx.doi.org/10.1016/j.peva.2017.08.002

P. Buchholz et al. / Performance Evaluation 115 (2017) 132–149 133

among its states compactly and then analyse the stationary or transient behaviour of the underlying system as accurately
and as efficiently as possible.

When the reachable state space at hand is large, the infinitesimal generator underlying the CTMC can be represented as
a block matrix in which each nonzero block is expressed as a sum of Kronecker products of smaller rectangular matrices [3].
This is the form of the Kronecker representation in Hierarchical Markovian Models [1], where the smaller matrices can be
rectangular due to the product state space of the modelled system being larger than its reachable state space [4]. When the
product state space is equal to the reachable state space, the smaller matrices become square as in Stochastic Automata
Networks [5,6].

For Kronecker-based Markovian representations, iterative analysis methods employ vector-Kronecker product multipli-
cation as the basic operation [7]. The challenge is to perform this operation in as little memory and as fast as possible. When
the factors in the Kronecker product terms are dense, the operation can be performed efficiently by the shuffle algorithm [8].
When the factors are sparse, it may be more efficient to obtain nonzeros of the generator in Kronecker form on the fly
and multiply them with corresponding elements of the vector [2]. However, memory allocated for the vectors in these
algorithms is still proportional to the size of the reachable state space, and this size increases exponentially with the number
of dimensions.

The bottleneck of today’s numerical analysis methods for large CTMCs is the size of the vectors that need to be used.
A more compact representation that avoids the complete enumeration of all reachable states would increase the size of
solvable models significantly. An approach along this direction is the hierarchical Tucker decomposition (HTD) [9,10]. HTD
was originally conceived in the context of providing a compact approximate representation for dense multidimensional
data [11] in a manner similar to the tensor-train decomposition [12], but is more suitable to our requirements in that
the decomposition is available through a tree data structure with logarithmic depth in the number of dimensions. Both
decompositions have the special feature of possessing approximation errors that can be user controlled, and hence,
approximations accurate to machine precision are computable using them. Clearly, with such decompositions it is always
possible to trade quality of approximation for compactness of representation, and how compact the solution vector in HTD
format remains throughout the solution process is an interesting question to investigate.

The tensor train decomposition has been applied in [13] to approximate the solution vector formodels where the product
space is reachable using an alternating least squares approach or the Power method. To the best of our knowledge, HTD was
first applied to hierarchically structured CTMCs in [14]. Therein, it is shown that a compact solution vector in HTD format
can be multiplied with a sum of Kronecker products to yield another compact solution vector in HTD format. Moreover, the
multiplication of the compact solution vector in HTD format with a Kronecker product term does not increase the memory
requirements of the compact vector, but the addition of two compact vectors does. This necessitates some kind of truncation,
hence, approximation, to be introduced to the addition operation. To investigate the merit of the approach, the following
analysis was performed in [14]. Starting from an initial solution, the compact vector in HTD formatwas iterativelymultiplied
with the uniformized generator matrix of a given CTMC in Kronecker form 1000 times. The same numerical experiment
was performed with a solution vector the same size as the reachable state space size using an improved version of the
shuffle algorithm [15]. For a fixed truncation error tolerance strategy in the HTD format, the two approaches were compared
for memory, time, and accuracy, leading to the preliminary conclusion that compact vectors in HTD format become more
memory efficient as the number of dimensions increases. We remark that compact representations for solution vectors
in Markovian analysis have also been considered from the perspective of binary decision diagrams [16,17]. The proposed
compact data structures therein have not been timewise competitive and do not allow the computation of truncation error
bounds, whereas the approach investigated in [14] seems to be a step forward.

Here, we build on to the work in [14] by using the HTD format for solution vectors within the iterative methods of Power,
Jacobi, and Generalized Minimal RESidual (GMRES) [7]. We are interested in observing how the memory requirements
of the compact solution vectors in HTD format change over the course of iterations due to the sequence of multiply,
add, and truncate operations in each iteration, together with the average time it takes to perform each iteration and the
influence of the truncation error on the quality of the solution. Two adaptive truncation strategies for the HTD format are
implemented and the performance of the resulting solvers compared on a large number of multidimensional problems
with their Kronecker structured counterparts that employ solution vectors the same size as the reachable state space size.
Results are encouraging, confirming the preliminary results in [14] and indicating that it is worthwhile to invest compact
representations for solution vectors in higher dimensional systems.

Although we use in our research the basic algorithms from [9,10], we apply them in a different context. While [9,10] use
simple and very regular examples, we apply the approach to Hierarchical MarkovianModels with an irregular structure that
aremuchmore difficult to analyse. This implies that new strategies to perform truncation during the solution process need to
be integrated into the iterative methods and new problems like the compact representation of the inverse of the diagonal of
a matrix in Kronecker form need to be solved. Moreover, the original approach has been implemented as a MATLAB toolbox
which is not geared towards the analysis of large hierarchically structured CTMCs. Therefore, we use a new implementation
in C [18] as an extension of the NSolve package of the Abstract Petri Net Notation (APNN) toolbox [19,20].

The organization of the paper is as follows. In Section 2, we provide background information on HTD and the related
algorithms that are used in our setting. In Section 3, we discuss the implementation framework and the iterative solvers used
with the adaptive truncation strategies for the HTD format. In Section 4, we present the results of numerical experiments
with the NSolve package on a large number of multidimensional problems of varying sizes. Section 5 concludes the paper.

134 P. Buchholz et al. / Performance Evaluation 115 (2017) 132–149

2. Compact vectors in Kronecker setting

Let {S(t) = (S1(t), . . . , Sd(t)) ∈ R, t ≥ 0} be the d-dimensional stochastic process associated with the evolution of a
system composed of d subsystems. Here, Sh is the set of states that the hth subsystem (h = 1, . . . , d) can be in and R is
the reachable state space of the system satisfying R ⊆ S , where S = ×

d
h=1Sh is the product state space of the system. The

stochastic process {S(t), t ≥ 0} is said to be continuous-time Markovian if the memoryless property holds, which means
that time to exit a state s ∈ R is exponentially distributed with a rate that depends only on s and the transition probability
to another state s′

∈ R depends only on the source state s. When Sh can be mapped to a subset of the set of integers for
h = 1, . . . , d, the reachable state space R becomes denumerable and {S(t), t ≥ 0} is called a CTMC. The rate of a transition
from state s ∈ R to s′

∈ R can be captured as the (s, s′)th entry of an (|R| × |R|) matrix for s ̸= s′ and s, s′
∈ R. This matrix

is called the infinitesimal generator of the CTMC and has off-diagonal entries that are nonnegative. The diagonal entries of
the infinitesimal generator are equal to its negated off-diagonal row sums so as to represent the negated rates at which the
CTMC remains in each state [7]. In the followingwe assume that Sh is finite and defined on consecutive nonnegative integers
starting from 0 for h = 1, . . . , d.

When R ⊂ S , it becomes important to find a compact representation for R that omits the states in S − R. Now, let

R(i)
= ×

d
h=1R

(i)
h ,

where R(i)
h is a partition of Sh in the form of consecutive integers for i = 1, . . . , J . Then R(1), . . . ,R(J) is a Cartesian product

partitioning [4] of R if

R =

J⋃
i=1

R(i) and R(i)
∩ R(j)

= ∅ for i ̸= j, i, j = 1, . . . , J.

The (|R|×|R|) infinitesimal generatorQ underlying the CTMC can be viewed as a (J×J) blockmatrix induced by the Cartesian
product partitioning of S [3,4] as in

Q =

⎡⎢⎣Q(1,1) . . . Q(1,J)

...
. . .

...

Q(J,1) . . . Q(J,J)

⎤⎥⎦ .

Block (i, j) of Q for i, j = 1, . . . , J is given by

Q(i,j)
=

⎧⎪⎪⎨⎪⎪⎩
∑

k∈K(i,j)

Q(i,j)
k + Q(i)

D if i = j,∑
k∈K(i,j)

Q(i,j)
k otherwise,

where

Q(i,j)
k = αk

d⨂
h=1

Q(i,j)
k,h , Q(i)

D = −

J∑
j=1

∑
k∈K(i,j)

αk

d⨂
h=1

diag(Q(i,j)
k,h e),

⊗ is the Kronecker product operator, αk is the rate associated with continuous-time transition k,K(i,j) is the set of transitions
in block (i, j), e represents a column vector of ones, diag(a) denotes the diagonal matrix with the elements of vector a along
its diagonal, and Q(i,j)

k,h is the submatrix of the transition matrix Qk,h whose row and column state spaces are R(i)
h and R(j)

h ,
respectively [1].

There are a finite number of transitions that can take place in the system, and the set
⋃J

i,j=1K
(i,j) represents all possible

transitions. It is usually the case that some transitions are possible in some states, while others are possible in other states.
Here,K(i,j) represents transitions that are possiblewhen the system is in states ofR(i) and that take the system to states inR(j).
IfK(i,j)

= ∅, then blockQ(i,j)
= 0 for i ̸= j. In practice, the matricesQk,h are sparse [3] and held in sparse row format since the

nonzeros in each of its rows indicate the possible transitions from the statewith that row index. The advantage of partitioning
the reachable state space is the elimination of unreachable states from the set of rows and columns of the generator to avoid
unnecessary computational effort (see, for instance, [2,15]) due to unreachable states and to use vectors not larger than |R|

in the analysis. The Kronecker form of the blocks Q(i,j) in Q has been studied before for a number of models [21–23]. Since
this work is not about the compact representation of generatormatrices using sums of Kronecker products, we refer to these
papers for more information. We also remark that the continuous-time transition rate of a Kronecker product term, αk, can
be eliminated by scaling one (perhaps, the first) factor in the term with that rate.

Matrix Q(i)
D is a diagonal matrix which is represented as a sum of Kronecker products of diagonal matrices. In iterative

solution methods exploiting the Kronecker structure, diagonal elements are often stored in a vector as large as |R| which
is multiplied elementwise with the iteration vector. This is timewise more efficient than multiplying a Kronecker product
of matrices with the iteration vector. However, if the reachable state space is sufficiently large, the storage of vectors with
size |R| is not feasible and the diagonal can instead be represented as sums of Kronecker products. This approach works

P. Buchholz et al. / Performance Evaluation 115 (2017) 132–149 135

well as long as we use numerical methods that are based on multiplication of the iteration vector with the entire generator
matrix. In methods like Jacobi, where the iteration vector has to be multiplied with the reciprocal of the diagonal elements,
the Kronecker representation of an element cannot be easily transformed to a compact representation of the reciprocal of
the element. This problem will be considered in Section 2.6.

The core operation ofmost numerical methods for computing the stationary or transient distribution of CTMCswith large
state spaces is the computation of vector–matrix products [7]. Thus, a time and, for large state spaces also, amemory efficient
realization of this operation is the key step in performing quantitative analysis of largemultidimensional systems. To simplify
the discussion and the notation, we consider the multiplication of a single block of Q from the left with a (sub)vector, and
therefore, omit the indices (i, j) and write the index k associated with the transition as a superscript in parentheses above
the matrices forming the block. Hence, we concentrate on the operation

yT := xT
K∑

k=1

d⨂
h=1

Q(k)
h ,

where Q(k)
h is an (mh × nh) matrix, implying

⨂d
h=1 Q

(k)
h is a (

∏d
h=1mh ×

∏d
h=1nh) matrix, and x is a (

∏d
h=1mh × 1) vector. K

is equal to the number of terms in the sum, i.e., |K(i,j)
| if we consider block (i, j). Observe that this is the operation that takes

place when each block of a block matrix in Kronecker form such as Q gets multiplied on the left by an iteration subvector. In
fact, the same subvector multiplies all blocks in a row of the matrix in Kronecker form.

To be consistent with the literature, we consider in the following multiplications of Kronecker products ⊗
d
h=1A

(k)
h with

column vector x and their summation in the usual matrix–vector form

y :=

K∑
k=1

(
d⨂

h=1

A(k)
h

)
x,

where A(k)
h is the transpose of Q(k)

h and of size (nh × mh). In particular, we are interested in its implementation as

y(1) := 0, x(k) :=

(
d⨂

h=1

A(k)
h

)
x, y(k+1)

:= y(k) + x(k) for k = 1, . . . , K ,

and y := y(K+1), where 0 is a column vector of 0’s. Now, we turn to the HTD format.

2.1. HTD format

The compact representation of the generator matrix using a hierarchical Kronecker form [1,3,5,6] was a first step in
reducing the memory requirements of iterative numerical solvers. With this step, storage of the generator matrix becomes
negligible for larger models. To further enlarge the size of numerically analysable state spaces, the memory requirements of
iteration vectors need to be reduced aswell. This is a difficult problem since there is no a priori known closed-formexpression
for the elements of an iteration vector of a large CTMC in Kronecker form. A natural choice is the use of themultidimensional
structure also for the vector representation. However, since the compact representation of an iteration vector, in contrast to
the compact representation of the generator matrix, usually will not be exact, it is important that one uses a representation
that allows control over the resulting truncation error. In this way, it is possible to regulate the accuracy of the solution and
indirectly thememory requirement by seeking less accurate approximationswhen far away from the solution and improving
the accuracy of the approximations as the residual norm becomes smaller. Such a representation is the HTD [11] which will
be presented next in the context of compact iteration vectors for multidimensional CTMCs.

Assuming without loss of generality that d is a power of 2, a (
∏d

h=1mh × 1) vector x in (orthogonalized) HTD format can
be expressed as

x = (U1 ⊗ · · · ⊗ Ud)c,

where Uh for h = 1, . . . , d are (mh × rh) orthogonal basis matrices for the different dimensions in the model and

c = (B1,2 ⊗ · · · ⊗ Bd−1,d) · · · (B1,...,d/2 ⊗ Bd/2+1,...,d)B1,...,d

is a (
∏d

h=1rh × 1) vector in the form of a product of log2d matrices each of which except the last is a Kronecker product of
a number of transfer matrices Bt . See the full binary tree of Fig. 1. The transfer matrix Bt is of size (rtl rtr × rt) with the node
index t defined as t := tl, tr , and r1,...,d = 1 since B1,...,d is at the root of the tree [9, pp. 5–6].

The (d − 1) intermediate nodes of the binary tree in Fig. 1 store the transfer matrices Bt and its leaves store the basis
matrices Uh so that each intermediate node has two children. In an orthogonalized HTD format of x, one can also conceive of
orthogonal basismatricesUt = (Utl ⊗Utr)Bt , at intermediate nodeswith rt columns that relate the orthogonal basismatrices
Utl andUtr for the two children of transfer matrix Bt with the transfer matrix itself. In fact, the orthogonal matrixUt has in its
columns the singular vectors associated with the largest rt singular values [24, pp. 76–79] of the matrix obtained by taking
index t as row index, the remaining indices in order as column index of the d-dimensional data at hand (i.e., with a slight
abuse of notation, x({t}, {1, . . . , d} − {t})). Hence, we have the concepts of ‘‘hierarchy of matricizations’’ and ‘‘higher-order

136 P. Buchholz et al. / Performance Evaluation 115 (2017) 132–149

Fig. 1. Matrices forming x in HTD format for d = 8.

Fig. 2. Matrices forming x in HTD format for d = 5.

singular value decomposition (HOSVD)’’, and rt is the rank of the truncated HOSVD. Observe that the simplest case with all
ranks equal to 1 corresponds to a Kronecker product of vectors of length mh for h = 1, . . . , d. More detailed information
regarding this can be found in [9,11]. We remark that Bt may also be viewed as a 3-dimensional array of size (rtl × rtr × rt)
having as many indices in each of its three dimensions as the number of columns in the matrices in its two children and
itself, respectively. The number of transfer matrices in the lth factor forming c is the Kronecker product of 2log2d−l transfer
matrices for l = 1, . . . , log2d − 1. In fact, c is a product of Kronecker products, and so is x, but neither has to be formed
explicitly.

When d is not a power of 2, it is still useful to keep the tree in a balanced form and use the ceiling operator on the height
of the tree, for instance, as in Fig. 2 for which

x = (((U1 ⊗ U2)B1,2) ⊗ U3 ⊗ U4 ⊗ U5)(B1,2,3 ⊗ B4,5)B1,2,3,4,5.

Assuming that rmax = maxt (rt) and mmax = max(m1, . . .,md), memory requirement for matrices in the binary tree
associated with HTD format is bounded by dmmaxrmax at the leaves, r2max at the root, and (d − 2)r3max at other intermediate
nodes, thus, totally dmmaxrmax + (d − 2)r3max + r2max. In the next subsection, we show how a particular rank-1 vector can be
represented in HTD format.

In the next subsections, we discuss the ingredients that are related to the implementation of the multiplication of a sum
of Kronecker products with a vector in HTD format so that it can be used in iterative methods. Therefore, other than the
multiplication of a Kronecker product with a vector in HTD format and the addition of two vectors in HTD format, we need
to show how the initial solution vector (which is normally taken as the uniform distribution) can be stored in HTD format
and how the norm of a vector in HTD format can be computed so that it is used in the test for convergence. Finally, we discuss
how the reciprocation of diagonal elements of the generator matrix in Kronecker form can be performed in HTD format so
that it can be used in the Jacobi method.

P. Buchholz et al. / Performance Evaluation 115 (2017) 132–149 137

2.2. Uniform distribution in HTD format

Let x = e/m be the (m × 1) uniform distribution vector, wherem =
∏d

h=1mh. Then xmay be represented in HTD format
with all matrices having rank-1 for which the basis matrices given by Uh = e/

√
mh are of size (mh × 1) for h = 1, . . . , d and

the transfer matrices given by

Bt =

⎧⎪⎨⎪⎩
(

d∏
h=1

√
mh

)
/m if t corresponds to root

1 otherwise

are (1 × 1). Note that memory taken up by the full representation of x is m nonzeros, whereas that with HTD format is
d − 1 +

∑d
h=1mh nonzeros since the (d − 1) transfer matrices are all scalars equal to 1 except the one corresponding to the

root. In passing to the multiplication of a compact vector with a Kronecker product, we remark that each basis matrix Uh for
the uniform distribution has only a single column and that column is unit 2-norm, implying all Uh are orthogonal.

2.3. Multiplication of vector in HTD format with a Kronecker product

Assuming that x is in HTD format with orthogonal basis matrices Uh and transfer matrices Bt forming vector c, the
operation

x(k) :=

(
d⨂

h=1

A(k)
h

)
x is equivalent to performing x(k) :=

(
d⨂

h=1

A(k)
h Uh

)
c

since x = (⊗d
h=1Uh)c. Hence, the only thing that needs to be done to carry out the computation of x(k) in HTD format is to

multiply the (nh × mh) Kronecker factor A
(k)
h with the corresponding (mh × rh) orthogonal basis matrix Uh for h = 1, . . . , d.

Clearly, the (nh × rh) product matrix A(k)
h Uh need not be orthogonal. But this does not pose much of a problem, since x(k) can

be transformed into orthogonalized HTD format if the need arises by computing the QR decomposition [24, pp. 246–250] of
A(k)
h Uh = ŨhRh for h = 1, . . . , d, propagating the triangular factors Rh into the transfer matrices, and orthogonalizing the

updated transfer matrices at intermediate nodes in a similar manner up to the root [9, p. 12]. Since Uh is an (mh × rh) matrix,
computation of the QR decomposition is fast as long as rh is not too large. Unfortunately, the situation is not as good for the
addition of two compact vectors.

2.4. Addition of two vectors in HTD format and truncation

Addition of two matrices Y and X with given singular value decompositions (SVDs) [24, pp. 76–79]

Y = UYΣYVT
Y and X = UXΣXVT

X

results in

Y + X := (UY UX)
(
ΣY

ΣX

)
(VY VX)

T .

Here, ΣY,ΣX are diagonal matrices of singular values, whereas UY, UX and VY, VX are orthogonal matrices of left and right
singular (row) vectors associated with matrices Y, X, respectively. SVD is a rank revealing factorization in that the number
of nonzero singular values of a matrix corresponds to its column rank. This implies that the sum (Y + X) has a rank equal to
the sum of the ranks of the two matrices that are added.

The situation for the sum y(k+1) of the two vectors y(k) and x(k) in HTD format is not different if one replaces the SVD
with HOSVD [9, p. 11]. In [9, pp. 22–24], three alternative approaches have been investigated for computing y. The best
among them is to multiply, add and then truncate K times without initial orthogonalization as argued asymptotically
and demonstrated experimentally for larger K . The approach works by carrying out the reduced Gramians computations
of a compact vector in non-orthogonalized HTD format [9, p. 17]. Recall that the compact vector x(k) obtained after
multiplication does not need to be in orthogonal HTD format even though x might have been. Once the reduced Gramians
computations of x(k) are performed, the truncatedHOSVD for the sumof two vectors y(k) and x(k) inHTD formatwithout initial
orthogonalization can be computed. The output y(k+1) is a truncated compact vector in orthogonalized HTD format and this
operation is repeated K times until y is obtained. The number of flops executed in this way is O(dK 2r2max(nmax + r2max +Krmax)),
where nmax = max(n1, . . ., nd). The significance of this result is that one can impose an accuracy of trunc_tol on the
truncated HOSVD by choosing rank rt in node t based on dropping the smallest singular values whose squared sum is less
than or equal to trunc_tol2/(2d − 3) [9, pp. 18–19]. This not only is a very nice result but also implies that the truncation
leads to an approximate solution vector. However, by setting a small truncation error tolerance, trunc_tol, one is able
to compute very accurate solutions. It is also possible to bound the values for the ranks rh and rt as done in the htucker
MATLAB toolbox [9,10] which then results in an a priori unknown error but strictly limited memory requirements.

138 P. Buchholz et al. / Performance Evaluation 115 (2017) 132–149

2.5. Computing the 2-norm of a vector in HTD format

Normally, it is more relevant to compute the maximum (i.e., infinity) norm of a solution vector in iterative analysis
even though all norms are known to be equivalent [24, pp. 68–70]. However, the computation of the maximum value (in
magnitude) of the elements of a compact vector requires being able to know which indexed value is the largest and also its
value, which seems to be costly for a compact vector in HTD format. Therefore, we consider the computation of the 2-norm
of vector y given by ∥y∥2 =

√
yTy.

Fortunately, ∥y∥2 can be obtained by computing inner products of two compact vectors in HTD format [9, p. 14]. Here,
the only difference is that the two vectors are the same vector y. The computation starts from the leaves of the binary tree
and moves towards the root, requiring the same sequence of operations in the first part of the computations of reduced
Gramians. But, this has already been discussed in the previous subsection.

2.6. Computing the elementwise reciprocal of a vector in HTD format

In the CTMC setting,methods like Power orGMRES compute products of the iteration vectorwithQ. For the Jacobimethod,
the iteration vector has to be multiplied with the reciprocal of the diagonal elements of Q. This implies that the Kronecker
representation of Q(i)

D cannot be exploited in Jacobi, because the reciprocal of a sum of Kronecker products of vectors cannot
be simply reciprocated without computing the reciprocal of each element separately. Since a compact representation for
the reciprocated diagonal is required for large state spaces, we present two approaches for computing such a representation
in HTD format. In the first approach, a vector in HTD format that represents the diagonal elements of Q is computed, and
then each element of this vector is reciprocated numerically using the Newton–Schulz iteration in HTD format. The second
approach exploits the fact that often the number of different valued diagonal elements is small compared to the number of
states such that we can compute an HTD representation of the set of states for each value on the diagonal.

The diagonal of Q, say d, is available as a sum of Kronecker products. In other words, let d be the vector in Kronecker
form that satisfies QD = diag(d), and let diag(dinv) := Q−1

D . Then d can be first converted to HTD format using addition and
truncation of vectors in HTD format. Each term in the sum defining Q(i)

D is a Kronecker product of vectors of length mh for
h = 1, . . . , d. This has a natural HTD representation as mentioned above. Thus, the HTDs are generated, added, and during
addition truncation is applied. Once this is done, the resulting vector in HTD format needs to be reciprocated elementwise
to obtain dinvwithout being explicitly formed.

The first approach named NS we use to compute dinv in HTD format is the Newton–Schulz iteration [9, p. 28]. This is a
nonlinear iteration with quadratic asymptotic convergence rate on vectors as in

dinvcur := dinvprev + dinvprev ⊙ (e − d ⊙ dinvprev), dinvprev := dinvcur ,

where dinvcur and dinvprev are the current and previous iteration vectors and ⊙ denotes elementwise multiplication of two
vectors. Note that if dinvprev were the elementwise reciprocal of d, then their elementwise multiplication would be equal to
e, thus, implying dinvcur = dinvprev and therefore convergence. The iteration starts by initializing dinvprev with a suitable
vector in HTD format, the vector of 1s divided by the 2-norm of d in our case, and continues until a predetermined stopping
criterion is met when dinv := dinvcur . As a stopping criterion, we use the difference between e and d ⊙ dinvprev .

Observe that the elementwise multiplication of two vectors in HTD format is required in the Newton–Schulz iteration
as well as in multiplying dinv with the updated solution vector during the Jacobi iteration. This is something to which we
return in the next section. The elementwisemultiplication operation of vectors can be carried out in four steps [9, pp. 24–25].
These are orthogonalization of the vectors in HTD format, computation of their Gramians, computation of SVDs of Gramians,
and update of basis and transfer matrices. We remark that again there is a truncation step that needs to be exercised when
the elementwise multiplication is extracted from the implicitly formed Kronecker product.

The previous approach [9] introduces two different truncations. First, when theHTDof the diagonal elements is computed
and second during the iterative computation of the reciprocated diagonal elements. Since a numerical method is applied to
compute the reciprocal values, it is not clear how fast themethod converges in practice since the initial transient period that
is needed for the asymptotic quadratic convergence behaviour to set in can be time consuming [25, p. 278]. Therefore, we
also consider an alternative approach.

The second approach named EC we use for computing dinv in HTD format is based on the observation that in many
multidimensional CTMCs, the number of different values that appear in d is limited, because the CTMC results from some
high level model specification, like Stochastic Petri Nets or Stochastic Automata Networks, which is compact and contains
only a few parameters compared to the size of the state space. Thus, we define an equivalence relation ∼

(i)
h among the states

in R(i)
h . Two states x, y ∈ R(i)

h are in relation ∼
(i)
h if and only if

∀j ∈ {1, . . . , J}, ∀k ∈ K(i,j)
: diag

(
Q(i,j)

k,h

)
(x) = diag

(
Q(i,j)

k,h

)
(y).

Let C(i)
1,h, . . . , C

(i)
ci,h,h

be the set of equivalence classes of relation ∼
(i)
h . It is easy to show that states belonging to the same

equivalence class in every dimension of a multidimensional CTMC have identical diagonal elements. In many models, the

P. Buchholz et al. / Performance Evaluation 115 (2017) 132–149 139

number of equivalence classes ci,h is smaller than mi,h, the number of states in R(i)
h . Now, let us define δ

(i)
c,h as a vector of

lengthmi,h with δ
(i)
c,h(x) = 1 if x ∈ C(i)

c,h and zero otherwise. Furthermore, let us define

q(i)c1,...,cd,h
= −

J∑
j=1

∑
k∈K(i,j)

αk

d∏
h=1

(
Q(i,j)

k,h e
)
(xh)

for some xh ∈ C(i)
ch,h

. The reciprocated diagonal elements corresponding to the classes c(i)1 , . . . , c(i)d are then given by the
Kronecker product(

q(i)c1,...,cd,h

)−1 d⨂
h=1

δ
(i)
ch,h

.

This vector can be easily represented in HTD format. Thus, we have to build for each combination of equivalence classes an
HTD formatted vector, add and truncate the HTD formatted vectors, so that it results in an HTD formatted vector for the
reciprocated diagonal elements in dinv. In the worst case, one has to build one vector in HTD format for each state which
means that all elements in d potentially differ. However, for manymodels the number of HTD formatted vectors to be added
is significantly smaller.

In the next section, we discuss details of the experimental framework associated with the iterative solvers and the
adaptive truncation strategies for the HTD format.

3. Experimental framework

Our implementation relies on the basic functions of the htucker MATLAB toolbox described in [9,10]. The particular
implementation is within the NSolve package of the APNN Toolbox [19,20] in C. In contrast to the htuckerMATLAB toolbox,
sparse matrices are used for the subsystem matrices in the Kronecker products. Numerical experiments are performed on
an Intel Core i7 2.6 GHz processor with 16 GB of main memory.

The binary tree data structure accompanying the HTD format is allocated at the outset depending on the value of d. It is
stored in the form of an array of tree nodes from root to leaves level by level so that accessing the children of a parent node or
the parent of a child node becomes straightforward. In a tree node t , there are not only pointers to matricesUt for leaves and
Bt for intermediate nodes which we have seen and accounted for before, but also pointers to the triangular matrices Rt and,
two (2 × 2) block matrices for each node. The matrices encountered in the HTD format during the experimental runs were
found to be sufficiently dense that a sparse storage of these matrices for the compact vector representation is not necessary.
The nonzero elements of the fullmatrices are kept in a one-dimensional real array so that relevant LAPACKmethods available
at [26] can be calledwithout having to copy vectors.We choose to store transposes of thematrices representing the compact
solution vector in row sparse format (meaning they are stored by columns) so that relevant LAPACK methods can be called
without having to transpose the input matrices. For details of implementation issues, see [14].

The goal of this paper is to compare memory and timing requirements for the stationary vector computation of
multidimensional CTMCs using the full vector and theHTD format approaches in large problems. In the original algorithms of
htucker, memory requirements are limited by a fixed truncation error tolerance and a fixed bound for the ranks. This often
implies that ranks become large during the first few iteration steps when the iteration vector is far from the solution. On the
other hand, a rank bound possibly limits the accuracy that can be finally reached. It ismore efficient to use a larger truncation
error tolerance as long as the residual norms are large and to decrease the truncation error tolerance if the residual norms
are becoming small. Thus, an adaptive strategy for adjusting the truncation error is required. We would like to evaluate the
accuracy of the solution with different adaptive truncation error tolerance strategies for the HTD format.

Observing that the aim is to solve large problems, we consider two classical point iterative methods, Power and Jacobi,
and the projection method of GMRES. The Power method is successfully employed in the PageRank algorithm for Google
matrices, and Jacobi is essentially a preconditioned Power iteration where the preconditioning matrix is QD := diag(d).
The convergence rate of these methods is known to depend on the magnitude of the subdominant eigenvalue of the
corresponding iteration matrix [3,7].

The Power method can be simply written as the multiplication of the solution vector π (it) at iteration it with

P := I + ∆Q, where ∆ := 0.999/max
s∈R

|qs,s|,

starting with the uniform distribution π (0), so that we have

π (it)
:= π (it−1)P for it = 1, 2, . . . ,

with the associated error vector e(it) := π (it)
−π (it−1) and the (negated) residual vector r(it) := π (it)Q. Note that e(it), which is

equal to ∆r(it−1), is also the scaled residual vector corresponding to the previous iteration. Observe that the iteration vectors
of the Power method can also be used in uniformization for transient analysis [7].

The Jacobi method with relaxation parameter ω can be written as

π (it)
:= (1 − ω)π (it−1)

− ωπ (it−1)Qoff diag(dinv) for it = 1, 2, . . . ,

140 P. Buchholz et al. / Performance Evaluation 115 (2017) 132–149

where Qoff := Q − QD is the off-diagonal part of Q. This method is known to converge for ω ∈ (0, 1), which is called
under-relaxation.

GMRES is a projection method which extracts solutions from an increasingly higher dimensional Krylov subspace by
enforcing a minimality condition on the residual 2-norm at the expense of having to compute and store a new orthogonal
basis vector for the subspace at each iteration. This orthogonalization is accomplished through what is called an Arnoldi
process. In theory, GMRES converges to the solution in at most |R| iterations. However, this may become prohibitively
expensive at least in terms of space, so in practice a restarted version with a finite subspace size of m is to be used. Hence,
the number of vectors allocated for the representation of the Krylov subspace in the restarted GMRES solver will be limited
by m. If the vectors are stored in compact format, m can be set to a larger value without exceeding the available memory
which usually improves the convergence of GMRES. See, for instance, [7] and the references therein for more information
on projection methods for analysing CTMCs.

We ran the experiments with all solvers using tol as the stopping tolerance on the residual 2-norm, that is, ∥r(it)∥2, and
set the maximum running time to 1000 s. It has been observed for all three solvers that ∥r(it)∥2 has a tendency to increase
in the early iterations and then to start decreasing if the iterations are converging. The Kronecker-based solvers for Power
and Jacobi using the HTD format for vectors need to normalize their solution vectors at each iteration due to their departure
from being unit 1-norm vectors. Hence, in this case we do the check on the stopping tolerance at every iteration; instead we
do it every 10 iterations for the Kronecker-based Power and Jacobi solvers that work with full vectors. Finally, the Arnoldi
process of m steps in the restarted GMRES solver may encounter an early exit when the stopping tolerance is satisfied on
the residual 2-norm at the respective step, which will be reflected in the iteration number upon stopping. In that case, the
number of iterations reported will not be a multiple ofm.

Regarding the adaptive strategies used in truncating the HTD format so that it is compact, we consider two alternatives.
In the first one named S1, the truncation error tolerance, trunc_tol, is initially set to trunc_tol := tol/

√
2d − 3, and

then updated when the 2-norm of the residual vector r(it) is computed at iteration it as

prev_trunc_tol := trunc_tol,

trunc_tol := max(min(prev_trunc_tol,
√

∥r(it)∥ tol/
√
2d − 3),

10−16).

Initially, prev_trunc_tol := 0. In this way, trunc_tol is made to remainwithin prev_trunc_tol and 10−16 while being
forced to decrease conservatively with a decrease in the residual 2-norm.

In the second adaptive truncation strategy named S2, we start with the initialization prev_trunc_tol := 0 and
trunc_tol := 100 tol/

√
2d − 3. Then we update the two variables as

prev_trunc_tol := trunc_tol,

trunc_tol := max(min(prev_trunc_tol,
√

∥r(it)∥ 10−4/
√
2d − 3),

10−16)

when the 2-norm of the residual vector r(it) is computed at iteration it . This starts at a larger trunc_tol and is expected to
increase it more conservatively compared to the strategy S1 and independently of the value of tol.

Now, we can move to results of numerical experiments with compact solution vectors in HTD format versus full solution
vectors for Kronecker-based Markovian representations.

4. Results of numerical experiments

Weconsider three examplemodels. Twoof themhave beenused as benchmarks in [14,27] and anothermodel is from [28].
The first one is an availability model, the second one is a polling model from [29] with state independent transition rates,
and the third one is a cloud computingmodel. The properties of these threemodels are given in Tables 1 and 2. Thesemodels
enable us to investigate the scalability of the Kronecker-based compact vector Power, Jacobi, and GMRES solvers using the
HTD format as the size of the reachable state space increases.

The availability model corresponds to a system with d subsystems in which different time scales occur. Each subsystem
models a processing node with 2 processors, one acting as a cold spare, a bus and two memory modules. The processing
node is available as long as one processor can access one memory module via the bus. Time to failure is exponentially
distributed with rate 5 × 10−4 for processors, 4 × 10−4 for buses and 10−4 for memory modules. Components are repaired
by a global repair facility with preemptive priority such that components from subsystem 1 have the highest priority and
components from subsystem d have the least priority. Repair times of components are exponentially distributed. Repair
rates of a processor, a bus, and a memory from subsystem 1 are given respectively as 1, 2, and 4. The same rates for other
subsystems are given respectively as 0.1, 0.2, and 0.4. For this model, the reachable state space is equal to the product state
space and contains 12d states. We consider models with d = 3, 4, 5, 6, 7, 8. It should be mentioned that the model is not
symmetric due to the priority repair strategy but, as is common in availability models, the probability distribution becomes
unbalanced because repair rates are higher than failure rates.

The second example is a model of a polling system of two servers serving customers from d finite capacity queues, which
are cyclically visited by the servers [29]. Customers arrive at the system according to a Poisson process with rate 1.5 and are

P. Buchholz et al. / Performance Evaluation 115 (2017) 132–149 141

Table 1
Properties of availability and polling models.

d Availability Polling

J |R| J |R| maxi|R(i)
|

3 1 1,728 6 25,443 4,851
4 1 20,736 10 479,886 53,361
5 1 248,832 15 8,065,860 586,971
6 1 2,985,984 21 125,839,395 6,456,681
7 1 35,831,808 28 1,863,521,121 71,023,491
8 1 429,981,696

Table 2
Properties of cloud computing models.

d P M |S(h)
| for h = 1, . . . , d |R|

4 1 1 19, 6, 5, 6 3,420
4 1 5 19, 12, 11, 12 30,096
4 1 10 19, 22, 21, 22 193,116
4 1 20 19, 42, 41, 42 1,374,156
4 1 50 19, 42, 101, 102 8,220,996
7 2 2 19, 6, 6, 5, 5, 6, 6 615,600
7 2 5 19, 12, 12, 11, 11, 12, 12 47,672,064
7 2 8 19, 18, 18, 17, 17, 18, 18 576,423,216
7 2 10 19, 22, 22, 21, 21, 22, 22 1,962,831,024

distributed with queue specific probabilities among the queues each of which is assumed to have a capacity of 10. If a server
visits a nonempty queue, it serves one customer and then travels to the next queue. On the other hand, a server arriving
at an empty queue, skips the queue and travels to the next queue. Service and travelling times of servers are exponentially
distributed respectivelywith rates 1 and 10.We further assume that there can be atmost one customer being served at a time
in each queue and at most one server travelling at a time from each queue to the next queue. Each subsystem in the model
describes one queue, and the J partitions of the reachable state space for this model are defined according to the number
of servers serving customers at a queue or travelling to the next queue. For each subsystem we obtain 62 states partitioned
into 3 subsets. The reachable state space of the complete model has J =

(d+1
2

)
partitions, and we consider polling system

models with d = 3, 4, 5, 6, 7.
The third example is a cloud computing model with P physical machines (PMs) and M virtual machines (VMs) that can

be deployed on each PM [28]. The PMs are grouped into pools named cold, warm, and hot. A service request for a VM that
arrives at the system enters a first-come first-served queue. The request at the head of this queue is provisioned on a hot PM
if a preinstantiated but unassigned VM exists. If no hot PM is available, a warm PM is used for provisioning the requested
VM. If all warm PMs are busy, a cold PM is used. If none of the PMs are available, the request is rejected. When a running
request exits the system, the capacity used by that VM is released and becomes available for provisioning the next request.
The maximum number of requests that can be accommodated in the system is set to 6 and the buffer size of each pool is set
to 1. Arrival rate of requests to the system is 10, service rate of requests on a PM is 1, search rate to find a PM that can be used
for provisioning a VM in each of the hot, warm, cold pools is 1200, rate of preparing a warm and a cold PM ready to use is
respectively 60 and 7.5, and rate of provisioning a VM from the hot, warm, cold PM pools is respectively 12, 6, 3. This model
results in a single reachable state space partition whose size depends on the pair (P,M) as can be seen in Table 2. In this
model, it is the increase in the size of the state space of some subsystem that increases the size of the reachable state space
for a fixed value of d. We consider models with (P,M) ∈ {(1, 1), (1, 5), (1, 10), (1, 20), (1, 50), (2, 2), (2, 5), (2, 8), (2, 10)}
which result in five 4- and four 7-dimensional CTMCs. It should bementioned that thismodel also is not symmetric due to the
priority among the PMs in different pools, and it has transitions that occur at different time scales similar to the availability
model.

4.1. Computation of HTD for dinv

We consider the models presented in the above section as examples for the computation of the reciprocated diagonal
elements of Q as discussed in Section 2.6. The results are presented in Tables 3, 4, and 5. The first row of each configuration
contains the results for the first approach namedNS using the Newton–Schulz iteration, the second row the second approach
named EC based on equivalence classes. In the tables, the column titled ‘Ranks’ includes the ranks of the nodes in the HTD
tree for the partition of the reachable state space with the largest ranks. The first value describes the rank of the root node,
the values in the second pair of square brackets the ranks of intermediate nodes, and the values in the last pair of square
brackets the ranks of leaf nodes. The column titled ‘Time’ reports the time rounded to nearest second to compute dinv in
HTD format for trunc_tol = 1e-8. The column titled ‘Memory’ reports the number of real array elements allocated in
memory to the matrices in the HTD format plus the workspace in scientific notation with one decimal digit of accuracy.
The workspace is the space allocated in memory to carry out the HTD computation other than the space allocated for the

142 P. Buchholz et al. / Performance Evaluation 115 (2017) 132–149

Table 3
Computation of HTD for dinv in availability model.

d Reciprocal Ranks Time Memory

3 NS [1], [33], [6, 5, 9] 0 6e4
EC [1], [5], [5, 5, 7] 0 1e3

4 NS [1], [38, 46], [5, 8, 8, 7] 2 3e5
EC [1], [5, 6], [5, 8, 7, 5] 2 4e3

5 NS [1], [262, 41, 42], [9, 8, 7, 6, 10] 135 5e6
EC [1], [6, 40, 7], [7, 8, 5, 5, 9] 165 3e4

6 NS [1], [400, 405, 40, 81], [10, 5, 5, 8, 9, 9] 1046 1e7
EC [1], [6, 6, 7, 9], [8, 4, 6, 9, 8, 8] 650 8e3

Table 4
Computation of HTD for dinv in polling model.

d Reciprocal Ranks Time Memory

3 NS [1], [8], [4, 4, 2] 0 3e3
EC [1], [4], [4, 4, 2] 0 2e3

4 NS [1], [10, 4], [4, 4, 2, 2] 0 8e3
EC [1], [6, 6], [4, 2, 2, 4] 0 4e3

5 NS [1], [16, 8, 8], [2, 4, 2, 4, 2] 0 2e4
EC [1], [7, 6, 7], [2, 2, 4, 4, 2] 0 7e3

6 NS [1], [16, 16, 8, 8], [2, 2, 4, 2, 4, 2] 1 4e4
EC [1], [8, 7, 8, 6], [2, 2, 4, 2, 2, 4] 1 1e4

7 NS [1], [32, 8, 8, 8, 4], [2, 4, 2, 4, 2, 2, 2] 2 9e4
EC [1], [9, 9, 7, 3, 8], [2, 4, 2, 2, 2, 4, 2] 2 2e4

Table 5
Computation of HTD for dinv in cloud computing model.

d P M Reciprocal Ranks Time Memory

4 1 1 NS [1], [6, 6], [3, 6, 5, 6] 9 4e3
EC [1], [7, 7], [3, 6, 5, 6] 0 1e3

4 1 5 NS [1], [10, 55], [3, 7, 8, 11] 0 6e4
EC [1], [9, 9], [3, 7, 7, 8] 2 4e3

4 1 10 NS [1], [12, 80], [3, 8, 8, 10] 2 3e5
EC [1], [9, 9], [3, 8, 8, 8] 19 4e3

4 1 20 EC [1], [10, 10], [3, 9, 8, 8] 30 5e3
4 1 50 EC [1], [9, 9], [3, 8, 8, 9] 37 7e3

matrices in the HTD format. For instance, 3e3 in the ‘Memory’ column refers to a total of 2500 to 3499 real array elements
allocated to the matrices in HTD format plus the workspace.

The results of the availabilitymodel are shown in Table 3. Thismodel has a single reachable state space partition and each
subsystem has 12 states which implies that a d-dimensional model has 12d states. Unfortunately, each subsystem matrix
has 11 different diagonal elements implying that the second approach EC has to enumerate almost all states to construct
dinv. This is cumbersome for relatively large reachable state spaces. It can be noticed that the time to compute the diagonal
grows quickly for larger configurations, which is the case for both approaches. The second approach EC results in a more
compact representation since the ranks of intermediate nodes are much smaller. However, with the first approach NS an
approximation ofdinv can be computed in a shorter time by limiting the number of iterations in theNewton–Schulzmethod.
Currently, we start with ranks of 1 and increase the ranks when needed as the iterations progress.

The results for the polling model are given in Table 4. For this model which has multiple partitions of its reachable state
space, the subsets R(i)

h contain between 11 and 30 states and between 2 and 6 equivalence classes of states with identical
diagonal elements. This implies that for a d-dimensional system, the number of diagonal vectors that need to be added in
HTD format to generate the reciprocal of the diagonal, dinv, using the second approach EC is about 5−d times the number of
reachable states. For each partition’s reciprocated diagonal vector, we need to store less than 20 vectors of length between
11 and 30 plus the small matrices in the intermediate and root nodes. It can be seen that the second approach EC is faster and
results in a more compact representation of dinv. Overall the representation remains compact even for larger dimensions
and the memory requirements grow more or less linearly in the number of dimensions.

The results for the cloud computing model are given in Table 5. This model has a single reachable state space partition
and its subsystems for different values of the pair (P,M) have the state space sizes reported in Table 2. In this model, the first
subsystem matrix has 7 different diagonal elements and the other subsystem matrices have all different diagonal elements
in all cases except (P,M) ∈ {(1, 20), (1, 50)} in which they respectively have 24, 23, 24 different diagonal elements. This
implies that the second approach EC has to enumerate a large percentage of states to construct dinv similar to the availability
model. The second approach EC again results in a more compact representation since the ranks of intermediate nodes are
much smaller.

P. Buchholz et al. / Performance Evaluation 115 (2017) 132–149 143

Table 6
Numerical results for availability models with tol = 1e-8.

d Solver Approach It Time Memory ∥r(It)∥2

3 P Full 1,490 0 9e3 1e-8
Compact S1 1,491 4 4e3 1e-8
Compact S2 1,020,829 1000 1e3 4e-7

J(0.75) Full 30 0 9e3 7e-11
Compact S1 with NS 26 1 2e5 1e-10
Compact S2 with NS 34 0 1e5 2e-8
Compact S1 with EC 26 0 5e4 1e-10
Compact S2 with EC 34 0 1e4 2e-8

G(30) Full 83 0 6e4 9e-9
Compact S1 84 108 2e5 9e-9
Compact S2 213 118 2e5 3e-8

4 P Full 1,700 1 1e5 9e-9
Compact S1 1,694 16 8e3 1e-8
Compact S2 320,322 1000 2e3 4e-7

J(0.75) Full 30 0 1e5 7e-9
Compact S1 with NS 31 7 1e6 2e-10
Compact S2 with NS 57 3 5e5 1e-9
Compact S1 with EC 31 4 4e5 2e-10
Compact S2 with EC 57 2 3e4 1e-9

G(30) Full 108 0 7e5 1e-8
Compact S1 107 474 4e5 9e-9
Compact S2 316 965 3e5 4e-8

5 P Full 1,880 33 1e6 1e-8
Compact S1 1,880 210 2e5 1e-8
Compact S2 239,073 1000 2e3 2e-5

J(0.75) Full 40 1 1e6 2e-10
Compact S1 with NS 35 1076 6e7 5e-10
Compact S2 with NS 3,804 1000 1e7 9e-8
Compact S1 with EC 36 347 1e7 2e-10
Compact S2 with EC 264,377 1000 5e4 8e-8

G(30) Full 148 4 9e6 8e-9
Compact S1 11 1509 2e7 2e-3
Compact S2 96 1338 2e7 8e-6

4.2. Computation of stationary vector

We present results with the iterative solvers for the three models in Tables 6 through 12. We report the number of
iterations under ‘It’, the time in seconds under ‘Time’, the number of allocated real array elements under ‘Memory’, and the
residual 2-norm associated with the solution vector upon stopping under ∥r(It)∥2. We round the values in the ‘Memory’
and ∥r(It)∥2 columns to one decimal digit of accuracy and use scientific notation when presenting the results. Names of the
solvers are abbreviated as P for Power, J(0.75) for Jacobi under-relaxation with relaxation parameter ω = 0.75, and G(30)
for restarted GMRES with a Krylov subspace size ofm = 30. In order to make a fair comparison among the solvers, we have
counted each Arnoldi step as an iteration in GMRES.

In the tables, for each solver the first row corresponds to the Kronecker-based full vector version. In the compact case, the
two rows in the tables for Power andGMRES(30) correspond to the two adaptive truncation strategies S1 and S2, respectively.
For Jacobi(0.75) in the compact case, the first and second rows correspond to the first and second adaptive strategies with
the Newton–Schulz iteration, whereas the third and fourth rows correspond to the first and second adaptive strategies with
the second approach for computing dinv in HTD format, respectively.

Recall that Kronecker-based full vector Power and Jacobi solvers each requires three vectors of length |R| (for the diagonal
of Q , the previous solution vector, and the current solution vector) and two vectors of length maxi|R(i)

| (for the shuffle
algorithm to carry out the full vector-Kronecker product multiplication), whereas the restarted GMRES(m) solver requires
(m + 3) vectors of length |R| and two vectors of length maxi|R(i)

|. Hence, the values in the ‘Memory’ column of the tables
can be calculated at the outset for Kronecker-based full vector solvers. It is clear that the 8-dimensional availability model,
the 7-dimensional polling model, and the 7-dimensional cloud computing model with (P,M) ∈ {(2, 8), (2, 10)} cannot be
handled with full vector solvers on a platform having 16 GB of main memory. Similarly, the full vector Kronecker-based
GMRES solver cannot be put to use in the 6-dimensional polling model.

For the Kronecker-based compact vector solvers, ‘Memory’ reports themaximumnumber of real array elements allocated
to the matrices in the HTD format representing the vectors and the workspace used in the solution process. This number not
only depends on the values in the vectors that are represented compactly at each iteration, and hence, the character of the
particular problem and the behaviour of the solver, but also on the value of trunc_tol. As such, it is not possible to forecast
the value of ‘Memory’ for the compact case at the outset. Finally, for the compact vector Jacobi solver, ‘Memory’ also includes
real array elements allocated to the HTD representation of the reciprocated diagonal elements in Q, that is, dinv, which are
reported in Tables 3–5.

144 P. Buchholz et al. / Performance Evaluation 115 (2017) 132–149

Table 7
Numerical results for availability models with tol = 1e-8 (continued).

d Solver Approach It Time Memory ∥r(It)∥2

6 P Full 2,060 783 1e7 9e-9
Compact S1 1,398 1005 1e6 6e-6
Compact S2 81,267 1000 5e3 2e-7

J(0.75) Full 40 18 1e7 8e-9
Compact S1 with NS 1 1046 2e7 8e-4
Compact S2 with NS 1 1047 2e7 8e-4
Compact S1 with EC 7 2037 2e8 3e-3
Compact S2 with EC 61,696 1000 8e4 6e-8

G(30) Full 1,950 1016 1e8 6e-4
Compact S1 10 3503 2e7 7e-4
Compact S2 81 1317 1e7 6e-4

7 P Full 190 1047 2e8 1e-2
Compact S1 543 1001 2e5 9e-3
Compact S2 99,409 1000 3e3 4e-5

J(0.75) Full 50 310 2e8 4e-10
Compact S1, S2 with NS, EC fail1

G(30) Full 150 1076 1e9 2e-4
Compact S1 9 1398 3e6 2e-4
Compact S2 60 2027 2e7 2e-4

8 P Full — – 2e9 –
Compact S1 329 1001 3e5 1e-2
Compact S2 55,657 1000 4e3 2e-5

J(0.75) Full – – 2e9 –
Compact S1, S2 with NS, EC fail1

G(30) Full – – 2e10 –
Compact S1 6 1051 2e7 4e-5
Compact S2 30 1073 4e6 4e-5

Although we have imposed a maximum running time of 1000 s in each experiment, there are some that ended up taking
longer. This is simply due to the fact that the elapsed time can only be checked against themaximum running time at certain
points in the running code. In order to see the behaviour of the two different approaches to compute dinv, we have let the
Kronecker-based compact vector Jacobi solver run for more than 1000 s when computing dinv, but have aborted it if it took
longer than 2000 s. Also, we have chosen to normalize the solution vector every 10 iterations in the Kronecker-based full
vector Power and Jacobi solvers since it is not a necessity to do normalization at each and every iteration in this case. Hence,
if a ‘Time’ value larger than 1000 s appears in Tables 6 through 12, it is either due to these or to the fact that the last iteration
starts before 1000 s but ends (much) later.

There are some cases where we have not been able to obtain results. We have already mentioned the problems we could
not handle with the Kronecker-based full vector solvers due to memory constraints on solution vectors. Other than those,
we have indicated the problematic cases in the tables as fail1, fail2, fail3, and fail4. Here, fail1 refers to those cases
where we have not been able to obtain dinv in HTD format for Jacobi(0.75) within 2000 s or due to memory limitations.
These cases take place in the 7- and 8-dimensional availability models and cloud computing models with P = 2 using either
approach andwithM ∈ {20, 50} using the first approachNS. The latter situation in the clouding computingmodel is different
than the availability model for which both approaches either worked together or failed together. On the other hand, fail2
refers to the case where the Kronecker-based compact vector Power solver with the second truncation strategy S2 exits
due to a non-converging LAPACK method that is used to compute SVD. Similarly, fail3 refers to the case where we have
not been able to obtain a result with the Kronecker-based compact GMRES(30) solver using the first truncation strategy S1
for the 7-dimensional polling model and the cloud computing model with (P,M) ∈ {(2, 5), (2, 8), (2, 10)}. The solver has
performed a number of Arnoldi steps, but was aborted after 7200 s. Finally, fail4 refers to the Kronecker-based compact
vector Jacobi(0.75) solver with the first truncation strategy S2 using the second approach EC for reciprocation failing in the
cloud computing model with (P,M) = (1, 50) due to memory limitations.

Tables 6 and 7 contain the results for the availability model. Among the Kronecker-based full vector solvers, Jacobi(0.75)
is the best in terms of time and memory. It converges to the prescribed accuracy in all problems except the 8-dimensional
one, which cannot be solved on the experimental platform. GMRES(30) is better than Power in the problems they both can
be used, except the 6-dimensional one forwhich it stagnates and cannot improve ∥r(It)∥2. Note that neither solver converges
within 1000 s for d = 7. This is generally an expected behaviour of restarted GMRES since it requires a larger subspace size
as the problem becomes larger unless the solver is coupled with a strong preconditioner. We have similar results regarding
Kronecker-based full vector solvers for the polling model with results in Tables 8 and 9 and the cloud computing model
with results in Tables 10, 11, and 12. Jacobi(0.75) is almost always the fastest solver yielding the smallest ∥r(It)∥2 with the
smallest memory, which is about one order of magnitude smaller than what is required by GMRES(30).

Among the compact vector solvers, those that use the first adaptive truncation strategy S1 discussed in Section 3 never
require a larger number of iterations than their counterparts using the second adaptive strategy S2 for the same ∥r(It)∥2.
However, the average time per iteration of the compact vector solvers with S1 is clearly higher than that with S2. The Power

P. Buchholz et al. / Performance Evaluation 115 (2017) 132–149 145

Table 8
Numerical results for polling models with tol = 1e-8.

d Solver Approach It Time Memory ∥r(It)∥2

3 P Full 8,270 3 9e4 1e-8
Compact S1 261 1004 7e5 4e-4
Compact S2 12,295 1000 7e4 2e-7

J(0.75) Full 2,920 1 9e4 1e-8
Compact S1 with NS 36 1019 1e7 4e-4
Compact S2 with NS 2,106 381 3e5 2e-7
Compact S1 with EC 36 1018 1e7 4e-4
Compact S2 with EC 2,106 419 3e5 2e-7

G(30) Full 760 1 8e5 1e-8
Compact S1 24 1048 2e6 8e-4
Compact S2 263 1024 2e6 3e-5

4 P Full 10,440 116 2e6 1e-8
Compact S1 63 1012 3e6 2e-4
Compact S2 3,850 1000 1e5 9e-6

J(0.75) Full 3,750 48 2e6 1e-8
Compact S1 with NS 21 1088 2e7 2e-4
Compact S2 with NS 886 1000 7e5 4e-5
Compact S1 with EC 21 1076 2e7 2e-4
Compact S2 with EC 829 1001 7e5 4e-5

G(30) Full 1,675 47 2e7 1e-8
Compact S1 14 1042 2e6 4e-4
Compact S2 36 1035 2e6 2e-4

5 P Full 2,650 1003 3e7 3e-5
Compact S1 47 1177 1e7 1e-4
Compact S2 fail2

J(0.75) Full 2,440 1004 3e7 7e-7
Compact S1 with NS 10 2861 1e8 9e-5
Compact S2 with NS 524 1002 9e5 8e-5
Compact S1 with EC 10 2810 1e8 9e-5
Compact S2 with EC 489 1001 9e5 8e-5

G(30) Full 1,500 1013 3e8 8e-5
Compact S1 5 2273 3e7 3e-4
Compact S2 16 2284 2e7 1e-4

Table 9
Numerical results for polling models with tol = 1e-8 (continued).

d Solver Approach It Time Memory ∥r(It)∥2

6 P Full 150 1051 4e8 2e-5
Compact S1 61 1006 5e6 2e-5
Compact S2 2161 1000 1e5 4e-5

J(0.75) Full 140 1085 4e8 3e-5
Compact S1 with NS 14 1573 8e7 2e-5
Compact S2 with NS 306 1001 2e6 5e-5
Compact S1 with EC 14 1176 3e7 2e-5
Compact S2 with EC 291 1002 2e6 5e-5

G(30) Full – – 4e9 –
Compact S1 5 6728 3e7 8e-5
Compact S2 12 1092 2e7 4e-5

7 P Full – – 6e9 –
Compact S1 54 1018 6e6 8e-6
Compact S2 1840 1001 2e6 4e-5

J(0.75) Full – – 6e9 –
Compact S1 with NS 11 1307 4e7 7e-6
Compact S2 with NS 262 1001 2e6 3e-5
Compact S1 with EC 12 1387 3e7 6e-6
Compact S2 with EC 259 1003 2e6 3e-5

G(30) Full – – 6e10 –
Compact S1 fail3
Compact S2 11 1715 7e6 1e-5

solver with S2 stagnates (see the It counts) and is not able to meet tol = 1e-8 in any of the problems. This suggests
using a relatively higher tol compared to trunc_tol with this strategy. Along this line, we can say that the convergence
behaviour of compact vector solvers employing S2 tend to be more unpredictable and less satisfactory than that with the
first strategy. In other words, whenever a compact vector solver using S1 stops, ∥r(It)∥2 is less than or equal to tol, whereas
nothing of this kind is observed with S2. The only exception to this is Jacobi(0.75) for the availability model with d = 4. Note

146 P. Buchholz et al. / Performance Evaluation 115 (2017) 132–149

Table 10
Numerical results for cloud computing models with tol = 1e-8.

d P M Solver Approach It Time Memory ∥r(It)∥2

4 1 1 P Full 9,260 1 2e4 1e-8
Compact S1 9,253 839 1e5 1e-8
Compact S2 29,937 1000 3e4 3e-7

J(0.75) Full 440 0 2e4 8e-9
Compact S1 with NS 331 183 2e6 1e-6
Compact S2 with NS 6,260 1000 4e5 4e-6
Compact S1 with EC 331 188 2e6 3e-7
Compact S2 with EC 5,972 1000 4e5 4e-6

G(30) Full 573 1 1e5 1e-8
Compact S1 595 545 2e5 8e-9
Compact S2 1,106 1000 1e5 1e-3

4 1 5 P Full 20,450 19 2e5 1e-8
Compact S1 1,097 1001 6e5 4e-2
Compact S2 10,346 1000 6e4 2e-5

J(0.75) Full 890 1 2e5 1e-8
Compact S1 with NS 21 1015 3e7 6e-2
Compact S2 with NS 489 1001 7e6 1e-5
Compact S1 with EC 68 1007 1e7 1e-2
Compact S2 with EC 594 1001 5e6 4e-6

G(30) Full 1,017 2 1e6 9e-9
Compact S1 109 1016 7e5 9e-2
Compact S2 110 1012 5e5 9e-2

4 1 10 P Full 21,530 175 1e6 1e-8
Compact S1 144 1003 2e6 1e-1
Compact S2 11,879 1000 6e5 2e-5

J(0.75) Full 790 7 1e6 9e-9
Compact S1 with NS 4 1087 1e8 2e-1
Compact S2 with NS 445 1003 7e6 1e-4
Compact S1 with EC 6 1126 1e8 9e-2
Compact S2 with EC 502 1001 7e6 4e-5

G(30) Full 1,265 17 7e6 1e-8
Compact S1 16 1082 3e6 7e-1
Compact S2 18 1107 2e6 6e-1

Table 11
Numerical results for cloud computing models with tol = 1e-8 (continued).

d P M Solver Approach It Time Memory ∥r(It)∥2

4 1 20 P Full 9,770 1001 7e6 4e-4
Compact S1 24 1023 9e6 3e-1
Compact S2 13,980 1000 7e4 3e-5

J(0.75) Full 1,220 136 7e6 9e-9
Compact S1, S2 with NS fail1
Compact S1 with EC 4 5335 7e8 1e-1
Compact S2 with EC 220 1000 1e7 6e-3

G(30) Full 6,420 1001 5e7 1e-2
Compact S1 4 3130 2e7 6e-1
Compact S2 4 2961 2e7 6e-1

4 1 50 P Full 1,530 1002 4e7 5e-3
Compact S1 22 1108 2e7 1e-1
Compact S2 17,623 1000 5e4 4e-4

J(0.75) Full 1,410 1005 4e7 3e-6
Compact S1, S2 with NS fail1
Compact S1 with EC fail4
Compact S2 with EC 195 1000 1e7 3e-3

G(30) Full 1,020 1020 3e8 4e-3
Compact S1 3 5304 1e8 3e-1
Compact S2 3 4874 9e7 3e-1

7 2 2 P Full 21,230 1000 3e6 9e-6
Compact S1 7 2679 7e7 9e-1
Compact S2 1,080 1000 4e5 6e-2

J(0.75) Full 420 22 3e6 7e-9
Compact S1, S2 with NS, EC fail1

G(30) Full 14,340 1001 2e7 4e-2
Compact S1 2 5057 7e7 1e0
Compact S2 3 9560 8e7 1e0

P. Buchholz et al. / Performance Evaluation 115 (2017) 132–149 147

Table 12
Numerical results for cloud computing models with tol = 1e-8 (continued).

d P M Solver Approach It Time Memory ∥r(It)∥2

7 2 5 P Full 220 1020 2e8 1e-2
Compact S1 11 1078 2e7 9e-2
Compact S2 1746 1001 2e5 1e-2

J(0.75) Full 200 1034 2e8 2e-3
Compact S1, S2 with NS, EC fail1

G(30) Full 180 1195 2e9 8e-3
Compact S1 fail3
Compact S2 2 1306 3e7 1e-1

7 2 8 P Full – – 3e9 –
Compact S1 16 1136 2e7 2e-2
Compact S2 3159 1001 2e5 7e-3

J(0.75) Full – – 3e9 –
Compact S1, S2 with NS, EC fail1

G(30) Full – – 2e10 –
Compact S1 fail3
Compact S2 2 2226 4e7 4e-2

7 2 10 P Full – – 1e10 –
Compact S1 21 1297 2e7 1e-2
Compact S2 4170 1000 2e5 8e-3

J(0.75) Full – – 1e10 –
Compact S1, S2 with NS, EC fail1

G(30) Full – – 7e10 –
Compact S1 fail3
Compact S2 2 2227 4e7 2e-2

that this is a model for which Jacobi(0.75) converges in a relatively small number of iterations and the decrease in ∥r(It)∥2
close to convergence has been observed to be quite sharp.

On the other hand, a compact vector solver using S2 requires less memory, sometimes by several orders of magnitude,
than the respective solver that uses S1. One would expect this to imply that as the number of dimensions increases, a larger
number of iterations can be performed by the former in the same duration, thereby bringing the solver closer, if not, to
convergence. This seems to be the case especially when the decrease in memory consumption is substantial. The full vector
approach is faster for smaller configurations, but it is outperformed by the compact HTD representation for larger reachable
state spaces especially when it is used with Power as the solver and S2 as the adaptive truncation strategy.

4.3. Effects of varying transition rates

In this section, we investigate the effects of varying transition rates on the 6-dimensional availability model for which we
were able to obtain solutions with all solvers using the original values of transition rates. Recall that the availability model
has highly unbalanced transition rates due to infrequent failures. Failures correspond to local transitions, and since they are
infrequent, the system is available most of the time and the stationary probability distribution of the model is skewed. We
consider two variants of thismodel inwhich the first one has one tenth of the failure rates in the originalmodel (i.e., 5×10−5

for processors, 4 × 10−5 for buses and 10−5 for memory modules) and the second one has ten times the failure rates in the
originalmodel (i.e., 5×10−3, 4×10−3, 10−3, respectively).We expect the stationary probability distribution to becomemore
skewed in the first variant since the systemwill be even more available at steady-state and this is expected to translate into
a less difficult problem to solve. In other words, the second variant is expected to be more difficult to solve, meaning it will
take a larger number of iterations for the same accuracy of the solution.

The results in Table 13 show that indeed all solvers are sensitive to the transition rates in the model. In the first variant,
the ranks that are computed in the HTD representation of dinv with the EC approach in about 710 s using 3e4 MB are
[1], [5, 5, 7, 7], [7, 5, 6, 7, 8, 7]; the NS approach fails to provide a result in this case. In the second variant, the ranks that
are computed with the EC approach in more than 4050 s using 6e4 MB are [1], [8, 50, 10, 9], [10, 5, 6, 10, 9, 8], whereas
the NS approach yields the larger ranks [1], [207, 207, 60, 99], [9, 9, 6, 10, 11, 9]within 1050 s using 2e7MB. Furthermore,
memory requirements of Power and Jacobi(0.75) compact solvers increasewhen theproblemat handbecomesmore difficult.
This results in longer time per iteration and a smaller number of iterations in the same time duration.

5. Conclusion

We presented in this paper a compact representation for the iteration vector of large structured Markov models which
has been adopted from numerical analysis where the techniques have been developed in the recent years. It is shown that
this vector representation can be combined naturally with a hierarchical Kronecker representation of generator matrices
of structured Markov models. The basic step of iterative numerical algorithms is conveniently combined with the compact
vector representation within Power, Jacobi, and GMRES methods. When coupled with an adaptive truncation strategy, this
new technique is memory and also relatively time efficient such that it bears the potential to increase the size of solvable
models on a given computer significantly.

148 P. Buchholz et al. / Performance Evaluation 115 (2017) 132–149

Table 13
Numerical results for two variants of availability model d = 6 with tol = 1e-8.

Failure rates Solver Approach It Time Memory ∥r(It)∥2

(5, 4, 1) × 10−3 P Full 1,970 740 1e7 9e-9
Compact S1 1,791 1010 3e6 6e-8
Compact S2 325,368 1000 1e3 1e-5

J(0.75) Full 40 18 1e7 3e-11
Compact S1, S2 with NS fail1
Compact S1 with EC 34 734 1e6 1e-10
Compact S2 with EC 31 715 7e4 2e-8

G(30) Full 1,980 1008 1e8 6e-4
Compact S1 11 2692 2e7 7e-4
Compact S2 80 1081 9e6 6e-4

(5, 4, 1) × 10−5 P Full 2,600 1003 1e7 2e-7
Compact S1 206 1914 2e7 1e-2
Compact S2 24,863 1000 2e5 1e-6

J(0.75) Full 110 47 1e7 3e-9
Compact S1 with NS 1 1017 3e7 8e-4
Compact S2 with NS 1 1046 3e7 8e-4
Compact S1 with EC 1 4075 1e5 8e-4
Compact S2 with EC 1 4259 1e5 8e-4

G(30) Full 1,950 1002 1e8 6e-4
Compact S1 6 1122 2e7 7e-4
Compact S2 57 1156 9e6 6e-4

Acknowledgements

This work is supported by the Alexander von Humboldt Foundation through the Research Group Linkage Programme.
The research of the last author is supported by The Scientific and Technological Research Council of Turkey (2211-A).

References

[1] P. Buchholz, Hierarchical structuring of superposed GSPNs, IEEE Trans. Softw. Eng. 25 (1999) 166–181.
[2] P. Buchholz, G. Ciardo, S. Donatelli, P. Kemper, Complexity of memory-efficient Kronecker operations with applications to the solution of Markov

models, INFORMS J. Comput. 12 (2000) 203–222.
[3] T. Dayar, Analyzing Markov Chains using Kronecker Products: Theory and Applications, Springer, New York, 2012.
[4] T. Dayar, M.C. Orhan, Cartesian product partitioning of multi-dimensional reachable state spaces, Probab. Engrg. Inform. Sci. 30 (2016) 413–430.
[5] B. Plateau, On the stochastic structure of parallelism and synchronizationmodels for distributed algorithms, Perform. Eval. Rev. 13 (2) (1985) 147–154.
[6] B. Plateau, J.-M. Fourneau, A methodology for solving Markov models of parallel systems, J. Parallel Distrib. Comput. 12 (1991) 370–387.
[7] W.J. Stewart, Introduction To the Numerical Solution of Markov Chains, Princeton University Press, Princeton, NJ, 1994.
[8] P. Fernandes, B. Plateau, W.J. Stewart, Efficient descriptor–vector multiplications in stochastic automata networks, J. ACM 45 (1998) 381–414.
[9] D. Kressner, C. Tobler, htucker — A Matlab toolbox for tensors in hierarchical Tucker format, Technical Report 2012-02, Mathematics Institute of

Computational Science and Engineering, Lausanne, 2012.
[10] D. Kressner, C. Tobler, Algorithm 941: htucker—A Matlab toolbox for tensors in hierarchical Tucker format, ACM Trans. Math. Softw. 40 (3) (2014)

Article 22.
[11] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer, Heidelberg, 2012.
[12] I.V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput. 33 (2011) 2295–2317.
[13] D. Kressner, F. Macedo, Low-rank tensor methods for communicating Markov processes, in: G. Norman, W. Sanders (Eds.), Proceedings of the

11th International Conference on Quantitative Evaluation of Systems, in: Lecture Notes in Computer Science, vol. 8657, Springer, Heidelberg, 2014,
pp. 25–40.

[14] P. Buchholz, T. Dayar, J. Kriege, M.C. Orhan, Compact representation of solution vectors in Kronecker-basedMarkovian analysis, in: G. Agha, B.V. Houdt
(Eds.), Proceedings of the 13th International Conference on Quantitative Evaluation of Systems, in: Lecture Notes in Computer Science, vol. 9826,
Springer, Heidelberg, 2016, pp. 260–276.

[15] T. Dayar, M.C. Orhan, On vector-Kronecker product multiplication with rectangular factors, SIAM J. Sci. Comput. 37 (2015) S526–S543.
[16] P. Buchholz, P. Kemper, Compact representations of probability distributions in the analysis of superposed GSPNs, in: Proceedings of the 9th

International Workshop on Petri Nets and Performance Models, IEEE Press, New York, 2001, pp. 81–90.
[17] M. Kwiatkowska, R. Mehmood, G. Norman, D. Parker, A symbolic out-of-core solution method for Markov models, Electron. Notes Theor. Comput. Sci.

68 (2002) 589–604.
[18] P. Buchholz, T. Dayar, A HTD data structure for the analysis of structured Markov chains, 2017. http://ls4-www.cs.tu-dortmund.de/download/

buchholz/report.pdf.
[19] APNN-Toolbox, Abstract Petri net notation toolbox, http://www4.cs.uni-dortmund.de/APNN-TOOLBOX (accessed 12.07.17).
[20] F. Bause, P. Buchholz, P. Kemper, A toolbox for functional and quantitative analysis of DEDS, in: R. Puigjaner, N.N. Savino, B. Serra (Eds.), Quantitative

Evaluation of Computing and Communication Systems, in: Lecture Notes in Computer Science, vol. 1469, Springer, Berlin, 1998, pp. 356–359.
[21] P. Buchholz, T. Dayar, Block SOR for Kronecker structured Markovian representations, Linear Algebra Appl. 386 (2004) 83–109.
[22] P. Buchholz, T. Dayar, Comparison of multilevel methods for Kronecker-based Markovian representations, Computer 73 (2004) 349–371.
[23] P. Buchholz, T. Dayar, Block SOR preconditioned projection methods for Kronecker structured Markovian representations, SIAM J. Sci. Comput. 26

(2005) 1289–1313.
[24] G.H. Golub, C.F.V. Loan, Matrix Computations, fourth ed., Johns Hopkins University Press, Baltimore, MD, 2012.
[25] N.J. Higham, Accuracy and Stability of Numerical Algorithms, second ed., SIAM Press, Philadelphia, PA, 2002.
[26] Netlib, A collection of mathematical software, papers, and databases, http://www.netlib.org (accessed 12.07.17).

http://refhub.elsevier.com/S0166-5316(17)30037-8/sb1
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb2
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb2
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb2
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb3
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb4
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb5
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb6
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb7
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb8
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb10
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb10
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb10
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb11
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb12
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb13
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb13
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb13
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb13
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb13
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb14
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb14
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb14
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb14
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb14
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb15
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb16
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb16
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb16
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb17
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb17
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb17
http://ls4-www.cs.tu-dortmund.de/download/buchholz/report.pdf
http://ls4-www.cs.tu-dortmund.de/download/buchholz/report.pdf
http://ls4-www.cs.tu-dortmund.de/download/buchholz/report.pdf
http://www4.cs.uni-dortmund.de/APNN-TOOLBOX
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb20
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb20
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb20
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb21
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb22
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb23
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb23
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb23
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb24
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb25
http://www.netlib.org

P. Buchholz et al. / Performance Evaluation 115 (2017) 132–149 149

[27] P. Buchholz, T. Dayar, On the convergence of a class of multilevel methods for large, sparse Markov chains, SIAM J. Matrix Anal. Appl. 29 (2007)
1025–1049.

[28] R. Ghosh, Scalable Stochastic Models for Cloud Services, Ph.D. Thesis, Duke University, Department of Electrical and Computer Engineering, 2012.
[29] M.A. Marsan, S. Donatelli, F. Neri, GSPN models of Markovian multiserver multiqueue system, Perform. Eval. 11 (1990) 227–240.

P. Buchholz received the Diploma degree (1987), the Doctoral degree (1991) and the Habilitation degree (1996) all from the TU
Dortmund, where he is currently a professor for modeling and simulation. His current research interests are efficient techniques
for the analysis of stochasticmodels, formalmethods for the analysis of discrete event systems, the development ofmodeling tools,
as well as performance and dependability analysis of computer and communication systems.

T. Dayar received the BS (1989) degree in Computer Engineering fromMETU, Ankara, and theMS (1991) and PhD (1994) degrees in
Computer Science fromNCSU, Raleigh. Since 1995, he has beenwith theDepartment of Computer Engineering at Bilkent University,
Ankara, where he is a professor. His research interests are in the areas of performance modeling and analysis, numerical linear
algebra for stochastic matrices, scientific computing, bioinformatics, and computer networks.

J. Kriege received theDiplomadegree (2006) and theDoctoral degree (2012) from the TUDortmundwhere he is currently a postdoc
in themodeling and simulation group. His research interests include themodeling and analysis of logistics networks and computer
and communication systems.

M. C. Orhan received the BS (2009), MS (2011), and PhD (2017) degrees in Computer Engineering from Bilkent University, Ankara.
He is currently a researcher at Kanava Technologies. His research interests include performance modeling and analysis, machine
learning, numerical linear algebra, and scientific computing.

http://refhub.elsevier.com/S0166-5316(17)30037-8/sb27
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb27
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb27
http://refhub.elsevier.com/S0166-5316(17)30037-8/sb29

	On compact solution vectors in Kronecker-based Markovian analysis
	Introduction
	Compact vectors in Kronecker setting
	HTD format
	Uniform distribution in HTD format
	Multiplication of vector in HTD format with a Kronecker product
	Addition of two vectors in HTD format and truncation
	Computing the 2-norm of a vector in HTD format
	Computing the elementwise reciprocal of a vector in HTD format

	Experimental framework
	Results of numerical experiments
	Computation of HTD for dinv
	Computation of stationary vector
	Effects of varying transition rates

	Conclusion
	Acknowledgements
	References

