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A B S T R A C T

We consider a robotic cell served by a dual-gripper robot that consists of identical CNC machines placed linearly
and a material handling robot loading/unloading the machines and transporting the parts between them.
Identical parts are to be processed in this system and the CNC machines are capable of performing all the
operations that a part requires. We consider the problem of sequencing activities of the robot in order to
maximize the throughput rate. As a consequence of the flexibility of the CNC machines, a new class of robot
move sequences, named as pure cycles, arises. In a pure cycle, the robot loads and unloads each machine once
and each part is processed on exactly one of the machines. Thereby, the problem is to determine the best pure
cycle that maximizes the throughput rate. We first determine the feasibility conditions for the pure cycles and
prove some basic results that reduces the number of feasible pure cycles to be investigated. We analyze 2-
machine robotic cells in detail and prove that five of the cycles among a huge number of feasible pure cycles
dominate the rest. We determine the parameter regions in which each of the five cycles is optimal. We also
analyze the performance improvement that can be attained by using a dual gripper robot and provide
managerial insights.

1. Introduction

A robotic cell is a type of production system in which there are a
number of machines as well as a robot loading and unloading the
machines and transporting the parts between the machines. There is an
input and an output buffer providing material flow to and departure
from the cell, respectively. An m-machine robotic cell can be seen in
Fig. 1. Robotic cells are extensively used in many industries such as
electronics and metal cutting. With the recent developments in
technology, machines used in these cells highly improved in terms of
their capabilities. Especially, those utilizing computer numerical con-
trol (CNC) machines provide a huge flexibility for production systems.
A CNC machine can perform a large variety of operations as long as the
necessary cutting tools are loaded in their tool magazines. Besides the
capabilities of the machines, the capability of the robot is another
concern in robotic cells. Particularly, the number of grippers on a robot
can have a substantial impact on its capability. A gripper is a
component of a robot that holds parts to be processed while the robot
performs handling operations such as transporting a part, or loading a
machine with a part. The number of grippers that a robot has,
determines the number of parts that can be handled by the robot at
the same time. In this study, we have m identical machines (except the

input and the output buffers) which have an in-line robotic cell layout.
There are no buffer areas in between the machines. Each of the parts
are identical and there are a number of operations to be performed by
the machines. Each machine is also identical and flexible enough to
perform all the operations required by the parts. There is a dual gripper
robot loading and unloading the machines and transporting the parts
between the machines. Dual gripper feature provides robots the
capability of using both grippers while loading/unloading the machines
and transporting the parts. It is assumed that the robot is capable of
switching its grippers while it travels between the machines. In the
course of this study, we tackle the problem of minimizing the
throughput rate.

The studies in the literature are mostly on flow shop robotic cells
where parts visit each machine in the same order. Most of these studies
consider cyclic schedules where the same sequence of robot moves are
repeated indefinitely. It is practical to consider such schedules since the
moves of the robot are coded by a finite set of computer instructions.
Furthermore, Dawande et al. [4] proved that optimal throughput rates
are attained by cyclic robot moves. One of the very first studies in the
robotic cell scheduling literature is the paper by Sethi et al. [20]. They
considered 2 and 3-machine robotic cells and determined the best 1-
unit cycles for both cases. An n-unit cycle is defined as the robot move
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cycle in which each machine is loaded and unloaded exactly n times
and n parts are produced at the end of one repetition. They proved that
the set of 1-unit cycles are optimal for the 2-machine case. Crama and
van de Klundert [3] developed an O m( )3 time algorithm that provides
the best 1-unit cycle in an m-machine cell. Hall et al. [16] showed that
1-unit cycles are also optimal in 3-machine robotic cells. However,
Brauner and Finke [2] proved that 1-unit cycles need not be optimal for
cells with m ≥ 4. The problem of finding the optimal n-unit cycle for an
arbitrary n in an m-machine robotic cell is still open.

The technological progress in robotics led to new research pro-
blems. One of these is the consideration of the dual gripper robots.
Zhang et al. [23] conducted a sensitivity analysis on different robotic
cell design parameters including the gripper types. The problems
concerning dual gripper robotic cells are much more intricate than
the ones concerning single gripper robotic cells. Even if the number of
machines is kept in small sizes, the number of cycles may increase
drastically. Sethi et al. [21] showed that the total number of 1-unit
cycles in a 2-machine dual gripper robotic cell is 52 in contrast to only
2 in a single gripper counterpart. They showed that the use of a dual
gripper robot instead of a single gripper one may reduce the cycle time
by 50%. Geismar et al. [11] considered a dual-gripper robotic cell with
parallel machines at each stage and determined the optimal cycle under
practical assumptions. They also assessed the potential benefits of
using dual gripper robots over single gripper ones for the considered
cell. Drobouchevitch et al. [5] developed a polynomial time algorithm
to determine the optimal 1-unit cycle working under some specific
assumptions on parameter values. Geismar et al. [12] provided
approximation algorithms to compare single gripper robots with dual
gripper robots in a circular layout under the constant travel time
assumption. Jung et al. [19] studied the same problem with additive
inter-machine travel times and introduced a new class of schedules,
which were referred to as epi-cyclic cycles. Foumani et al. [9]
considered a cell in which a hub machine is revisited after each
secondary operation is performed by a separate secondary machine
located sequentially. The material handling is performed by a dual-
gripper robot. They proposed a 2-unit cycle and proved its optimality.
Galante and Passannanti [10] studied the problem of minimizing the
cycle time in serial manufacturing systems with multiple dual-gripper
robots. A comparison of robotic cells with parallel machines and
multiple dual gripper robots can be found in Geismar et al. [13].

Robotic cells can be utilized in different industries including
chemical, electronics, automotive, and metal cutting industries. In
order the cell to operate without the interaction of manual operators,
the machines, the robot, and the cell controller must communicate with
each other. This necessitates the machines used in the cell to be CNC
machines. These machines are highly flexible that can perform a large
variety of operations. Another research topic is the consideration of
such flexible robotic cells. Akturk et al. [1] considered a flexible robotic
cell in which there are two identical CNC machines and showed that a
2-unit cycle can also be optimal even in 2-machine cells. Gultekin et al.
[14] proposed a new class of robot move cycles that emanate from the
capability of the CNC machines for performing a large variety of

operations. They showed that these cycles provide higher throughput
rates than flowshop type robot move cycles in 2-machine and 3-
machine robotic cells. Gultekin et al. [15] considered robotic cells with
m identical CNC machines and named the new class of robot move
cycles as pure cycles. In a pure cycle, all operations of a part are
performed by a single machine and the parts are not transferred
between the machines. Practical examples of robotic cells utilizing pure
cycles include air conditioner shaft manufacturing, engine manufactur-
ing, automobile camshaft and crankshaft manufacturing, and gear
manufacturing in which metal cutting operations are performed by
CNC machines. In pure cycles, all machines are loaded and unloaded
exactly once. Hence, a pure cycle produces exactly m parts in an m-
machine cell. Gultekin et al. [15] proved that two specific pure cycles
are optimal for most of the possible parameter values in a single
gripper setting. For the remaining cases, they provided the worst case
performances of these two cycles. They also proved that pure cycles
dominate all flow shop type cycles studied in the literature. Therefore,
restricting the problem to the flowshop type robot move cycles may
result in suboptimal solutions for the cells utilizing flexible machines. A
similar analysis is performed by Yildiz et al. [22] for the pure cycles in
robot-centered cells, where the machines are located around the robot
that makes rotational movements. The authors also considered the
joint optimization of the cycle time and the total manufacturing cost
assuming that the processing times are controllable. For the robotic
cells where the robot has the swap ability, Foumani and Jenab [7]
analyzed re-entrant robotic cells under different configurations,
whereas Foumani and Jenab [8] studied pure cycles strategy with
two machines and identical parts.

In this study, we consider a dual gripper robotic cell with flexible
machines. The problem is to determine the best pure cycle that
maximizes the throughput rate. The flowshop problem that considers
a dual gripper robot is more complex compared to the single gripper
problem and the pure cycle problem is more complex compared to the
flowshop cell scheduling problem. To the best of our knowledge, this is
the first study that considers dual gripper robotic cells and pure cycles
jointly which increases the complexity drastically. This study contri-
butes to the literature by developing the necessary analytical frame-
work to analyze pure cycles in dual gripper cells, which can be extended
to other complex problems with pure cycles and dual gripper robots.
We also contribute to the literature by reducing the number of
potentially optimal cycles to five and by determining the parameter
regions where each of these cycles are optimal. Moreover, we provide
the potential theoretical benefits and quantify the average performance
improvement of using a dual gripper robot instead of a single gripper
robot.

The problem tackled here is also related with the parallel machine
scheduling with a common server problems (see e.g. [17,18,6]). The
main differences between our problem and that literature are threefold.
Firstly, in that literature, the setup time of the machines is a problem
parameter which is arbitrary for each job. In our study, the setup time
is a variable which is directly associated with the sequence of the robot
activities including transporting the parts between the machines and

Fig. 1. m-machine robotic cell with a dual-gripper robot.
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loading/unloading the machines. Secondly, the unloading of the
machines is also performed by the server (robot) in our problem,
which is not the case in that literature. Lastly, classical scheduling
objectives such as the minimization of the makespan or the total
completion time are considered in that literature assuming that a finite
number of parts are to be produced. However, we assume that an
infinite (or very large) number of identical parts are to be produced as
commonly done in the literature on robotic cell scheduling. Therefore,
a cyclic scheduling framework is utilized.

In the next section, we provide the notation used throughout the
paper and define the problem formally. In Section 3, we consider the 2-
machine cells in more detail and find the optimal pure cycles
analytically. In Section 4, we provide managerial insights and future
research directions.

2. Problem definition and basic results

In this section, we provide some definitions and notations that we
have used throughout the paper.

P: Total processing time of a part on any one of the machines.
δ: Robot travel time between two adjacent machines.
ε: Load/unload time of each machine.
θ: Gripper switch time. Resulting from most practical situations

it is assumed to be less than the travel time, (θ δ≤ ) and the
processing time θ P( ≤ ).

wi: Waiting time of the robot in front of machine i before unl-
oading it. When the robot arrives in front of machine i to
unload it, if the processing of the part is already completed,
wi is 0, otherwise it is equal to the remaining processing t-
ime.

Our aim is to minimize the cycle time. The cycle time is defined as
the long run average time to produce one part. Note that in an m-
machine robotic cell a single repetition of a pure cycle produces m
parts.

Ci
m : ith pure cycle in an m-machine robotic cell.

TCi
m: Cycle time of cycle Ci

m. Note that, we define the cycle time as
the total time required to complete the cycle instead of the
time required to produce a single part.

In order to derive all pure cycles in an m machine cell and calculate
their cycle times we will use the following definitions.

Definition 1. A state is defined as the image of the system. It is an
m( + 2)-tuple which indicates whether the machines are loaded or not
(1 for loaded and 0 for empty), and the type of part the grippers have
(new (n), processed (f), or none (e)). First m elements denote the
machines and the last two denotes the grippers in the state definition.

For example, in a 2-machine cell the state e e(0, 0, , ) indicates that
both machines are idle and the grippers are empty, whereas f n(0, 1, , )
indicates that Machine 1 (M1) is idle and Machine 2 (M2) is occupied
with a part. Additionally, Gripper 1 (G1) holds a processed part and
Gripper 2 G( 2) holds a new part. There are a total of 3 ·2m2 different

states for an m-machine cell (2 different values for each machine status
and 3 different values for each of the two grippers). For instance the
number possible states for a 2-machine cell is equal to 36.

Definition 2. An action is the robot motion such as loading and
unloading in front of any machine (including the input and the output
buffers). When the robot is in front of a machine, only one action can
occur and this action depends on the status of that machine (whether it
has a part on it or not). When the robot is in front of the input buffer or
an occupied machine, the action is unloading. When the robot is in
front of the output buffer or an idle machine, the action is loading.

In an m-machine robotic cell operating under a pure cycle strategy,
the robot picks up a part from the input buffer m times and drops m
processed parts to the output buffer. Furthermore, each machine is
loaded and unloaded exactly once at the end of a pure cycle. All these
make a total of 4m actions to be performed by the robot in any pure
cycle. Since the system moves from one state to another after the each
action, a pure cycle in an m-machine cell can be expressed as a cyclic
sequence of 4m states. As an example, the sequence of eight states of
one of the pure cycles in a 2-machine cell, named as C2

2, is illustrated in
Fig. 2. In this figure, the numbers above the states indicate the
sequence starting from e e(0, 0, , ) state.

Although this state definition does not contain the position
information of the robot, this can easily be inferred using two
consecutive states. For example, consider the two consecutive states,

e e(0, 0, , ) and n e(0, 0, , ). In the first state, both grippers are empty,
whereas in the following state G1 holds a new part. Hence, it can be
inferred that the robot is in front of the input buffer to perform this
activity.

Not all possible permutations of the states yield a feasible pure
cycle. In order to have a feasible cycle, two consecutive states must
satisfy a number of feasibility conditions that can be listed as follows:

• The robot actions correspond to loading/unloading operations.
These actions change the statuses of the grippers resulting in state
changes. The robot cannot use both grippers at the same time to
load/unload. Therefore, the status of exactly one gripper must be
different in any two consecutive states. As an example, let us
consider the n n(0, 0, , ) state. The e e(0, 0, , ) state cannot be an
immediate successor of this state since the statuses of both grippers
must be changed from “n” to “e” simultaneously meaning that two
loading operations must be performed at the same time. Therefore,
in order to move from state e e(0, 0, , ) to n n(0, 0, , ), either one of the
intermediate states e n(0, 0, , ) or n e(0, 0, , ) must be in between
these two states.

• The status of the grippers cannot change from “n” to “f” or “f” to “n”
directly. In order to change the status from “n” to “f” or “f” to “n”, the
robot must first drop the current part from the gripper which means
the state must first become “e”.

• The changes “e” to “n” or “f” to “e” mean that the robot picks up a
part from the input buffer using this gripper, or the robot drops a
processed part to the output buffer, respectively. Hence, the status of
all machines must remain the same.

• If the change is “e” to “f”, then the robot unloads a machine with this
gripper. Therefore, the status of exactly one of the occupied
machines must change from “1” to “0”.

• If the change is “n” to “e”, then the robot loads an idle machine with
this gripper. For this reason, the status one of the idle machines
must change from “0” to “1”.

Before applying these feasibility conditions, the total number of
feasible and infeasible cycles for the m-machine case equals to (9·2 )m m4 .
As an example, for the 2-machine case there are about 3·1012 feasible
and infeasible cycles in total. However, if we apply these feasibility
conditions, the number of feasible pure cycle reduces to 2.674. As it can
be seen, the number of feasible cycles is still very large even for onlyFig. 2. An example pure cycle, C2

2, expressed as a permutation of states.
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two machines. By using the following definitions, we will be able to
reduce the necessary number of feasible cycles to examine from 2.674
to 266.

We will use the following definition of Gultekin et al. [15] to
represent the robot move cycles.

Definition 3. An activity is defined as the action of the robot in front
of a specific machine (including input and output buffer), that leads to a
change of state. These activities can be listed as follows:

I: Unloading a part from the input buffer (repeatedm times in a pure
cycle),
Li: Loading a part to Mi, i m= 1, 2, ‥, (repeated once for each
machine in a pure cycle),
Ui: Unloading a part from Mi, i m= 1, 2, ‥, (repeated once for each
machine in a pure cycle),
D: Dropping the processed part to the output buffer (repeated m
times in a pure cycle).
All pure cycles can be expressed as a sequence of a specific number

of these activities and there is a correspondence between the states and
these activities. Let us consider the consecutive states e e(0, 0, , ) and

n e(0, 0, , ). These states indicate that the robot picks up a part from the
input buffer with G1. This means that the robot performs activity I.
Similarly, the consecutive states e e(1, 1, , ) and f e(0, 1, , ) indicate that
the robot performs activity U1. Since m4 states are necessary to express
a pure cycle, there are m4 corresponding activities to express these pure
cycles of in an m-machine cell. For instance, the activity sequence
corresponding to the state sequence of cycle C2

2 presented in Fig. 2 is
I I L L U U D D− − − − − − −1 2 1 2 . Now let us consider the following
state transitions that correspond to feasible pure cycles:

• e e e n n n e n e e

f e f f e f

(0, 0, , ) − (0, 0, , ) − (0, 0, , ) − (1, 0, , ) − (1, 1, , )

− (0, 1, , ) − (0, 0, , ) − (0, 0, , )
• e e e n n n n e e e

e f f f e f

(0, 0, , ) − (0, 0, , ) − (0, 0, , ) − (1, 0, , ) − (1, 1, , )

− (0, 1, , ) − (0, 0, , ) − (0, 0, , )
• e e e n n n n e e e

f e f f f e

(0, 0, , ) − (0, 0, , ) − (0, 0, , ) − (1, 0, , ) − (1, 1, , )

− (0, 1, , ) − (0, 0, , ) − (0, 0, , )

The corresponding activity sequence to each of these cycles is the same,
i.e., I I L L U U D D− − − − − − −1 2 1 2 . This is due to the fact that the
activities do not define the movements of the robot explicitly. Such
situations occur in pure cycles when both of the grippers have the same
status such as (e,e), (n,n), and (f,f) in a given state. Consequently, one
sequence of activities corresponds to many feasible permutations of
states. However, in the following, we will prove that one of these state
sequences dominates the others having the same activity sequence.

Definition 4. Active gripper is the gripper that is used while an
activity takes place.

Consider state e e(0, 0, , ). If activity “I” is performed, there are two
alternative states for the following activity. If it is n e(0, 0, , ) then the
active gripper is G1, if it is e n(0, 0, , ) then the active gripper is G2.

Lemma 1. If the status of the robot's grippers has just reached to one
of the states (e,e), (f,f) or (n,n), then there is an optimal cycle in which
the succeeding activity is performed by the active gripper.

Proof. After any one of these states, both grippers are available for
performing the next activity. If the active gripper is not used then an
additional θ time units is required to switch the grippers. Depending on
the duration of the parallel activities that can be performed
simultaneously with switching (i.e., switching and processing on the
machines or switching and traveling from one machine to another),
this situation may increase the cycle time. However, by using the active
gripper this extra switching time can be prevented.□

As a consequence of this lemma, we now know which gripper to use
for consecutive activities. This is necessary to determine the activity

sequence corresponding to a given state sequence. However, it is not
sufficient alone. We also need to know the initial active gripper at the
start of the cycle. The following definition is necessary for this purpose.

Definition 5. A complementary cycle of a pure cycle is another
pure cycle in which the active grippers of each activity is replaced with
the other gripper. Therefore, the original and the complementary pure
cycles have the same activity sequences but complementary state
sequences yielding the same cycle time value.

To clear this definition, let us consider the following two pure
cycles.

• e e n e n n e n e e

f e f f e f

(0, 0, , ) − (0, 0, , ) − (0, 0, , ) − (1, 0, , ) − (1, 1, , )

− (0, 1, , ) − (0, 0, , ) − (0, 0, , )
• e e e n n n n e e e

e f f f f e

(0, 0, , ) − (0, 0, , ) − (0, 0, , ) − (1, 0, , ) − (1, 1, , )

− (0, 1, , ) − (0, 0, , ) − (0, 0, , )

The active gripper sequence of these two cycles are G G G G1 − 2 − 1 − 2

G G G G− 1 − 2 − 1 − 2 and G G G G G G G G2 − 1 − 2 − 1 − 2 − 1 − 2 − 1 which are
the completely opposite of each other. This means that these two pure
cycles are complimentary to each other. Since loading and unloading
times are identical for both grippers, the cycle times of one cycle and its
complementary cycle are equal to each other. Therefore, from now on
we will consider only the cycles that the active gripper of their first
activity (transition from state 1 to state 2) is G1 without loss of
generality.

Using Definitions 4 and 5 and Lemma 1, we can further make the
following definition which will help us reduce the number of cycles to
evaluate in order to find the optimal cycle.

Definition 6. An active cycle is the cycle in which the active gripper
of its first activity is G1 and satisfy Lemma 1.

As a consequence, since we know the initial active gripper and
gripper transitions until the end of the pure cycle, there is a unique
active cycle corresponding to a given activity sequence. For example,
consider the sequence of activities I I L L U U D D− − − − − − −1 2 1 2
for the 2-machine case. Since two “I” activities are consecutive, both
grippers as well as both machines are initially empty. That is, the cycle
starts with the state e e(0, 0, , ). In order to perform the first “I” activity,
G1 is used as a consequence of Definition 6. Consequently, the second
state must be n e(0, 0, , ). The second activity is again taking a part from
the input buffer, which is performed by G2. Therefore, the third state
must be n n(0, 0, , ). The robot moves to M1 to load one of the parts.
Since G2 is the active gripper and it has a part that can be loaded to M1,
as a consequence of Lemma 1, the robot loads the part using G2. So, the
fourth state must be n e(1, 0, , ). Then, the robot moves to M2 to load it
using G1. It returns back to M1 to unload it. The state is e e(1, 1, , ) and
both grippers can be used to unload M1. Since G1 is the active gripper,
the robot unloads M1 with this gripper. The corresponding state is

f e(0, 1, , ). The robot moves to M2 to unload it using G2, which leads to
state f f(0, 0, , ). It moves to the output buffer to drop the processed
part. Both grippers hold a part to drop the processed parts. Since the
active gripper is G2, the robot first drops the part on this gripper. The
corresponding state is f e(0, 0, , ). Finally, the robot drops the part on
G1 and returns back to the input buffer.

As a consequence of this analysis, we can state that the optimal pure
cycle will be an active cycle. When all non-active cycles are eliminated,
the potentially optimal robot move cycles for the 2-machine case
reduces to 266.

We can calculate the cycle time of a given cycle by following the
activities performed by the robot. Let us calculate the cycle time of C2

2

illustrated in Fig. 2 as an example. Initially, the robot is in front of the
input buffer and picks up a part that takes ε amount of time (states 1
and 2). The robot switches its grippers and picks up another part from
the input buffer, (θ ε+ ). It moves toM1 and load this machine using G2

(δ ε+ ). It moves to M2 and loads it using G1. Since the robot is capable
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of switching its grippers while traveling, it takes θ δ εmax( , ) + amount
of time. The robot moves to M1, waits until machine completes its
processing, and unloads it with G1 (δ w ε+ +1 ). It moves to M2 and
switches its grippers while moving, waits if necessary, and unloads M2

with G2 ( θ δ w εmax( , ) + +2 ). It moves to the output buffer, drops the
part on G2, switches grippers, drops the part on
G1 (δ ε θ ε+ + + ). Finally, the robot returns back to the
input buffer to complete the cycle ( δ3 ). As a result, the cycle time to
produce2 parts becomes T ε δ θ θ δ w w= 8 + 6 + 2 + 2max( , ) + +C 1 22

2 ,
where w P ε δ δ θ= max{0, − ( + + max{ , })}1 and w = max{0,2
P ε δ δ θ w− ( + + max{ , } + )}1 . Since we assumed that θ δ≤ , after
some algebraic operations we calculate the final cycle time as
T ε δ θ P ε δ= 8 + 8 + 2 + max{0, − ( + 2 )}C2

2 .
In the following lemma we derive a lower bound for the cycle time

of any pure cycle in an m-machine cell.

Lemma 2. In an m-machine robotic cell, the cycle time of any feasible
pure cycle is no less than TLB

m where,

⎧

⎨
⎪⎪

⎩
⎪⎪

T

mε m δ m P δ m θ P

ε θ

m

mε m m δ m P δ

mθ P ε θ

m
=

max{4 + ( + 1) + min{ , } + ( − 1) ,

+ 2 + },

if is odd,

max{4 + ( + 1) + min{ , }

+ , + 2 + },

if is even.
LB
m

2

Proof. The first term of the max operator of the lower bound comes
from multiple components of the robot's operations in any pure cycle.
Firstly, the robot loads and unloads each machine once. It also picks up
m parts from the input buffer and drops m parts to the output buffer.
These handling operations make a total of mε4 .

After the end of one repetition of the cycle to the end of the succeeding
repetition, the robot needs to deliver m parts from the input buffer to the
output buffer. Therefore, in any cycle, the robot travels from the output
buffer to the input buffer a number of times in which the grippers have a
total of at least m empty slots. Bearing in mind that the robot has two
grippers, it can carry up to two parts (or up to two empty slots) at a time.
In the case that m is even, the robot travels from the output buffer to the
input buffer at least m

2
times with two empty gripper slots. Ifm is odd, the

robot can travel from the input buffer to the output buffer m − 1
2

times
carrying with two empty gripper slots, and one more time for the residual
part making a total of m + 1

2
times. With a similar approach, we conclude

that the robot carriesm parts with at least m
2
trips from the input buffer to

the output buffer ifm is even, and with at least m + 1
2

trips ifm is odd. Since
the distance between the input buffer and the output buffer is m δ( + 1) ,
these trips make a total of m m δ( + 1) if m is even, and m δ( + 1)2 if m is
odd. On the other hand, minimizing the number of visits to the input
buffer as suggested above may gain one δ2 per visit but an additional
switch time is incurred. Since θ δ≤ , this is beneficial. Therefore, ifm is an
even number, the total gripper switch time in front of the input buffer is
m θ( /2) . The same applies to the output buffer. Consequently, we have mθ
if m is even. When m is odd this switching can occur at most m θ( − 1) /2
times since in the final visit only a single part will be picked up or dropped
that will not result in a switch time.

Finally, in any pure cycle, after loading a machine the robot either
waits in front of it for the part to be processed or travels to another
machine, which takes at least P δmin{ , }.

The second term in the max operator of the lower bound expresses
the minimum time required for two successive loadings of the same
machine. After loading a machine, the earliest time that it can be
unloaded is after its completion, which requires P amount of time.
Then in order to reload this machine again in the earliest possible time,
the robot unloads the machine (ε), switches its grippers (θ), and loads
the machine (ε). As a result, the total required time is P ε θ+ 2 + .□

In the following, section we consider 2-machine robotic cells in
detail and determine optimal pure cycles.

3. Optimal pure cycles in 2-machine robotic cells

In robotic cells, the number of machines in the system is usually
small. This is especially true in the metal cutting industry where CNC
machines are used. Since these machines require a large amount of
physical space, usually a small number of machines is used. In parallel
with this, most studies in the literature considered 2- or 3-machine
cells. In this section, we also consider 2-machine cells in detail.

In the previous section, we have defined a new state definition, and
derived a number of feasibility conditions using this new state
definition to reduce the search space. After applying these feasibility
conditions, the number of feasible pure cycle reduces to 2.674. As it can
be seen, the number of feasible cycles is still very large even for only
two machines. Therefore, we have introduced a new class of cycles,
denoted as active cycles, and have shown that the optimal pure cycle
must be an active cycle. Consequently, after eliminating all non-active
cycles, we were able to reduce the potentially optimal robot move cycles
to be examined from 2.674 to 266. We present an active cycle
generation algorithm for an m-machine cell together with a methodol-
ogy for calculating their cycle times for the 2-machine case in Appendix
A. In order to compare these 266 potentially optimal robot move cycles,
we initially coded these algorithms in Java programming language and
performed an extensive numerical analysis with different parameter
combinations of P ε δ θ( , , , ). In this analysis, we computed the cycle
times of all active cycles and determined the best cycle for each
parameter combination. It is important to note that there could be
alternative pure cycles giving the best cycle time value for a certain
combination. One of our aims is to identify the best ones for the overall
problem. In all these scenarios, one of the following five cycles given in
Eqs. (1)–(5) appeared to be the optimal cycle. In each equation, we give
the activity sequence along with the cycle time value in terms of the
problem parameters. Although we have a good starting point, this
analysis does not guarantee the optimality of these cycles. Consistent
with this observation, in the sequel we will analytically show that
depending on the problem parameters, P ε δ θ( , , , ), one of these cycles is
the optimal cycle for a given parameter combination. As a result, we
were able to reduce 266 potentially optimal robot move cycles to five.

C I I L U L U D D ε δ θ P: − − − − − − − : 8 + 6 + 2 + 21
2

1 1 2 2 (1)

C I I L L U U D D

ε δ θ P ε δ

: − − − − − − − :

8 + 8 + 2 + max{0, − ( + 2 )}
2
2

1 2 1 2

(2)

C I I L U L U D D

ε δ θ P ε δ θ

: − − − − − − − :

8 + 8 + 3 + max{0, − (2 + 2 + )}
3
2

1 2 2 1

(3)

C I L I D U D L U

ε δ P ε δ

: − − − − − − − :

8 + 10 + max{0, − (5 + 8 )}
4
2

1 2 2 1

(4)

C I U L I D U L D

ε δ θ P ε δ θ

: − − − − − − − :

8 + 10 + 2 + max{0, − (6 + 10 + )}
5
2

1 1 2 2

(5)

In order to determine the optimal cycles, we will use the lower
bound derived in Lemma 2. Using this lemma, the lower bound for
pure cycles in 2-machine cells can be calculated as follows:

T ε δ P δ θ P ε θ= max{8 + 6 + 2min{ , } + 2 , + 2 + }.LB
2 (6)

In the following lemma, we determine the parameter values for
which C1

2, C2
2, and C5

2 are optimal by comparing their cycle times with
the lower bound.

Lemma 3. In a 2-machine robotic cell we have the following:

1. If P δ≤ , C1
2 is the optimal pure cycle,

2. Else if δ P ε δ< ≤ + 2 , C2
2 is the optimal pure cycle,

3. Else if δ ε θ P10 + 6 + ≤ , C5
2 is the optimal pure cycle.
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Proof.

1. If P δ≤ , the lower bound in Equation (6) is equal to
ε δ P θ8 + 6 + 2 + 2 , which is equal to the cycle time of C1

2 given in
Eq. (1).

2. If δ P ε δ< ≤ + 2 , the lower bound in Equation (6) is equal to
ε δ θ8 + 8 + 2 , which is equal to TC2

2 in Equation (2).
3. If δ ε θ P10 + 6 + ≤ , T ε δ θ P ε= 8 + 10 + 2 + max{0, − (6C5

2

δ θ P ε θ T+10 + )} = + 2 + = LB
2 .

This completes the proof.□
With Lemma 3 we have determined the optimal pure cycles for

P ε δ ε δ θ∈ [0, + 2 ] ∪ [6 + 10 + , ∞). In the following, we examine the
remaining region where P ε δ ε δ θ∈ ( + 2 , 6 + 10 + ).

3.1. Classification of the 2-machine pure cycles

In the following, we first classify the pure cycles into different
categories. Afterwards, we determine the best cycles in each category
for all possible parameter values within that category. Finally, we
compare the best cycles of different categories with each other to
determine the optimal cycle. We use the total travel time of the robot in
a cycle as the first classification criterion. As it is mentioned in
Equation (6), the robot has to travel at least δ6 in any pure cycle.
Any additional movement between the machines will increase this
value. Since the robot travels in a cyclic manner any addition to this
travel time can be an even multiple of δ (the total travel distance in all
pure cycles are even multiples of δ). Therefore, in any pure cycle the
travel time of the robot can be expressed as k δ(6 + 2 ) , where
k = 0, 1, ….

In the following series of lemmas, we determine the best pure cycle
in each category.

Lemma 4. If P ε δ ε δ θ∈ ( + 2 , 6 + 10 + ), then C5
2 dominates all pure

cycles that have a total travel time k δ(6 + 2 ) for k ≥ 3.

Proof. The cycle time of C5
2 is given in Equation (5) as

T ε δ θ P ε δ θ= 8 + 10 + 2 + max{0, − (6 + 10 + )}C5
2 . Therefore, for

ε δ P ε δ θ+ 2 < < 6 + 10 + , T ε δ θ= 8 + 10 + 2C5
2 . Since θ δ≤ , we can

write T ε δ≤ 8 + 12C5
2 . Since both machines must be loaded and

unloaded once, two parts must be picked up from the input buffer,
and two parts must be dropped to the output buffer, any pure cycle
contains ε8 as the total loading and unloading time. On the other hand,
if the travel time is k δ(6 + 2 ) and k ≥ 3, then the minimum cycle time
for these cycles is ε δ8 + 12 , which is greater than or equal to TC5

2.□
As a consequence of Lemma 4, the categories can be limited to

k = 0, 1, 2 with respect to the travel time. In the following, we will
analyze each of these cases separately;

Case 1: k=0. There is only one feasible pure cycle in this category,
which is C1

2 and its cycle time is given in Equation (1). Therefore, it is
the only cycle within this category.

Case 2: k=1. There are several pure cycles in this class where the
robot travel time is equal to δ8 . The following remark provides an
effective search strategy to find the best cycle within this class.

Remark 1. The cycle times of the pure cycles where k=1, in which the
input buffer operations I( ) or the output buffer operations O( ) are not
successive, are not less than ε δ P8 + 8 + .

If the robot does not pick up two parts consecutively from the input
buffer once it is in front of the input buffer, then it must return back to
pick up the second part. This requires at least δ additional time over δ6 .
That is, the travel time is at least δ7 in the cycle time expression. On the
other hand, after loading a machine, if the robot does not wait in front
of it to unload it but moves to another machine to make another
activity, this will again require at least δ amount of time. Since we are
considering k=1 case, in order not to exceed 8δ, the robot has to wait in
front of at least one of the machines. This contributes P amount of time

to the cycle time. Therefore, the cycle times of the pure cycles in which
two I( ) operations are not successive are greater than or equal to
ε δ P8 + 8 + . The same situation can also be considered for the output
buffer operations.

For the cases that two I( ) operations and and two O( ) operations are
successive, we can assume that the cycles start with activities I I− and
ends with activities D D− , without losing generality. This is because,
when the robot picks up two parts from the input buffer, it must load
and then, unload the machines before dropping the parts to the output
buffer. As a consequence, the total number of activity sequences is
equal to the total number of permutations of L L U U{ ; ; ; }1 2 1 2 , which is
equal to 24. However, as the robot picks up two parts from the input
buffer, it cannot unload a machine before dropping one of the parts
from one of its grippers. Therefore, to satisfy the feasibility, either L1 or
L2 should follow the I I− pair. As a consequence, 12 pure cycles that
are listed in Table 1 remain.

The first activity sequence listed in Table 1 corresponds to the C2
2

cycle and the second one corresponds to the C3
2 cycle. The last four

activity sequences do not satisfy the feasibility conditions since they try
to unload a machine despite both of its grippers are occupied. There are
two more cycles listed in this table that are feasible but do not satisfy
the k=1 condition. These cycles are investigated under the correspond-
ing category. If the remaining six feasible cycles are compared with
each other one can easily conclude thatC2

2 andC3
2 < dominate the rest.

Lemma 5. If P ε δ ε δ θ∈ [ + 2 , 6 + 10 + ] and k=1, C2
2 dominates all

pure cycles, in which two I( ) or two O( ) operations are not successive.

Proof. It is shown in Remark 1 that the minimum cycle time of the
pure cycles in which two I( ) or two O( ) operations are not successive is
ε δ P8 + 8 + . On the other hand, in the given interval, the cycle time of

C2
2 is equal to ε δ θ P7 + 6 + 2 + , which is less than or equal to

ε δ P8 + 8 + .□
As a consequence, only C2

2 and C3
2 cycles remain undominated.

These cycles are compared with each other in the following lemma.

Lemma 6. If ε δ P ε δ θ+ 2 ≤ ≤ + 2 + , C2
2 dominates all the cycles in

the class of k=1. Else if ε δ θ P ε δ θ+ 2 + < ≤ 6 + 10 + , C3
2 dominates

dominates all the cycles in the class of k=1.

Proof. We compare the cycles in the following intervals.

1. If ε δ P ε δ θ+ 2 ≤ ≤ + 2 + , then T ε δ θ= 7 + 6 + 2C2
2

P ε δ θ T+ ≤ 8 + 8 + 3 = C3
2 .

2. If ε δ θ P ε δ θ+ 2 + < ≤ 2 + 2 + , then T ε δ θ P ε= 7 + 6 + 2 + ≥ 8C2
2

δ θ T+8 + 3 = C3
2 .

3. ε δ θ P ε δ θ2 + 2 + < ≤ 6 + 10 + , then T ε δ θ= 7 + 6 + 2C2
2

P ε δ θ P T+ ≥ 6 + 6 + 2 + = C3
2 .

This completes the proof.□
Case 3: k=2. In this class, the robot travel time is equal to δ10 . With

Table 1
Remaining Pure Cycles For k=1 With Successive Input and Output Buffer Operations.

Cycle Cycle time

I I L L U U D D− − − − − − −1 2 1 2 ε δ θ P ε δ8 + 8 + 2 + max{0, − ( + 2 )}
I I L U L U D D− − − − − − −1 2 2 1 ε δ θ P ε δ θ8 + 8 + 3 + max{0, − (2 + 2 + )}
I I L L U U D D− − − − − − −1 2 2 1 ε δ θ P8 + 8 + 2 +
I I L U L U D D− − − − − − −2 1 1 2 ε δ θ P ε δ θ8 + 8 + 3 + max{0, − (2 + 2 + )}
I I L L U U D D− − − − − − −2 1 1 2 ε δ θ P8 + 8 + 2 +
I I L U L U D D− − − − − − −2 2 1 1 ε δ θ P8 + 8 + 2 + 2
I I L L U U D D− − − − − − −2 1 2 1 not suitable for the class of k=1

I I L U L U D D− − − − − − −1 1 2 2 not suitable for the class of k=1

I I L U U L D D− − − − − − −1 1 2 2 not feasible

I I L U U L D D− − − − − − −1 2 1 2 not feasible

I I L U U L D D− − − − − − −2 2 1 1 not feasible

I I L U U L D D− − − − − − −2 1 2 1 not feasible

H. Gultekin et al. Robotics and Computer–Integrated Manufacturing 48 (2017) 121–131

126



the following series of lemmas we show that either C4
2 or C5

2 is optimal
in this class.

Lemma 7. If ε δ P ε δ+ 2 ≤ ≤ 5 + 8 , then C4
2 dominates all the pure

cycles in the class of k=2.

Proof. From Equation (4), T ε δ= 8 + 10C4
2 for the provided P values,

which is equal to the minimum possible cycle time value in this class.□
In order to determine the best cycle in this category, we need a

secondary classification criterion. We use the number of gripper
switches in a cycle for this purpose. Since the robot is assumed to be
capable of switching its grippers while traveling from one machine to
another and since we assume θ δ≤ , in some cycles there is no
switching time in their cycle time expressions. However, in the
following situations there exist switching times.

• The robot picks up two parts from the input buffer consecutively.
The activity sequence here is I I− .

• The robot drops two parts to the output buffer consecutively. The
activity sequence here is O O− .

• The robot unloads and loads machine i consecutively in the stated
order. The activity sequence here is U L−i i, i = 1, 2.

In these situations the robot cannot avoid the switching time because it
has to make the operations in front of the same machine. However, the
following lemma bounds the total switching time in a pure cycle.

Lemma 8. The cycle time expression of any pure cycle can contain at
most θ3 .

Proof. In order to have θ4 in the cycle time expression, all of the four
situations stated above I I O O U L U L( − , − , − , − )1 1 2 2 , must be
performed by the robot in the same cycle. This means that at the
beginning of the cycle the robot picks up two parts from the input
buffer consecutively (I I− ). However, at this point, since both grippers
are occupied, it cannot unload a machine as the next activity.
Therefore, the following activity must be Li for some i=1 or 2. This
prevents the occurrence of one U L−i i sequence in the cycle. As a
consequence, the cycle time expression cannot contain more than θ3 .□

This lemma proves that the number of switches cannot be greater
than three. On the other hand, we can show that it is possible to have θ3
in a pure cycle with an example. Consider C3

2 for which the activity
sequence is I I L U L U D D− − − − − − −1 2 2 1 . Since there are I I− ,
D D− , and U L−2 2 pairs in this cycle, its cycle time given in Equation
(3) contains θ3 . Therefore, we can express the classification of the
cycles with respect to the number of switches as tθ, t = 0, 1, 2, 3.

Lemma 9. When k=2 and t ≤ 1, the cycle time of the pure cycles is not
less than ε δ P3 + 2 + .

Proof. If t ≤ 1, then for at least one of the machines, the robot must
perform another activity after unloading it. To perform this activity and
return back in front of the same machine takes at least ε δ+ 2 . During
this time, the machine is idle. On the other hand, this machine is
loaded and unloaded in a cycle that takes ε2 amount of time, and
processes the part for P amount of time. Therefore, the cycle time must
be greater than or equal to ε δ P3 + 2 + .□

Lemma 10. If ε δ P ε δ θ5 + 8 < ≤ 6 + 10 + , then C4
2 dominates all the

pure cycles in the class of k=2 and t ≤ 1.

Proof. If ε δ P ε δ θ5 + 8 < ≤ 6 + 10 + , then T ε δ P= 3 + 2 +C4
2 . This

value is equal to the lower bound of the cycle times in this category
proved in Lemma 9.□.

Lemma 11. If ε δ P ε δ θ5 + 8 < ≤ 6 + 10 + , then C5
2 dominates all the

pure cycles in the class of k=2 and t ≥ 2.

Proof. In the given interval, T ε δ θ= 8 + 10 + 2C5
2 . This value is a lower

bound for the pure cycles when k=2 and t ≥ 2.□
As a consequence of Lemmas 7–11, if P ε δ ε δ θ∈ [ + 2 , 6 + 10 + ],

then C4
2 and C5

2 are the two nondominated cycles in the class of pure
cycles with k=2. The following lemma compares these two cycles with
each other.

Lemma 12. If ε δ P ε δ θ+ 2 ≤ ≤ 5 + 8 + 2 , thenC4
2 dominatesC5

2 in the
class of k=2. Else if ε δ θ P ε δ θ5 + 8 + 2 ≤ ≤ 6 + 10 + , then C5

2

dominates C4
2.

Proof. We compare the cycle times of C4
2 and C5

2 in the following
intervals.

1. If ε δ P ε δ+ 2 ≤ ≤ 5 + 8 , the dominance of the cycle C4
2 is shown in

Lemma 7.
2. If ε δ P ε δ θ5 + 8 < ≤ 5 + 8 + 2 , then T ε δ P= 3 + 2 +C4

2

ε δ θ T≤8 + 10 + 2 = C5
2 .

3. ε δ θ P ε δ θ5 + 8 + 2 < ≤ 6 + 10 + , then T ε δ P ε= 3 + 2 + ≥ 8C4
2

δ θ T+10 + 2 = C5
2 .

This completes the proof.□
We now completed analyzing all categories and determined the best

cycles within each category for P ε δ ε δ θ∈ ( + 2 , 6 + 10 + ). The results
indicate that C1

2, C2
2, C3

2, C4
2, and C5

2 are the five nondominated cycles in
this interval. From these cycles,C1

2 is in k=0 class;C2
2 andC3

2 are in k=1
class; and C4

2 and C5
2 are in k=2 class. In Lemmas 13–14, we compare

these cycles with each other to determine the parameter regions where
each of these cycles is optimal.

Lemma 13. If P δ≥ , then C2
2 dominates C1

2.

Proof. If P δ≥ , then T ε δ θ P ε= 8 + 6 + 2 + 2 ≥ 8C1
2

δ θ P ε δ T+8 + 2 + max{0, − ( + 2 )} = C2
2 .□.

As a consequence of Lemma 13, the number of nondominated
cycles is reduced to four.

Lemma 14. When the nondominated cycles C2
2, C3

2, C4
2, and C5

2 are
compared with each other we have the following regions of
optimality:

1. If ε δ P ε δ θ ε δ θ+ 2 < ≤ min{ + 2 + , + 4 − 2 }, then C2
2 is optimal,

2. Else if ε δ θ P ε δ θ+ 4 − 2 < ≤ + 2 + , then C4
2 is optimal,

3. Else if ε δ θ P ε δ θ+ 2 + < ≤ 2 + 2 + , then If θ δ≤ 2
3

, then C3
2 is

optimal, Else if θ δ> 2
3

, then C4
2 is optimal,

4. Else if ε δ θ P ε δ θ2 + 2 + < ≤ 2 + 4 − 2 , then C3
2 is optimal,

5. Else if ε δ θ P ε δ θ2 + 4 − 2 < ≤ 5 + 8 + 2 , then C4
2 is optimal,

6. Else if ε δ θ P ε δ θ5 + 8 + 2 < < 6 + 10 + , then C5
2 is optimal.

Proof. If ε δ P ε δ θ+ 2 < ≤ + 2 + , then from Lemma 6, C2
2 dominates

C3
2, and from Lemma 12, C4

2 dominates C5
2. Therefore, we only need to

compare C2
2 with C4

2. In this interval, T ε δ θ P= 7 + 6 + 2 +C2
2 and

T ε δ= 8 + 10C4
2 . Thus, if P ε δ θ≤ + 4 − 2 , then C2

2 is optimal.

Otherwise, C4
2 is optimal.

If ε δ θ P ε δ θ+ 2 + < ≤ 2 + 2 + , then from Lemma 6, C3
2 dominates

C2
2, and from Lemma 12, C4

2 dominates C5
2. In this interval,

T ε δ θ= 8 + 8 + 3C3
2 and T ε δ= 8 + 10C4

2 . Hence, if θ δ≤ 2
3

, then C3
2 is

optimal. Otherwise, C4
2 is optimal.

If ε δ θ P ε δ θ2 + 2 + < ≤ 5 + 8 + 2 , again C3
2 and C4

2 are the non-
dominated cycles as a consequence of Lemmas 6 and 12.
T ε δ θ P= 6 + 6 + 2 +C3

2 . If P ε δ≤ 5 + 8 , then T ε δ= 8 + 10C4
2 . Hence, if

P ε δ θ≤ 2 + 4 − 2 , then C3
2 is optimal. Otherwise, C4

2 is optimal. On the
other hand, if ε δ P ε δ θ5 + 8 < ≤ 5 + 8 + 2 , then T ε δ P= 3 + 2 +C4

2 .

Therefore, in this interval C4
2 is optimal.

If ε δ θ P ε δ θ5 + 8 + 2 < ≤ 6 + 10 + , then C3
2 and C5

2 are the non-
dominated cycles as a consequence of Lemmas 6 and 12.
T ε δ θ P= 6 + 6 + 2 +C3

2 and T ε δ θ= 8 + 10 + 2C5
2 . Since

P ε δ θ> 5 + 8 + 2 , C5
2 is optimal in this interval.□
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Combining the findings in Lemmas 3 and 14, we now provide the
main result of this paper in the following theorem. This theorem is one
of the main contributions of this paper, in which we determine the
optimal pure cycle for all possible parameter values.

Theorem 1. The following cycles are the optimal ones among other
2-machine pure cycles within the corresponding intervals.

1. If P δ0 < ≤ , then C1
2 is optimal,

2. Else if δ P ε δ< ≤ + 2 , C2
2 is the optimal pure cycle,

3. Else if ε δ P ε δ θ ε δ θ+ 2 < ≤ min{ + 2 + , + 4 − 2 }, then C2
2 is opti-

mal,
4. Else if ε δ θ P ε δ θ+ 4 − 2 < ≤ + 2 + , then C4

2 is optimal,

5. Else if ε δ θ P ε δ θ+ 2 + < ≤ 2 + 2 + , then If θ δ≤ 2
3

, then C3
2 is

optimal, Else if θ δ> 2
3

, then C4
2 is optimal,

6. Else if ε δ θ P ε δ θ2 + 2 + < ≤ 2 + 4 − 2 , then C3
2 is optimal,

7. Else if ε δ θ P ε δ θ2 + 4 − 2 < ≤ 5 + 8 + 2 , then C4
2 is optimal,

8. Else if ε δ θ P ε δ θ5 + 8 + 2 < < 6 + 10 + , then C5
2 is optimal.

9. Else if P ε δ θ≥ 5 + 8 + 2 , C5
2 is optimal.

4. Managerial insights

In this section, we compare dual gripper robots with single gripper
robots in a 2-machine cell and derive managerial insights. We quantify
the increase in the throughput rate by using a dual gripper robot. There
are previous studies that compared the performance of the dual gripper
robots with single gripper ones in different problem environments. For
example, Sethi et al. [21] compared single and dual gripper robots in
flowshop type robotic cells assuming 1-unit cycles with additive travel
times. Geismar et al. [11] performed a similar analysis on robotic cells
with parallel machines and constant travel times and Drobouchevitch

et al. [5] compared the performances of a dual gripper robotic cell with
a single gripper robotic cell with output buffers on machines. The main
reason of comparing single and dual gripper robots is the higher
investment cost of dual gripper robots. Note that, a dual gripper robot
can perform any activity that a single gripper robot performs.
Therefore, all feasible single gripper cycles are also feasible dual
gripper cycles. However, there are several dual gripper cycles that
require a dual gripper robot and are not feasible for single gripper
robots. Therefore, it is straightforward to conclude that dual gripper
robots perform better than single gripper ones. However, it is
important to quantify this benefit to economically justify the necessary
investment cost of dual gripper robots. The reason that different
studies performed similar comparisons is that the results are specific
to the considered system. The quantified values as well as the
corresponding parameter regions are different in different systems.
As far as we know, our study is the first one to perform this analysis for
robotic cells with flexible machines. In the following, we first prove that
the dual gripper pure cycles dominate the single gripper ones.
Afterwards, we quantify their benefits for different parameter values.
In this analysis, we will make use of the following lower bound on the
cycle time of single gripper pure cycles.

Remark 2 ([15]). For a 2-machine robotic cell, the cycle time of any
single gripper pure cycle is no less than
LB ε δ ε δ P= max{8 + 12 , 4 + 6 + }sin .

The following lemma proves that the dual gripper cycles that utilize
both grippers of the robot always perform better than the single gripper
cycles.

Theorem 2. The dual gripper pure cycle C4
2 dominates all single

gripper pure cycles.

Proof.

1. If P ε δ≤ 5 + 8 , T ε δ ε δ ε δ P= 8 + 10 ≤ max{8 + 12 , 4 + 6 + }C4
2

LB= single ,
2. Else if ε δ P5 + 8 < , T ε δ P ε δ P LB= 3 + 2 + ≤ 4 + 6 + =C single4

2 .□
As a consequence of this theorem we know that dual gripper robots

perform better than single gripper ones. However, in order to conduct an
economical analysis we have to quantify the possible reduction in cycle
times. For this purpose, we first compare the optimal dual gripper cycles
of the previous section with the lower bound of the single gripper cycle
time. This will provide us the best case performance of dual gripper cycles.

Table 2
Comparison of dual gripper and single gripper pure cycles.

Interval Cycle LB CT/sin opt BC

P δ0 ≤ ≤ C1
2 ε δ ε δ P(8 + 12 )/(8 + 6 + 2 ) 2

δ P ε δ< ≤ + 2 C2
2 ε δ ε δ θ(8 + 12 )/(8 + 8 + 2 ) 3/2

ε δ P ε δ θ+ 2 < ≤ + 2 + C2
2 ε δ ε δ θ P(8 + 12 )/(7 + 6 + 2 + ) 3/2

θ δ0 ≤ ≤ (2/3) ε δ θ P ε δ θ+ 2 + ≤ ≤ 2 + 2 + C3
2 ε δ ε δ θ(8 + 12 )/(8 + 8 + 3 ) 3/2

ε δ θ P ε δ θ2 + 2 + ≤ ≤ 2 + 4 − 2 C3
2 ε δ ε δ θ P(8 + 12 )/(6 + 6 + 2 + ) 3/2

ε δ θ P ε δ2 + 4 − 2 ≤ ≤ 4 + 6 C4
2 ε δ ε δ(8 + 12 )/(8 + 10 ) 6/5

ε δ P ε δ4 + 6 ≤ ≤ 5 + 8 C4
2 ε δ P ε δ(4 + 6 + )/(8 + 10 ) 6/5

ε δ P ε δ θ5 + 8 ≤ ≤ 5 + 8 + 2 C4
2 ε δ P ε δ P(4 + 6 + )/(3 + 2 + ) 7/5

δ θ δ(2/3) < ≤ ε δ P ε δ θ+ 2 ≤ ≤ + 4 − 2 C2
2 ε δ ε δ θ P(8 + 12 )/(7 + 6 + 2 + ) 3/2

ε δ θ P ε δ+ 4 − 2 ≤ ≤ 4 + 6 C4
2 ε δ ε δ(8 + 12 )(8 + 10 ) 9/7

ε δ P ε δ4 + 6 ≤ ≤ 5 + 8 C4
2 ε δ P ε δ(4 + 6 + )/(8 + 10 ) 6/5

ε δ P ε δ θ5 + 8 ≤ ≤ 5 + 8 + 2 C4
2 ε δ P ε δ P(4 + 6 + )/(5 + 8 + ) 7/5

ε δ θ P ε δ θ5 + 8 + 2 ≤ ≤ 8 + 10 + C5
2 ε δ P ε δ θ(4 + 6 + )/(8 + 10 + 2 ) 7/5

ε δ θ P8 + 10 + ≤ C5
2 ε δ P ε θ P(4 + 6 + )/(2 + + ) 8/5

Table 3
Factors and levels.

Factor Low Medium High

P δ/ 0.1 5.0 10.0
θ δ/ 0.1 0.5 1.0
θ ε/ 0.1 1 2
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This analysis is given in Table 2. In this table we calculate the ratio of
LBsin to the optimal dual gripper cycle denoted by CTopt. Since we want
to calculate the best case performance denoted as BC, we take the
maximum value of this ratio, BC = max{ }LB

CT
sin

opt
. In order to calculate the

maximum, we use the limiting values of the parameters. As an example let
us consider the case where P δ0 ≤ ≤ . In this interval we have

LB
CT

ε δ
ε δ P

= 8 + 12
8 + 6 + 2

.sin

opt

This ratio takes its maximum value for the following parameter values.

BC ε δ
ε δ P

= lim 8 + 12
8 + 6 + 2

= 12
6

= 2.
δ
ε
θ
P

→∞
→0
→0
→0 (7)

For each interval in this table, a similar analysis is performed.
As it is seen in Table 2, a dual gripper cycle can perform two times

better than single gripper cycles in the best case. In order to quantify
the average performance improvement of using a dual gripper cycle, we
performed a computational study. We set up a design of experiment, in
which 3 different factors that can have an effect on the cycle times are
used. These are P δ/ , θ δ/ , and θ ε/ . Since rather than the magnitudes of
the parameters, their ratios affect the cycle times, we use these ratios in
the computational study.

We used 3 different levels for each of these factors. Since θ δ≤ is
assumed, the maximum value of θ δ/ is 1. In Table 3, the factors and
their levels are listed. For each generated data, the optimal dual pure
cycle time, the lower bound of single gripper cycles, and their ratio are
calculated. The results of this computational study are summarized in
Table 4. The minimum, average, and maximum performance improve-
ments of dual gripper robots are appeared to be 1.02, 1.3, and 1.82,
respectively. It can also be observed that, as the θ δ/ ratio increases, the
benefits of dual grippers reduces. This is meaningful because, the time
advantage of dual gripper robots reduces if gripper switch time
increases. On the other hand, as the θ ε/ ratio increases, the benefits
of dual gripper robots also increase. This analysis provides the
preferable parameter values for an investment in dual gripper robots.

5. Conclusion

In this study, we consider a manufacturing cell consisting of a
number of flexible machines and a material handling robot that
produces identical parts. The robot is assumed to have dual grippers.
The flexibility of the machines leads to a new class of robot move cycles,
named as pure cycles, in which each part is completely produced on
one of the machines. To the best of the author's knowledge, this study is
the first one to consider pure cycles together with dual gripper robots.
The problem is to determine the optimal pure cycle that maximizes the
system throughput. We first develop the necessary framework to
analyze this problem. We analyze 2-machine robotic cells in detail
and prove that despite the large number of cycles, only five of them are
potentially optimal. We identify the parameter values for which each
cycle is optimal. We also provide managerial insights by comparing the
performances of dual gripper and single gripper cycles. We show that
the throughput rate of a dual gripper robot can be at most twice better
than a single gripper robot depending on the problem parameters. We
also perform a computational study using different parameter values,
which demonstrates that the average and maximum performance
improvements of dual gripper robots on single gripper robots are 1.3
and 1.82, respectively.

This study contributes to the literature by developing a general
framework for analyzing pure cycles in dual gripper robotic cells that
can be utilized in more complex problems such as robotic cells with
larger number of machines. The approach used in this study forms an
analytical basis for finding the optimal pure cycles corresponding to
given input parameters. Moreover, by quantifying the maximum
possible and average benefits of using a dual gripper robot rather than
a single gripper one, this study supports management decisions on
investing in dual-gripper robots.

This study can be extended by considering multiple part types. In
this case, the robot sequencing and part sequencing problems must be
solved simultaneously which increases the problem complexity.
Another direction for future research is to analyze robotic cells with
larger number of machines. However, the number of feasible pure
cycles increases drastically as the number of machines increases.
Mathematical programming based exact or heuristic solution proce-
dures can be developed.

Appendix A. Active cycle generation

There are a total of 4 m activities in an active cycle (one L and one U activity for each of the m machines plus m copies of I and D activities). To
derive all active cycles for an m-machine cell, we first find all possible permutations of activities. Considering the cyclic permutations and
eliminating the repeated cycles resulted fromm copies of I and D, the total number of all permutations can be calculated as m

m m
(4 − 1) !

! !
. Note that not all

circular permutations of the activities are active cycles. Algorithm 1 derives all active cycles from the set of all circular activity permutations using
the following conditions:

Table 4
Summary of the computational study.

P δ/ θ δ/ θ ε/ CTop LBsin LBsin/CTopt

L L L 144 200 1.39
M 72 128 1.78
H 68 124 1.82

M L 94.4 104 1.10
M 22.4 32 1.43
H 18.4 28 1.52

H L 88.2 92 1.04
M 16.2 20 1.23
H 12.2 16 1.31

M L L 172 200 1.16
M 108 134 1.24
H 104 132 1.27

M L 98 104 1.06
M 28 32 1.14
H 24 28 1.17

H L 90 92 1.02
M 18 20 1.11
H 14 16 1.14

H L L 180 220 1.22
M 110 184 1.67
H 106 182 1.72

M L 99 104 1.05
M 28 40 1.43
H 25.5 38 1.49

H L 90 92 1.02
M 18 22 1.22
H 14 20 1.43

Average 1.30
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• Before an unloading (I or U), at least one of the grippers must be empty.

• Before a D activity, the robot must have at least one processed part in one of its grippers.

• Before a L activity, the robot must have at least one new part in one of its grippers.
Algorithm 1. Algorithm for deriving all active cycles.

Using Algorithm 1, we calculate the total number of active cycles to be 266. Once we generate all active cycles, we can calculate their cycle times
using the matrix in Table A1, which shows the necessary time the robot must spent to perform an activity succeeding a particular activity. However,
wj, the waiting time before unloading machine j, is not constant, and hence it depends on the sequence of the activities in the active cycle. Therefore,
to be able derive the cycle time expression in terms of the problem parameters, we must derive wj. For the 2-machine case, Table A2 illustrates the
expressions for w1 and w2 for different orderings of L1, L2, U1, and L2. In these expressions, the empty spaces, (…), are filled with the suitable
number of I and D activities considering the feasibility conditions to have an active cycle. Since the schedules are cyclic, without loss of generality we
assume L1 activity to precede L2, U1, and L2 activities in any cycle. T1 (T2) denotes the total time of activities except any waiting time in between the

Table A2
Patterns of the L1, L2, U1, and U2 in all active cycles and corresponding waiting time expressions.

Pattern w1 w2

1 L L U U… − − … − − … − − … − − …1 2 1 2 P Tmax{ − , 0}1 P T wmax{ − − , 0}2 1
2 L L U U… − − … − − … − − … − − …1 2 2 1 P T wmax{ − − , 0}1 2 P Tmax{ − , 0}2
3 L U L U… − − … − − … − − … − − …1 1 2 2 P Tmax{ − , 0}1 P Tmax{ − , 0}2
4 L U U L… − − … − − … − − … − − …1 1 2 2 P Tmax{ − , 0}1 P T wmax{ − − , 0}2 1
5 L U L U… − − … − − … − − … − − …1 2 2 1 P T wmax{ − − , 0}1 2 P T wmax{ − − , 0}2 1
6 L U U L… − − … − − … − − … − − …1 2 1 2 P T wmax{ − − , 0}1 2 P Tmax{ − , 0}2

Permutations: Set of all possible circular permutations of activities.
ActiveCycles: Set of active cycles derived by the algorithm. Set ActiveCycles = ∅
gStatus=[gs1, gs2]: gs1 is the number of new parts and gs2 is the number of processed parts on robot's grippers. Since we assume all cycles

start with “I” activity, gStatus can be equal to [0,0], [0,1], or [1,0] at the beginning of any active cycle.
for perm Permutations∈ do

gs gs
cycleFeasible True

activity perm
activity is I

activity is L

activity is U

activity is D

gs or gs or gs gs
cycleFeasible False

cycleFeasible True
ActiveCycles ActiveCycles perm

for do

for do
if then

else if then

else if then

else

end
if then

end
end
if then

end
end

[ 1, 2] ∈ {[0, 0], [0, 1], [1, 0]}
=

∈
“ ”

|gs1 ← gs1 + 1
“ ”

|gs1 ← gs1 − 1
“ ”

|gs2 ← gs2 + 1

|(if “ ” gs2 ← gs2 − 1

1 < 0 1 < 0 ( 1 + 2) > 2
=

break;

=
| = ∪ { }

end

Table A1
Necessary time between pair of activities.

Lj Uj I D

Li i j δ ε| − | + i j δ w ε| − | + +j iδ ε+ m j δ ε( + 1 − ) +

Ui i j δ θ εmax{| − | , } + i j δ w ε| − | + +j iδ ε+ m j δ ε( + 1 − ) +

I jδ ε+ jδ w ε+ +j θ ε+ mδ ε+

D m j δ ε( + 1 − ) + m j δ w ε( + 1 − ) + +j mδ ε+ θ ε+
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L1 (L2) activity and the U1 (U2) activity.
As a consequence, the cycle time of an active cycle for the 2-machine case can be calculated using Tables A1 and A2.
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