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Debris occurs from the ruin and wreckage of structures during a disaster. Proper removal of debris is of
great importance because it blocks roads and prohibits emergency aid teams from accessing disaster-
affected regions. Poor disaster management, lack of efficiency and delays in debris removal cause dis-
ruptions in providing shelter, nutrition, healthcare and communication services to disaster victims, and
more importantly, result in loss of lives. Due to the importance of systematic and efficient debris removal
from the perspectives of improving disaster victims quality of life and allowing the transportation of
emergency relief materials, the focus of this study is on providing emergency relief supplies to disaster-
affected regions as soon as possible by unblocking roads through removing the accumulated debris. We
develop a mathematical model for the problem that requires long CPU times for large instances. Since it
is crucial to act quickly in an emergency case, we also propose a heuristic methodology that solves in-
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stances with an average gap of 1% and optimum ratio of 80.83%.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction and problem definition

Though ultimate avoidance of natural disasters is likely impos-
sible, disaster management operations play a vital role in mini-
mizing the negative effects of disasters and loss of life. The disaster
management literature is comprised of studies that focus jointly on
preventive strategies for pre-disaster and damage reduction oper-
ations for post-disaster periods. The disaster management cycle
consists of four phases: preparation, response, recovery and
reconstruction. The preparation phase covers precautions that are
taken before a disaster occurs to minimize negative outcomes. The
response phase starts immediately after the disaster and involves
providing emergency services to as many victims as possible as
soon as possible. During the recovery phase, the main focus is to
restore the disaster area in terms of communication, transportation
and infrastructure; and finally, the main objective of the recon-
struction phase is to fully rehabilitate the disaster area and
normalize the daily lives of disaster victims.

As a result of the destructive effects of disasters, debris, occurs.
Proper removal of debris is extremely important for unblocking
roads and allowing emergency aid teams to access the disaster area.
In this study, we focus on debris removal in the response phase of
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earthquakes. Complete debris removal may be postponed until the
recovery phase, whereas removing debris on routes to critical
disaster areas must be done in the response phase. Therefore,
effective debris removal is necessary to access disaster victims.
During the response phase, since time is of the utmost signifi-
cance, it is necessary to determine which areas to access first. It is
critical to provide emergency aid as quickly as possible to districts
that contain schools, hospitals, potential shelter areas, etc. In order
to do so, however it may be necessary to travel on a path that in-
cludes blocked roads. In such a case, it is required to unblock these
roads by debris removal operations. In this context, we define the
Debris Removal Problem in the Response Phase (DRP) as visiting pre-
specified critical disaster-affected districts as quickly as possible by
removing debris on blocked roads if and when necessary. Proper
distribution of resources will entail timely access to emergency
supplies and will help defuse the post-disaster crisis. In accordance
with this purpose, the disaster area is assumed to be aggregated
into districts. Critical districts and the districts serving as the
resource base are determined. The proposed methodology also
determines the critical path for the emergency-response vehicle,
called RESCUE (Relief Supply Carrier Under Emergency), which
transfers relief materials to critical districts. Associated with the
critical path, the arcs that require debris removal to resolve
blockage and provide access are also identified. It is worth noting
that all blocked edges on the critical path must be unblocked, and
once an edge is freed from debris, it remains open for later use.
Debris removal operations for blocked roads require extra effort,
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which is measured in terms of time in our approach. Traveling more
than once on an edge from which the debris has been removed
might be advantageous and in determining the critical path for
traversing all critical districts, the algorithm will utilize this
advantage.

The DRP is an NP-hard problem because the case when there are
no blocked edges and all nodes are critical is equivalent to the
travelling salesman problem (TSP) [1].

Since there are nodes that must be visited, and since an arc-
routing aspect is inherently present, our problem can be defined
as a variant of the general routing problem (GRP), which will be
detailed in the following section. Different than the GRP, our
problem implies that the only reason to traverse an arc is to reach a
required node. To the best of the authors' knowledge, this variant of
the general routing problem has not yet been defined in the
literature.

Organization of the paper is as follows: In Section 2, related
literature is visited. Development of mathematical model is in
Section 3. In Section 4, heuristic solution methodologies are pre-
sented. Section 5 is devoted to computational experiments and
their results. Finally, concluding remarks are in Section 6.

2. Related literature

The GRP aims to find a minimum-cost vehicle route that starts
and ends at the same node and visits the required nodes at least
once by passing through the required edges at least once. The
required node set is a subset of all nodes and the required edge set
is a subset of all edges [2]. The GRP includes both node- and arc-
routing aspects, thus node-routing and arc-routing problems
arise as special cases. For a comprehensive survey, we investigate
both the arc-routing problems (ARP) and the node-routing prob-
lems, namely, the vehicle routing problem (VRP). Since one of the
key aspects of our problem is debris removal on arcs in order to
unblock them, we examine the arc-routing literature in detail.

2.1. Arc-routing problems

In ARPs, the aim is to find a minimum-cost vehicle tour that
traverses through a specified arc subset, which begins and ends at
the same node. The Chinese postman problem (CPP), the rural
postman problem (RPP) and the capacitated arc-routing problem
(CARP) are primary arc-routing problems. The difference between
the GRP and the ARP is that the GRP also considers the node-
routing aspect by visiting some nodes on the graph. When the
required node set is empty and the purpose is to visit all edges, the
GRP reduces to the CPP. On the other hand, if there is a subset of
edges that needs to be visited with an empty required node set,
then the GRP reduces to the RPP [2,3]. The CPP was first defined by
Kwan-Mei Ko in 1962 [4,5] to find a minimum-cost tour that
traverses all the arcs of a graph at least once. Waste collection,
street sweeping and snow plowing operations, where it is
required to pass through all arcs in the graph, are in the applica-
tion area of the CPP. In 1974, Orloff [6,5] defined the RPP, where
the objective is to find a minimum-cost tour that traverses only a
subset of arcs, which are called required arcs, at least once. Lenstra
and Rinnooy Kan [2] proved that both undirected and directed
versions of the RPP are NP-hard. However, if the required edges
are all edges of the graph, then the problem becomes a CPP [7].
Street sweeping, snow plowing, garbage collection, mail delivery,
school bus routing and meter reading are the most common
application areas of the RPP. When a capacity constraint of the
vehicle is included, the problem is referred to as the capacitated
arc-routing problem, which was first defined by Golden and Wong
in 1981 [8]. There are many variations of CARP, and their

application areas are also various, including winter gritting, refuse
collection, mail delivery, street sweeping operations and police
patrols. The aim of the problem is to find a minimum-cost
traversal of all arcs such that each arc is serviced without
exceeding the capacity of the vehicle.

2.2. Node-routing problems

Node-routing problems are special cases of the GRP, of which
the VRP is one of the most famous. When there is a subset of
nodes required to be visited with an empty required edge set, the
GRP reduces to the VRP. Since the general VRP literature is too
broad, we only focus on the VRP literature over blocked net-
works. One of the problems of the shortest-path classification is
the Canadian traveller problem (CTP). In their article, Xu et al.
refer to the CTP as an abstraction of the online shortest-paths/
routing problems [9].

The CTP was first defined by Papadimitriou and Yannakakis and
proven to be an NP-hard problem [10]. It is defined for a single
source and a single destination and the aim is to find the minimum-
cost route from source to destination. The traveller knows the
graph structure and edge costs but some edges may be blocked,
which the traveller does not know until he/she reaches the adjacent
node of this blocked edge [9]. The classic version of the CTP is a
stochastic problem and the blocked edges remain blocked forever
[11,12]. Note that if all road blockages are known in advance, the
optimal travel path can be obtained by applying a shortest-path
algorithm from source to destination. However, since the problem
has an online nature, the optimal travel strategy cannot be given by
the shortest path [11]. In their study, Bar-Noy and Schieber intro-
duced variations of the CTP [11], one of which is the recoverable-
CTP, where blocked roads may become open again. There are
both stochastic and deterministic versions of the recoverable-CTP.
In the stochastic version, each edge has a blockage probability,
and in the deterministic version, there is a fixed bound on the total
number of potential blockages. In the recoverable-CTP, edges have
recovery times. It is assumed that the recovery times of blocked
edges incident to the same node are the same. When all recovery
times are significantly large, the recoverable-CTP becomes the
classic CTP.

The k-CTP is another variant of the CTP, where k is a parameter
that represents the maximum number of potential road blockages.
When k equals the number of edges, the k-CTP becomes the classic
CTP [11]. In the CTP, the traveller selects a path and starts to travel
without knowing future blockages, and when he/she encounters a
blocked edge must determine whether to wait for the blocked edge
to reopen or to look for another way. The main factor to consider is
the recovery time versus the time to travel along another path. In
this respect, if the problem structure becomes offline instead of
online, Bar-Noy and Schieber state that, the optimal strategy is
given by the shortest path from source to destination [11]. In the
literature, no mathematical model has been developed for the CTP.

2.3. Emergency relief transportation literature

Ozdamar and Ertem provide a survey on the response and re-
covery phases of the disaster management [13]. In disaster man-
agement literature, activities of disaster operations management,
such as emergency rescue and medical care are categorized in the
phase of response, whereas the debris cleanup activities are cate-
gorized in the recovery phase [14]. There are a few articles which
consider the debris removal as a prerequisite to transport emer-
gency rescue in the response phase.

A study conducted by Berkoune et al. points out a transportation
problem which focuses on the emergency aid supply in disaster
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response phase. They do not consider any road blockages due to
debris. In their problem definition, there are a predetermined
number of distribution centers, delivery points and groups of hu-
manitarian goods. Their mathematical formulation is not able to
provide exact solutions for large scaled instances; therefore, they
also introduce genetic algorithm based heuristics [15].

Campbell argues that the structure of emergency response is
different from those classical routing problems, as it is not suitable
to apply classical cost-minimizing routing aspects. Therefore, the
author provides two alternative objective functions one of which
minimizes the maximum arrival time, and the other one minimizes
the average arrival time. TSP and VRP's with aforementioned ob-
jectives are examined, with some extensions on the number of
vehicles and vehicle capacity [16].

Another study that emphasizes the distinctness of emergency
response structure from classical routing problems, is conducted by
Luis et al., where they review the vehicle routing problems on
emergency aid transportation in the disaster affected region. They
also review some articles where there is uncertainty in demand and
supply. Several of these types of problems are solved by using the
two-stage stochastic programming models. Classifications due to
modeling of vehicle depots, commodities and delivery locations,
vehicle fleet types and uncertainty in routes and vehicle fleets also
exist in this study [17].

A study conducted by Nolz et al. focus on delivering disaster
relief supplies in a disaster affected region, by considering risk
which is due to damages on the infrastructure that may prohibit
the delivery operation. They formulate the problem as a multi
objective optimization program, where the objectives are related
with the measures of risk, relief supply coverage and the total
travel time. Note that, suggested approaches are using the topo-
graphical and geographical properties to measure the risk, and
they do not attempt to dispel the causes of risks or the blockages
[18].

The most relevant study to our work considering blockages on
the roads is conducted by Ozdamar et al. with a focus in providing
coordination of debris cleanup operations in a post disaster envi-
ronment. In their problem structure every road has a blockage,
albeit at different intensity, and a blockage is cleaned up by one
vehicle at a time. Both deterministic and probabilistic versions of
cleanup times are examined. Two goals are considered, one
imaximizing the cumulative network accessibility during the
debris clearing, and the other one minimizing time to debris
clearing. They formulate this NP-hard problem as a recursive Mixed
Integer Program and suggest some heuristic methodologies [19].
Note that the study focuses on debris removal rather than emer-
gency relief transportation.

2.4. The debris removal problem in the response phase and its
relationship to the literature

The roads blocked by debris in the DRP can be considered as the
required edge set in the arc-routing literature. However, in the DRP
it is not an obligation to unblock all blocked edges if the demand by
the critical nodes can be satisfied without doing so. This aspect
differentiates the DRP from general routing problems. Another
differentiating characteristic of the DRP is the cost definition for the
edges: the travel times are defined for all edges in the graph,
whereas the effort values are defined only for blocked edges. For
the blocked edges, both travel time and service time occur and the
edges that are once unblocked incur only the travel time.

Within the node-routing literature, the recoverable-CTP is the
problem most resembling the DRP; however, there are significant
differences. In the CTP, there is no special effort necessary to un-
block roads. A traveller may wait for a road to become open again

without doing anything or he/she may find an alternative way. In
the DRP, road-unblocking operations are very important. Unlike the
recovery times in the CTP, the effort to unblock an edge in the DRP
is a function of the amount of debris on it and is independent from
the node it is adjacent to. Once an arc is opened, it remains open,
and after a blockage on an arc has been resolved, it is possible to
benefit from the advantage of re-using this arc, which is the most
important distinguishing characteristic of the DRP. Moreover, in the
DRP there is one source and many destinations, unlike the CTP's
one-destination structure.

In disaster management literature, there are studies which
consider emergency relief transportation and debris removal op-
erations, however, none of them deal with dispelling debris
blockages in order to transport relief materials. A typical focus in
the literature is on post-disaster characteristics of the environment
and the adaptation of the well-known routing problems from the
literature. Furthermore, the studies considering road blockages do
not deal with unblocking operations or transporting emergency
relief materials to the critical regions.

In conclusion, even though the DRP shares similar characteris-
tics with arc-routing and node routing problems in the literature, it
also has distinguishing characteristics to enable its introduction to
the literature as a new variant of the general routing problem.

3. Model development

Consider a disaster-affected region as an undirected, complete
graph. Districts compose the nodes and roads compose the edges.
Districts that require assistance are the critical nodes and the dis-
trict that involves a qualified supply unit is the supplier. The aim is
to provide assistance to critical nodes as soon as possible by trav-
elling along a path that may include blocked edges to be unblocked.
To do so, the vehicle RESCUE departs from the supply node and
accesses the critical nodes by removing debris on its critical path.
Let G=(N,E) be a network where N represents the nodes and E
represents the edges. A={(i,j)u(j,i):{ij} = E} constitutes the arc set of
the network. It is worth noting that even if the arcs are directed, the
parameter settings of arcs (ij) and (j,i) are symmetric. The node set
contains the supply node, critical nodes and potential intermediate
nodes. Some edges in the edge set are assumed to be blocked, and
are represented by the binary parameter Iy, which takes the value
of 0 if the arc (k,l) is blocked by debris, and takes the value of 1
otherwise. ¢y is the required time to traverse through arc (k,l)eA
and Wy, is the required effort in terms of time to remove the debris
on edge {k,[}<E if this arc is blocked. Since the parameter settings
for arcs (ij) and (j,i) are symmetric, if the debris on the edge {ij}<E
is removed, arcs (ij) and (j,i) become available in A. Let DL= N be the
set of critical nodes and SL=N\DL be the set of the chosen supply
node and let DLUSL = L.

3.1. Mathematical model

The proposed model determines the visiting order of critical
nodes and the travel path between two consecutive critical nodes
by also considering blocked roads. The objective of the model is to
minimize the total effort spent on travelling along paths and on
removing debris on the blocked edges of these paths. The model
separately considers travel and debris removal efforts. We define
the following decision variables: TT: Total travel time until all
critical nodes have been visited. Y;j=1 if vehicle visits the critical
node j L right after the critical node i L, and 0 otherwise. Xjj =1
if the vehicle uses arc (k,l)eA while traversing from critical node
ieL to critical node jeL, and 0 otherwise. Cj; is the cost (time) of
traveling from critical node i L to critical node jL, solely in terms
of the traversal time. That is, the time effort to remove debris, if
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necessary, is not included in this value. By, =1 if the debris on edge
{k,}€E is removed, and 0 otherwise. Finally, P; stands for the
visiting time of critical node iDL (again excluding the debris
removal time). Table 1 summarizes necessary notation.

The mathematical model that minimizes the total effort used
until all critical nodes have been visited is as follows:

minimize TT+ »_ ByWj (1)
{k}€E
subjectto Y Y;=1 VieDL (2)
jeDLUSL

> Yj=1 VvieDL (3)
jeDLUSL

> Y;=1 ViesL (4)
jeDL
> Xy — > _ Xgi =Yy VijeL (5)
leN leN
> Xiii— > _ Xy =Yy VijeL (6)
leN leN
ZXiﬂd—ZX,-ﬂk:O Vi,jeL, keN, k?':l.,k?ﬁj (7)
leN leN
P;=0 VieSL (8)
Pi>Pi+Cj—M(1-Y;) VieljeDL 9)
TT > P; VieDL (10)
> Xiju <Y IN[IN| Vi jel (11)
kleN
Gi= > Xjutu VijeL (12)

kleN

Table 1
Notation table.

Parameters

I 0, if arc (k,l) is blocked by debris;

1, otherwise
tii required time to traverse through arc (k,l) € A
Wi required effort in terms of time to remove debris

on edge {k,I} e E if this arc is blocked
Decision Variables
T Total travel time until all critical nodes have been visited
Yij 1, if vehicle visits the critical node j € L right
after the critical node i € L;
0 otherwise
Xijkt 1, if vehicle uses arc (k,l) € A while traversing
from the critical node i € L to critical node j € L;
0 otherwise

G cost (time) of travelling from critical node i € L

to critical node j € L, solely in terms of traversal time
B 1, if the debris on edge {k,} € E is removed;

0 otherwise
P; visiting time of critical node i € DL

(excluding the debris removal time)

ST Xjw+ D> X< Ba+In)ILIIL| V{kI}€E

ijeDLUSL ijeDLUSL

(13)
T >0 (14)
P;>0 Viel (15)
Gi>0 Vijel (16)
X €{0,1} VijeL, (k])eA (17)
Bys{0,1} V{kI}eE (18)
Y;€{0,1} Vijel (19)

Objective (1) minimizes the total travelling time plus the total
time spent on debris removal operations until all critical nodes
have been visited.

Constraints (2) and (3) together form a visiting order for the
critical nodes, which starts and ends at the supply node and en-
sures visiting each critical node, one after another. It is worth noting
that even if the constraints imply that the vehicle returns to the
supply node, the objective function of the problem considers the
path until all critical nodes have been visited. Constraint (4) ensures
that the vehicle visits exactly one critical node right after it departs
from the supply node. Constraints (5), (6) and (7) establish a
directed path between two consecutive critical nodes, where the
directed path is free to include intermediate non-critical nodes.
Constraint (8) implies that the vehicle is positioned on the supply
node at the beginning. Constraint (9) assigns the visiting time of
critical nodes without considering the time spent to remove debris
on the blocked edges, if any. Debris removal efforts are taken into
account by the objective function. Additionally, Constraint (9)
eliminates subtours between critical nodes, and it is worth noting
that subtours are allowed between intermediate nodes appearing
on different critical path segments. The objective function together
with Constraint (10) minimize the most disadvantageous node's
visiting time. Constraint (11) guarantees that if there is no visit
between a pair of critical nodes, there is no directed path between
them. Constraint (12) correctly calculates the total time spent to
travel. Constraint (13) guarantees that it is possible to travel along
an arc if it is already open or if the debris on it has been removed.
Constraints (14)—(19) are the domain restrictions.

The proposed mathematical model has O(n*) variables and O(n>)
constraints, where n=|N| is the number of nodes.

Even if DRP is a variant of the GRP, as it is mentioned in Section
2.3, the cost definitions for the edges of DRP differ from the classical
GRPs, and there is a special effort to unblocking an edge. The above
mathematical program developed for DRP seeks for a vehicle route
minimizing the total travelling time and the total time spent for
debris removing operations. Though the critical nodes in DRP can
be viewed as the required nodes in GRP, there are no required edges
in DRP as there are in GRP. As it is emphasized before, it is not an
obligation to unblock all the blocked edges, if the required nodes
can be visited without doing so. Additionally, one of the important
characteristics of DRP is the reusing advantage of a blocked edge,
once it is opened. In order to handle all these features, unlike the
models present in the litrature, our model needs to keep track of
the tour as a union of path segments between critical nodes
allowing for different path segments share the same edge and
necessitating the use of 4-index decision variables.
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4. Heuristic solution methodology

Our experimentation with the mathematical model has shown
that as the network dimensions and the number of critical nodes
increase, it becomes harder to reach the optimal solution in a
reasonable amount of time. It may even take hours to find the
optimum solution for certain instances. However, by the nature of
the problem an immediate decision might be necessary. Therefore,
we decided to develop a heuristic methodology within the scope of
solution quality versus time trade-off, which can find good solu-
tions expeditiously without straying too far from the optimal
solution.

For that purpose, we developed a fast constructive heuristic
solution methodology called the initial route heuristic, based on
Dijkstra's shortest-path algorithm. For better optimality gaps, we
also applied an improvement heuristic methodology, which can be
considered as a variation of the 2-opt algorithm [20].

Our initial route heuristic starts from the source node and ap-
plies Dijkstra's algorithm until all critical nodes have been visited.
In this context, the algorithm first finds the shortest-path tree that
is rooted at the source node to other nodes until a critical node, say
J, is reached. Then, having found the closest critical node j, the al-
gorithm travels along the path from the source to node . It unblocks
the blocked edges on this path, if any. Since after a blocked edge is
opened it remains open, the debris removal cost for such an edge is
not paid if it is used again. Then, the algorithm considers node j as
the new source node and applies the same algorithm again and
again until all critical nodes have been visited. The objective of the
algorithm is to find a path for RESCUE with minimum effort until all
critical nodes have been visited. This effort involves both travel
time and edge unblocking.

The flow chart of the algorithm is depicted in Appendix A.

To improve the solution quality, by having the output of the
initial route heuristic as the input, we applied the 2-opt algorithm.
Letstart —iy — ir— ... — iy be the
output path of the constructive heuristic. Note that this path in-
cludes all critical nodes as well as some non-critical ones. The 2-opt
algorithm randomly selects two nodes, say, iy and i, from this path.
It preserves the same order for the nodes from start to i, _1 and from
ie11 to the end. It reverses the order for the nodes from iy to i.. An
initial route which is used as an input is shown in Fig. 1 and the
resulting order after 2-opt algorithm applied is shown in Fig. 2, for
the data of Kartal. By applying this procedure until no improvement
is obtained, we get another path which contains the same nodes
but in a different order with a better objective value. The objective
function, which is the total cost of the route is recalculated for each
path since the 2-opt algorithm may possibly replace a blocked arc
with an unblocked arc or vice versa. If a blocked arc is included in
the resulting route, the debris is removed to unblock this arc and
corresponding debris removal cost is added to the objective. It is
worth noting that, the re-blockage of arcs is not possible. Therefore,
after the blockage of an arc is resolved, it remains open forever. To
represent this issue in the model, the I matrix is updated in the way
that the 0 value of the arc, whose blockage is removed, is changed
into 1.

The flow chart is given in Appendix B.

These types of heuristics are applicable for different kinds of
routing problems, as well. For example, the heuristic may be

—ip_1 =i ... Dle_1 e~ ...

T
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adapted to hazmat transportation problems by constructing an
analogy between road blockages and riskiness of the arcs.

In terms of theoretical bounds of heuristics, there are some re-
marks about 2-opt algorithm for TSP in the literature. It is indicated
that, given a bad initial starting tour, a ratio of at least 1/4N is
guaranteed as the best performance when triangle inequality holds.
Also it is emphasized that, it does not yield a ratio worse than 4N.
Additionally, it is given that, if the initial starting tour is generated
by some smart choice, the worst case behaviors show significant
improvement [21].

In this context, even DRP and TSP are different problems, it can
be said that, the theoretical bounds of 2-opt algorithm for our
problem possibly reflect similar results with the ones mentioned
above, taking account of triangle inequality and the initial starting
tour given by the constructive heuristic.

5. Data and computational results
5.1. Data

To measure the effectiveness of the developed model and the
heuristic methodology we used a data set from Turkey based on
Istanbul's Kartal municipality [22]. We examined the districts and
selected those that contain schools or hospitals as critical ones,
which amount to seven. The Marmara Region Disaster Center of the
Turkish Red Crescent, which is located in Kartal, serves as the
supplier.

Table 2 summarizes the features of this data set.

The map in Fig. 3 shows the locations of the supplier and the
critical nodes in Kartal, where the red triangle represents the
supplier, yellow circles illustrate the critical nodes with schools and
green circles illustrate the critical nodes with hospitals. Red circles
represent other nodes which are neither supplier nor critical.

We used the node-to-node distance matrix of the Kartal data set
to calculate the travel time of RESCUE between nodes k and I,
namely, a ty; matrix. We assumed that vehicle speed is about 20 km/
h, and by dividing the distances by this speed, formed the tj; matrix.
We applied the Floyd-Warshall algorithm [23] so that the T=[ty]
matrix is symmetric and satisfies triangle inequality. For consti-
tuting the I matrix, which indicates the arc blockages, and the Wy,
matrix, which provides the required times to remove arc debris, we
categorized potential earthquakes according to severity. To this
end, we constituted four groups of severities. We varied the
severity of an earthquake (SOE) from 1 to 4, where (4) is the most
severe. Table 3 illustrates the intervals of edge-blockage ratios ac-
cording to the SOE. Using this classification and the corresponding
blocked-edge ratio (BER) values given in Table 3, blockages were
randomly assigned to the arcs of the I;; matrix. Obviously, there are
more blocked edges for more-severe earthquakes.

Since the required effort to remove debris from blocked edges is
directly related to the SOE, the required effort is calculated so as to
have higher values for more-severe earthquakes. To observe how
the debris removal effort affects the computational results, we
calculate Wy, in two different ways. In both methods the values are
proportional to the SOE and the length of the relevant edge, but one
uses more debris removal effort. The following equations show
how Wy, is calculated:

21

critical

41

critical

1652522 21

critical

33

critical

45

non-critical

26

critical

14

critical critical

Fig. 1. Input of 2-opt algorithm.
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source critical non-critical critical critical critical
fixed reversed

fixed

Fig. 2. Illustrative example of 2-opt algorithm.

Wkl = SOE*tkl + U[O7 maxut,ﬂ

W, = SOExty

In this context, we created 20 different instances with the Kartal
data set. For each class of SOE there exists five different instances
whose blocked-edge ratios - and accordingly the number of
blocked edges - are equivalent, but the edges that are blocked are
different. Additionally, to see the effect of the debris removal effort
on the results, these 20 instances are considered with two different
debris removal effort (W, W,; ) values, which are calculated as
mentioned above. We also vary the number of critical nodes by
selecting only hospitals, only schools and both hospitals and
schools. Table 4 depicts the SOE, BER and number of blocked arc
settings of the instances used in the computational experiments. It
is worth noting that when SOE = 1, the number of blocked arcs for
all computational experiments in the Kartal data set is 124, how-
ever, their locations differ. The same is true for other classes of SOE.
To test the effects of this issue, we selected five instances for a class
of SOE. Namely, when SOE = 1, the corresponding instances are
K—1,K—2...K-5. In each row, the instances where the corresponding
debris removal effort is greater, (W) is shown on the top, such as
K-1..K-5; whereas the instances where the debris removal effort
is smaller, (W,’d) is shown below, such as (K-1'...K-5").

5.2. Computational analysis

In this subsection, we discuss the computational results of the
mathematical model and the heuristic. The computational experi-
ments of the mathematical model were conducted with CPLEX 12.4
on a 4 x AMD Opteron Interlagos 16C 6282SE 2.6G 16M 6400MT
computer, running under the Linux operating system. The heuristic
algorithms were coded in Java 1.6.0-23 on the same computer.

The computational results are summarized in the Tables 5—8.
Tables 5 and 6 illustrate the model performances. The tables show
the total effort spent to visit all the critical nodes in the optimum
solution for the instances that the optimum is achieved within the
4-h time limit, the CPU times and the arcs where debris is removed
in the resulting solution. The names of the instances are stated in
the second column of the tables and the corresponding settings

Table 2
Features of the data set. (Numbers in bold indicate node numbers.)

Kartal

No. of nodes 45
Symmetric distance matrix and triangle  Yes
inequality requirement

Supply node (node number, name 16-Marmara region disaster center

of place) of Turkish Red Crescent
Total no. of critical nodes 7
No. of schools 3
(node numbers) 14,21,22
No. of hospitals 4
(node numbers) 26,33,41,43

given in the Table 4 are used for each instance group. Table 5 shows
the Kartal instances with Wj;, and the results of the instances with
W, are summarized in Table 6. The remaining tables are organized
to analyze the heuristic performances.

Table 5 summarizes the computational results for the Kartal in-
stances where the debris removal effort is greater. The table is
divided into four parts, where each part illustrates the results of the
five sets of instances belonging to a class of SOE, as reported in
Table 4. In each part, for a class of SOE; the results for different
amounts of critical nodes are illustrated. For example, for the in-
stances K—1,...,K—5, the earthquake severity is 1, that is, SOE = 1, and
experiments are conducted for seven (all), four (hospitals) and three
(schools) critical nodes for this SOE class. Additionally, since the in-
stances K—1,...,K-5 differ in terms of the locations of the blocked
edges, we repeated each experiment five times for a fixed critical
node set. To clarify, when the number of critical nodes is seven, the
corresponding five rows in the table coincide with the results of the
five instances, K—1,...,K—5, respectively. Concisely, Tables 5 and 6
illustrate the computational results of the Kartal data set, where
one of the two debris removal effort settings is depicted in each table.

Since the number of blocked edges increases as the SOE grows, it
becomes compulsory to unblock edges to visit critical nodes for
some instances with greater SOE values. When the experiments are
repeated for identical instances with different debris removal effort
requirements, such as K—11 and K-11/, we observe that RESCUE
does not hesitate to travel on a path that includes blocked arcs
when the required effort to unblock them is relatively low. As
indicated above, for a class of SOE, we repeat our experiment with
five different instances, where the blocked-edge ratios and the
number of blocked edges are the same, but the edges that are
blocked are different.

Regarding CPU times, this issue has a marginal effect when the
number of critical nodes remains constant. Namely, for the in-
stances K—1,K-2,K—3,K—4 and K-5, when the number of critical
nodes is seven, CPU times range from 183 s to 221 s; for four critical
nodes, the range is between six and 12 s, and when it is required to
visit only three critical nodes, all instances are solved to optimality
within 1 s.

However, as the number of critical nodes increases, CPU times
exponentially increase. For instance, in K—1, the CPU time is 1.4 s for
three critical nodes, 8.81 s for four critical nodes and 221.41 s when
the critical node number scales up to seven. Additionally, together
with the number of critical nodes to visit, the SOE significantly af-
fects CPU time. As expected, for more-severe earthquakes, solution
times increase. To exemplify, when the SOE = 3, the instance K—11’
is solved in 214.86 s for seven critical nodes, but as the SOE in-
creases to four, the solution time of the instance K—16' for seven
critical nodes, scales up to 4864.74 s. Both K—11/, and K—16' intend
to visit seven critical nodes, but due to the differences in the cor-
responding SOEs, the numbers of blocked edges differ.

Also, when we analyze the CPU times for the instances where
only the debris removal effort is changed, such as K—-16 and K-16/,
we observe that the CPU times for instances with smaller debris
removal efforts are smaller. This issue is apparent for the instances
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Fig. 3. The location of supplier and critical nodes in Kartal.

Table 3
SOE and corresponding BER values.

Severity of earthquake (SOE) Blocked edge ratio (BER)

SOE =1 0%—20%
SOE =2 20%—-50%
SOE =3 50%—80%
SOE =4 80%—100%

where the chance of encountering a blocked edge increases,
namely, as the SOE and the number of critical nodes increase.

Additionally, when the objective values of the instances from
Tables 5 and 6 are compared, we see that the objective values are
the same for the instances from both tables when there is no need
to remove debris from an edge; however, the objective values of the
instances with smaller debris removal efforts are smaller when the
debris from an edge is removed. For example, for K—1 and K—1/, the
objective values are similar for all numbers of critical nodes because
there are no debris-removed edges for these instances. However,
for the instance K—7’, with seven critical nodes, the objective is 49
and the arc (33, 43) is unblocked. When we investigate the same
instance with greater debris removal effort, K—7, we see that the
objective is 50, and for no arc the debris removal operation is
completed.

Table 4
Kartal instances and the corresponding SOE, BER and number of blocked-edge
settings.

Removal effort Kartal instances SOE BER No. of blocked arcs

Wi K-1.K-5 1 0125 124
Wy, K-1'..K-5'

Wi K—6..K~10 2 0445 441
Wy, K—6'".. K10’

Wi K-11..K-15 3 058 574
Wy, K-11"..K-15'

Wi K-16..K~20 4 0819 806

Wy K-16'..K-20'

When we analyze the resulting travel paths for instances with
the same number of blocked edges for different locations, we
realize that generally, the locations of critical nodes are more
important than the locations of the blocked edges for less-severe
earthquakes. For example, we observe from the resulting travel
paths from the solutions of instances K—1, K—2, K-3, K—4 and K-5
that even though the vehicle follows different travel paths for these
instances due to the different locations of blocked edges, the order
of visiting the critical nodes remains the same. However, as the SOE
increases, the number of blocked edges also increases, and the or-
der of visiting the critical nodes differs greatly, as in the case with
K-16,K—-17,K—-18,K—19 and K—20.

As the network dimenstions increase, it becomes difficult to find
the optimum solutions for some instances. For this reason we
developed our heuristic methodology that quickly reaches good,
feasible solutions for this problem. First, we implement an initial
route algorithm, then apply a 2-opt improvement phase. The
method's results are summarized in Tables 7 and 8 The solution
times of the heuristic are less than a second for each instance,
therefore we do not report them.

Since, the mathematical model can find optimal solutions for all
Kartal instances, it is possible to compare the heuristic perfor-
mances with the optimum solutions of the Kartal instances. Table 7
summarizes the heuristics performances where the results are
obtained from analyzing all classes of SOE, namely, all instances
from K—1 to K-20 and K-1’ to K-20', with different numbers of
critical nodes. The first column under Overall Heuristic Results in-
dicates the average gap of the heuristic solution from the optimum
solution for the five instances. The second columns stands for the
maximum gap value over all instances, and the optimum ratio of
the number of instances solved to optimality with the heuristic is
illustrated in the third column. Specifically, the first row of the table
indicates that the heuristic finds the optimum for 80% of the Kartal
instances with Wj;, where |DL| = seven. Since there are 20 such
instances, our heuristic finds the optimum for 16 of them. As is
evident from the table, our heuristic methodology can find
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Table 5
Model performances of Kartal instances with Wj;.

No.of critical nodes  Instances  Best objective  Cplex CPU(sec)  Debris removed arcs  Instances  Best objective  Cplex CPU(sec)  Debris removed arcs

SOE =1 SOE =2
7 K-1 44 22141 — K-6 48 223.26 —
(all) K-2 43 186.73 — K-7 50 235.96 —
K-3 44 190.82 — K-8 51 270.41 —
K-4 43 1784 — K-9 49 225.46 —
K-5 43 183.2 — K-10 48 261.39 —
4 K-1 35 8.81 — K-6 38 15.39 —
(hospitals) K-2 35 10.02 — K-7 42 84 —
K-3 36 6.27 — K-8 40 9.09 —
K-4 35 12.08 — K-9 42 10.75 —
K-5 35 11.69 — K-10 39 7.04 —
3 K-1 30 14 — K-6 29 2.52 —
(schools) K-2 30 1.47 - K-7 29 2.54 -
K-3 30 1.61 — K-8 30 2.28 —
K-4 29 1.44 — K-9 35 3.51 —
K-5 29 1.44 — K-10 30 3.04 —
SOE =3 SOE =4
7 K-11 53 315.37 — K-16 109 5167.18 (21,22)
(all) K-12 63 495.63 — K-17 82 33198 —
K-13 68 3814 - K-18 110 9136.87 (21,22)
K-14 46 196.96 — K-19 90 2915.86 (21,22)
K-15 47 186.72 — K-20 101 4541.84 21,22),(22,41),(33,43)
4 K-11 35 4.87 — K-16 84 22.32 —
(hospitals) K-12 53 9.51 — K-17 67 20.23 —
K-13 51 8.32 — K-18 70 3891 (33/43)
K-14 38 8.69 — K-19 70 49.49 —
K-15 40 8.41 - K-20 88 64.54 -
3 K-11 40 434 — K-16 57 6.62 (21,22)
(schools) K-12 35 2.98 — K-17 55 4.66 —
K-13 30 3.11 - K-18 68 7.08 (21,22)
K-14 35 2.85 - K-19 55 476 (21,22)
K-15 29 2.51 — K-20 45 3.62 (21,22)

Table 6
Model performances of Kartal instances with Wy

No.of critical nodes  Instances  Best objective  Cplex CPU(sec)  Debris removed arcs  Instances  Best objective  Cplex CPU(sec)  Debris removed arcs

SOE = 1 SOE =2
7 K-1' 44 219.89 - K-6' 48 2314 -
(all) K-2/ 43 21325 - K-7' 49 21034 (33,43)
K-3' 44 192.61 - K-8’ 51 28231 -
K-4/ 43 156.37 - K-9' 49 259.62 -
K-5' 43 152.9 - K-10 48 21025 -
4 K-1/ 35 7.16 - K-6' 38 9.2 -
(hospitals) K-2/ 35 10.12 - K-7' 41 12.63 (33,34)
K-3' 36 9.98 - K-8' 40 10.28 -
K-4/ 35 7.02 - K-9' 42 13.18 -
K-5' 35 731 - K-10/ 39 2043 -
3 K-1 30 2.37 - K-6' 29 1.57 -
(schools) K-2/ 30 1.77 - K-7' 29 2.75 -
K-3' 30 2.76 - K-8’ 30 3.38 -
K-4' 29 1.86 - K-9' 32 3.8 (21,22)
K-5' 29 1.85 - K-10 30 1.9 -
SOE =3 SOE = 4
7 K-11' 51 214.86 (21,22) K-16' 97 4864.74 (3,26),(21,22),(43,45)
(all) K-12 63 316.91 - K-17" 78 2422.78 (22,41)
K-13' 67 33634 (27.33) K-18’ 95 3791.44 (14,15),(21,22),(33,43)
K-14' 46 198.85 - K-19/ 81 2794.34 (21,22),(43 ,45)
K-15' 47 184.67 - K-20' 80 3258.78 (21,22),(22,41),(33,43)
4 K-11/ 35 7.84 - K-16/ 80 54.89 (16,32),(43,45)
(hospitals) K-12 53 8.37 - K-17 67 17.18 (22,41)
K-13' 50 165 (33,43) K-18' 63 32.48 33,43)
K-14/ 38 9.42 - K-19 70 26.91 -
K-15' 40 13.71 - K-20' 73 14.96 21,22),(22,41),(33,43)
3 K-11/ 38 342 (21,22) K-16/ 50 4388 21,22
(schools) K-12/ 33 3.12 (21,22) K-17' 51 3.48 21,22

K-14 35 2.03 - K-19 48 4.73 21,22
K-15' 29 2.65 - K-20' 38 4.51 21,22

(

(

(
K-13' 30 2.93 - K-18' 61 5.24 (21,22

(

(
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Table 7
Heuristic performance summary of Kartal instances.

Instances: Overall heuristic results
K-1, ..., K-20 - - -
K1, . K-20 Average gap Maximum gap  Optimum ratio
Kartal- with W;; DL =7 1.3% 7.5% 80%

DL =4 0.33% 2.90% 85%

DL =3 0.3% 4.40% 90%
Kartal- with Wu DL =7 217% 18.80% 65%

DL| =4 1.55% 13.70% 75%

IDL| =3 0.385% 5.30% 90%

optimum solutions for up to 90% of the Kartal instances. To illus-
trate the effect of SOE individually on the results, each quarter of
the Table 8 considers a set of five instances according to a class of
SOE. The first quarter of the table shows instances K—1, ...,.K—5 and
K-1/, ..., K-5', with the same focus as Table 7, where their corre-
sponding SOE is 1. It is worth noting that Table 7 gives the averages
of all SOE classes and in Table 8 they are depicted separately. For
each SOE, the highlighted rows report the heuristic performances
for Kartal with greater (Wjj) and smaller (Wlf') debris removal efforts
individually, arranged over the number of critical nodes.

From the aspect of heuristic performances according to debris
removal effort settings, the heuristic results are almost the same for
the instances in the first two quarters of the table; however, in the

third quarter, it can be seen that the heuristic gives better results
where the debris removal effort is greater (87% optimum ratio), and
it reduces to 73% for the instances with smaller debris removal
efforts. Also, in the fourth quarter, for greater debris removal efforts
the heuristic finds the optimum at a rate of 60%, which reduces to
40% for the cases with smaller debris removal effort. That is, as the
SOE increases, the heuristic shows better performances for the
instances with Wj; compared with the instances where the debris
removal effort is smaller (W;"). With the latter, the trade-off be-
tween unblocking a road and finding alternative paths is minor.
However, with greater debris removal efforts on the edges, and for
more-severe earthquakes (which imply more blocked edges), the
trade-off is obvious. Therefore, this may be why the heuristic gives
better results for instances with greater debris removal efforts.
When the performances are analyzed from the perspective of
number of critical nodes, we see in Table 7 that the optimum ratio is
highest when the number of critical nodes is lowest, 3, and the ratio
decreases for higher numbers of nodes. However, contrary to this
inference, apparent difficulty in finding optimum solutions when
the number of critical nodes increases is not valid when the in-
stances are dealt with separately, according to SOE class, as in
Table 8. Surprisingly, as we observe in the fourth quarter of this
table, this method gives better optimum ratios for seven critical
nodes than for the cases with four critical nodes. This result may
occur due to the differences among the instances, or, since the

Table 8
Heuristic performance summary of Kartal instances for each SOE class.
SOE =1 Instances:

K-1,...K-5

K-1/, ... K-5'

Kartal-with Wj |DL|=7
|DL|=4
|DL|=3

Kartal-with Wy’ |DL|=7
|DL|=4
|DL|=3

SOE =2 Instances:

K-6, ... K-10

K-6/, ... K-10/

Kartal-with W |DL|=7
|DL|=4
|DL|=3

Kartal-with Wy |DL|=7
|DL|=4
|DL|=3

SOE =3 Instances:

K-11, ... K-15

K-11/, ... K-15’

Kartal-with W; |DL|=7
|DL|=4
|DL|=3

Kartal-with Wy’ |DL|=7
|DL|=4
|DL|=3

SOE =4 Instances:

K-16, ... K-20

K-16/, ... K-20/

Kartal-with W |DL|=7
|DL|=4
|DL|=3

Kartal-with Wy’ |DL|=7
|DL|=4
|DL|=3

Overall heuristic results

Average gap Maximum gap Optimum ratio

0.9% 4.5% 80%
0.0% 0.0% 100%
0.0% 0.0% 100%
0.3% 4.5% 93%
0.9% 4.5% 80%
0.0% 0.0% 100%
0.0% 0.0% 100%
0.3% 4.5% 93%

Overall heuristic results

Average gap Maximum gap Optimum ratio

0.0% 0.0% 100%
0.0% 0.0% 100%
0.0% 0.0% 100%
0.0% 0.0% 100%
0.0% 0.0% 1007%
0.0% 0.0% 100%
0.0% 0.0% 100%
0.0% 0.0% 100%

Overall heuristic results

Average gap Maximum gap Optimum ratio

1.52% 7.5% 80%
0.0% 0.0% 100%
0.52% 2.5% 80%
0.68% 7.5% 87%
2.24% 9.8% 60%
0.4% 2.0% 80%
0.52% 2.6% 80%
1.05% 9.8% 73%
Overall heuristic results

Average Maximum Optimum
gap gap ratio
2.68% 7.9% 60%
1.32% 2.9% 40%
0.82% 4.4% 80%
1.60% 7.9% 60%
5.6% 18.8% 20%
5.84% 13.7% 20%
1.06% 5.3% 80%

4.16% 18.8% 40%
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number of critical nodes (seven, four and three) are not quantita-
tively very different from each other, the locations of the critical
nodes could be the determining factor for the heuristic perfor-
mances. Finally, from the perspective of how SOE affects the heu-
ristic performances, the optimum finding rate is higher for less-
severe earthquakes and lower when SOE = 3 and SOE = 4, as
expected.

In conclusion, we observe that the severity of an earthquake and
the number of critical nodes are the main factors that affect the
performances of both the mathematical model and the heuristic. In
other respects, we observe that the locations of the critical nodes
affect the optimum travel path, and that, the heuristic perfor-
mances are influenced by the locations of the critical nodes.

Finally, in order to come up with some managerial insights,
Tables 5 and 6 are analyzed. It is worth noting that data is randomly
generated, and the blockages are also random. However, the
occurrence number of arcs (21,22) and (33,43) on the debris
removed arc columns of both tables is remarkable. In Table 5, the
only edges where the debris is removed are (21,22), (22,41) and
(33,43), which occurs when SOE is four. Nodes 21, 22, 41 and 43 are
all critical nodes, where 21 and 22 are schools; 33, 41 and 43 are
hospitals. Additionally, when their geographical position is
considered, it is observed that, nodes 21 and 22; 22 and 41; and 33
and 43 are very close to each other. Therefore, it is meaningful to
remove debris on these arcs, if they are blocked, which is the case
here. In Table 6, on the debris removed arcs column, the arcs
(33,43), (33,34), (21,22), (3,26), (43,45), (22,41), (14,15), (16,32) and
(27,33) are shown. For each of these arcs, at least one of the nodes
are either critical or the supplier (node 16 represents the supply
node). Namely, arc (16,32) represents a transfer from supplier to a
non-critical node, and other arcs either represent a transfer be-
tween two critical nodes, or an arrival to a critical node from a non-
critical one, or a departure from a critical node to a non-critical
node. In terms of their geographical closeness, except the node
pair 33 and 34, others are quite close to each other. So, we can say
that, it is important to unblock the edges between critical nodes or
which are incident to a critical node, especially if they are close to
each other.

Initialize
Cyp = tyy + Wy, * (1 = Iyy) forall wand vin N
Unmark all Critical Nodes

Mark Source Node

YES
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6. Conclusion

Due to the importance of emergency aid transportation during
the post-earthquake response phase, in this study, we developed a
solution methodology that provides emergency supplies to pre-
determined disaster areas by considering blockages on the trans-
portation network. The main contribution of the proposed meth-
odology is to enable providing disaster-relief materials to areas as
soon as possible, thus saving lives and defusing the chaotic post-
disaster environment. The problem characteristics imply both a
node-routing aspect, requiring the vehicle to visit predetermined
disaster areas, and an arc-routing aspect, where it may be necessary
to unblock some of the arcs on the vehicle's travel path. For this
reason, we studied both the arc-routing and node-routing litera-
ture, which are under the umbrella of the general routing literature.
Then we mathematically modeled the problem to minimize the
total effort spent until all critical nodes were visited, where "total
effort” includes both travelling and debris removal efforts. The
model assigns the visiting order of the critical nodes and decides
the travelling path between them, indicating the arcs with blockage
to be removed. Our heuristic methodology mitigates the solution
time difficulties encountered when the dimension of the network
increases. The performances of the model and the heuristic were
tested with a data set from Istanbul's Kartal district.
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Appendix A

Does there NO
exist an
unmarked

Critical Node?

l

Apply Dijkstra’s

algorithm to find the
shortest path tree rooted
at source

Let j be the closest
unmarked Critical Node

to source
YES

Ly =1and Ly, =1;
Update Cyy, =ty + Wy, # (1 = I,,,) forall wand vin N

Is blocked arc (u,v)
traversed on the shortest
path from source to j?

source:= j;

Mark Critical Node j

NO

Update Cy,, = tyy, + Wy, * (1 — I,,) forall wand v in N

Flow chart of the constructive heuristic.
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Appendix B
Apply the
Constructive
Heuristic Exit
Initialize
route := a feasible solution of the problem
(obtained from the Constructive Heuristic)
bestDistance := objective value of route
Calculate newcost, which is cost
of newRoute
Apply 2-opt algorithm to route route = newroute;
to find newRoute bestDistance=newcost;
YES
Does
newcost<bestDistance ?
NO
Flow chart of the improvement heuristic with 2-opt.
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