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1.  Introduction

As a result of recent advancements in material growth tech-
nology, high-quality AlGaN/GaN templates have gained  
significant attention for the fabrication of high-temperature 
and high-power devices operating in the ultraviolet (UV) 
spectral region. For instance, AlGaN/GaN-based UV photo-
detectors (PDs) have been investigated for many years owing 
to their extensive applications in missile detection, secure 
space-to-space communication, and atmospheric monitoring 
[1–3]. Various types of devices have been studied, including 
those that employ the typical p-i-n structure, the inverted 
p-i-n structure, the Schottky barrier photodiode, and the 
inverted Schottky photodiode [4–7]. At the same time, gra-
phene has recently attracted a strong interest in transparent 
and conducting electrodes because of its impressive electrical 

conductivity, high optical transparency, mechanical flexibility, 
two-dimensional (2D) structure, short carrier lifetime, and 
mechanical flexibility [8–10]. Accordingly, graphene layers 
can play vital roles as carrier transport layers and as electrodes 
in ultrafast PDs.

Recently, several studies have shown that graphene can 
be used to successfully form a Schottky electrode with con-
ventional semiconductors such as GaAs, SiC, GaN, and Si 
[11–14]. Graphene/nanowire semiconductor-based devices 
demonstrated extensive applications in the areas of solar cells, 
UV PDs, light-emitting devices, and gas-sensing devices 
[15–18]. Nevertheless, metal electrodes have poor transparen-
cies and can dramatically influence the absorption efficiency 
of UV sensors. Thermally and mechanically stable graphene 
and multi-layer graphene contacts are therefore potential 
candidates for replacing conventional metal contacts, which 
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Abstract
We report on the fabrication and characterization of a Schottky ultraviolet graphene/AlGaN/
GaN photodetector (PD). The fabricated device clearly exhibits rectification behaviour, 
indicating that the Schottky barrier is formed between the AlGaN and the mechanically 
transferred graphene. The Schottky parameters are evaluated using an equivalent circuit 
with two diodes connected back-to-back in series. The PD shows a low dark current of 
4.77  ×  10−12 A at a bias voltage of  −2.5 V. The room temperature current–voltage (I–V ) 
measurements of the graphene/AlGaN/GaN Schottky PD exhibit a large photo-to-dark contrast 
ratio of more than four orders of magnitude. Furthermore, the device shows peak responsivity 
at a wavelength of 350 nm, corresponding to GaN band edge and a small hump at 300 nm 
associated to the AlGaN band edge. In addition, we examine the behaviour of Schottky 
PDs with responsivities of 0.56 and 0.079 A W−1 at 300 and 350 nm, respectively, at room 
temperature.
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degrade easily at high temperatures by diffusing into the semi-
conductor and irreversibly forming undesirable Ohmic con-
tacts. Moreover, graphene-based PDs exhibit high speeds and 
high photoresponsivities through a broad spectral wavelength 
range, as well as ultrafast response times. Nevertheless, very 
few studies concerning heterojunctions between graphene and 
the well-known III–V semiconductor GaN have been per-
formed [19].

In this study, performance of a graphene-based Schottky PD 
on an AlGaN/GaN template was investigated. The chemical 
vapour deposition (CVD)-grown graphene was transferred to 
the AlGaN/GaN template by a wet transfer method resulting 
in continuous coverage over a large area. In this manner, the 
entire contact area between the graphene and AlGaN/GaN was 
able to function as the effective photoresponsive area. The fab-
ricated device exhibits a low dark current of 4.77  ×  10−12 A  
at a bias of  −2.5 V.

2.  Experimental details

A schematic diagram of the fabricated graphene/AlGaN/
GaN Schottky PD is shown in figure  1. The Al0.25GaN0.75/
GaN grown by metal organic CVD on a Si wafer used in this 
study was commercially available. The Al0.25GaN0.75/GaN 
on the Si was cleaned using acetone and isopropyl alcohol, 
and an unintentionally grown oxide layer was etched by 
buffered hydrofluoric acid. Hafnia (HfO2) with a thickness 
of 40 nm was deposited on half of the AlGaN/GaN surface 
with shadow mask using an atomic layer deposition system 
(Ultratech/Cambridge Nanotech Savannah 100). The tetrakis 
(Dimethylamido) hafnium and H2O were used as precursors.

High-quality graphene was synthesized by CVD on Cu 
foil. Prior to the deposition of graphene, the Cu foil was 
cleaned with acetone and isopropyl alcohol, and was then 
rinsed with deionized water. The base pressure of the chamber 
was maintained at 1.5 mTorr and the temperature was main-
tained at 950 °C. After growing the graphene on the Cu foil, 
it was spin-coated with polymethylmethacrylate (PMMA). 
The PMMA-coated Cu foil was soaked in a diluted nitric acid 

solution in order to remove the graphene from the bottom 
side, and the Cu foil was then dissolved in an ammonium per-
sulphate solution. Subsequently, the PMMA/graphene was 
lifted from the solution and transferred into H2O. The PMMA/ 
graphene was then transferred onto the substrate such that half 
of the PMMA/graphene covered the Al0.25GaN0.75/GaN layer 
directly, whereas the other half was placed on top of the HfO2 
layer. After drying, the PMMA was removed by acetone.

The Au electrode was fabricated across the HfO2 and gra-
phene portions; the other electrode (Au/Ni) was fabricated 
directly on the Al0.25GaN0.75/GaN using a magnetron sput-
tering technique. The Au (100 nm thick) was deposited at  
constant power of 75 W, a gas flow of 50 sccm, and a pres
sure of 1 mTorr. High-purity Ar gas was used during the sput-
tering process. For the deposition of the 10 nm thick Ni layer, 
we used a power of 125 W, a gas flow rate of 50 sccm, and a 
pressure of 20 mTorr. Metal deposition was carried out in a 
vacuum chamber evacuated to a pressure of 5.6  ×  10−6 Torr.

Current–voltage (I–V ) measurements were performed 
using a semiconductor parameter analyser (Keithley 4200) 
and a source meter (Keithley 2400). The spectral response was 
measured using a lock-in amplifier with an optical chopper 
and a monochromator in the wavelength range of 250–450 nm 
with a 150 W Xe arc lamp. The Xe lamp intensity was main-
tained 36 μW during the measurement.

3.  Results

Figure 2 shows the Raman spectrum of the transferred gra-
phene, which reveals peaks at 1569, 2435 and 2711 cm−1. The 
peaks located at 1569 and 2711 cm−1 can be attributed to the 
G and 2D modes of the graphene, respectively, which is con-
sistent with previous studies [20, 14]. The number of layers in 
the transferred graphene is associated with the intensity ratio 
of the 2D to G modes. The Raman intensity ratio of the 2D to 
G modes is found to be 1:2.5, indicating the monolayer nature 
of graphene [21]. The peak located at 2435 nm is associated 
to G* Raman band. The G* Raman band reveals the defect 
activated peak in the Raman Spectrum [22]. However, the D 

Figure 1.  Schematic diagram of the fabricated graphene/AlGaN/
GaN Schottky photodetector.

Figure 2.  Raman spectrum of graphene layer transferred onto the 
AlGaN/GaN substrate.
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mode corresponding to 1346 cm−1 does not appear in the spec-
trum, which suggests that the transferred graphene contains 
few defects [23, 24]. Moreover, the presence of G* band at 
2435 nm indicating defects exist in the transferred graphene.

The typical room-temperature I–V characteristics of the 
graphene/AlGaN/GaN Schottky PD under dark and illu-
minated conditions at 350 nm are depicted in figure  3. The 
fabricated PD shows non-linear behaviour, suggesting that 
the Schottky barrier is established between the Au electrode/
monolayer graphene and AlGaN/GaN.

The dark current exponentially increases with an increase 
in the reverse bias, and reaches 9.4  ×  10−11 A at a bias voltage 
of  −5 V. It is clearly seen from the figure  that the dark cur
rent is slightly enhanced above  −3 V reverse bias and is found 
to be increased by 1 to 2 orders of magnitude, which may 
be considered as a soft breakdown. However, the photocur
rent under 350 nm monochromatic illumination with UV light 
is observed to be relatively constant up to the bias voltage 
of  −4 V and the photocurrent value is found to be around 
3.51  ×  10−8 A. The photocurrent measured below and above 
350 nm is found to decrease suggesting that less number of 
photo carriers is generated and even at 400 nm, photocurrent 
is very close to dark current as is shown in the inset. However, 
at 300 nm, photocurrent is marginally increased, there might 
be more light is absorbed on both AlGaN and GaN layers and 
produced large number of photo generated carriers.

The turn-on voltage of the fabricated device was about 
1.7 V. The photo-to-dark current contrast ratio was found to be 
more than three orders of magnitude.

The ideality factor and barrier height, which represent 
characteristic parameters of the Schottky PD, were extracted 
from the forward I–V characteristics by fitting the ln(I ) versus 
V curves using thermionic emission theory. Figure  4 repre-
sents the ln(I ) versus V curve of the graphene/AlGaN/GaN 
Schottky PD.

It is not feasible to obtain an adequate description from 
the forward I–V curve using a single-diode model. Therefore, 
an equivalent circuit of two Schottky diodes connected 

back-to-back in series was used, as schematically demon-
strated in figure  5; diode 1 represents the Schottky contact 
between Au/graphene and the AlGaN barrier layer, whereas 
diode 2 models the heterojunction of AlGaN and GaN [25].

According to the thermionic emission model, the reverse 
saturation current of the two diodes can be written as follows:

⎡
⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤
⎦
⎥= −I I

qV

n kT
exp 1 ,s1

1

1
� (1)

where V1 is the voltage across diode 1, n1 is the ideality factor 
of diode 1, k is the Boltzmann constant, and T is the temper
ature. Is1 can then be expressed as follows:

φ
= −∗

⎛
⎝
⎜

⎞
⎠
⎟I AA T

q

kT
exp ,s1

2 b1� (2)

where q is the electron charge, A is the effective Schottky 
contact area, A* is the Richardson constant (35.8  ×  105 

Figure 3.  Typical room-temperature I–V characteristics of the 
graphene/AlGaN/GaN Schottky photodector under dark and 
illuminated conditions (Inset shows photocurrent above and below 
350 nm).

Figure 4.  Fitted forward bias ln(I ) versus V curve of the graphene/
AlGaN/GaN Schottky photodector.

Figure 5.  The possible energy band diagram of the graphene/
AlGaN/GaN Schottky photodetector modelled as two diodes 
connected back-to-back in a series equivalent circuit.
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A·cm−2·K−2 [26]), and φb1 is the effective barrier height of 
diode 1. The current through the reverse-biased diode 2 can 
then be expressed as:

⎡
⎣
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⎛
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⎞
⎠
⎟

⎤
⎦
⎥= −I I

qV

n kT
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where V2 is the applied voltage across diode 2. Is2 can then be 
expressed as follows:

φ
= −∗
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where φb2 is the barrier height of diode 2. By applying a 
Taylor series first-order correction, the above equation can be 
expressed as:
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where the following equations hold:
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Here, φb2(0) is the barrier height of diode 2 at zero bias, 
and n2 represents the effective ideality factor of diode 2. The 
Chen model [25] suggests that the effective ideality factor n2 
indicates the degree of barrier height φb2 change due to the 
change of voltage across it. A larger value of n2 denotes a 
smaller change of barrier height. By using these equations, the 
parameters Is1, Is2, n1, and n2 can be obtained from the forward 
I–V measurements by linearly fitting the ln(I ) versus V curve 
in figure 4. More specifically, the parameters Is1 and n1 can be 
obtained by linearly fitting the ln(I ) versus V curve at a low 
voltage. The slope provides the information of n1, whereas the 
intercept of the fitted straight line yields Is1. On the other hand, 
the parameters Is2 and n2 can be obtained from the linear fit of 
the ln(I ) versus V curve at an intermediate voltage regime. The 
product of A and A* in Equations (2) and (7) is not precisely 
known because the experimental values of the Richardson con-
stant are typically lower than the ideal value, and the effective 
contact area can be subjected to small variation from point to 
point. Therefore, in order to determine the values of φb1 and 
φb2(0) from the fitting values of ln(Is1) and ln(Is2) without using 
AA*, the subsequent procedure was adopted.

First, the built-in potential across the AlGaN barrier layer 
at zero bias can be obtained from the following equation [27]:

( )
( )

( )φ φ
−

= = −
⎛
⎝
⎜

⎞
⎠
⎟I I

V

q

KTn

ln ln
0 .s s2 1

0 1
b1 b2� (8)

The first part of the equation derives from the difference of 
equations (1) and (7), and Is1 and Is2 are directly obtained from 
the two linear fits. The obtained values of Is1, Is2, n1, and n2 are 
3.04  ×  10−16 A, 1.63  ×  10−6 A, 1.57, and 31.32, respectively. 
It should be noted that V(0) is associated with the difference 

between the positive surface polarization charge  +σ and the 
density ND of the AlGaN/GaN 2DEG at zero bias:

( ) σ
=

−
V q

N

C
0 ,D

AlGaN
� (9)

where = ε εC
dAlGaN

0 AlGaN is the barrier layer capacitance per 
unit area, d is the barrier layer thickness (30 nm), and the 
relative dielectric permittivity for AlxGa1−xN with an Al 
concentration of 25% is determined by using the equa-
tion  ( )ε = − +x x0.5 9.5, which yields εAlGaN  =  9.375. The 
value of ND can be obtained by calculating the value of V(0) 
from the fitting results of equation (8) and the σ value from the 
C–V analysis (σ  =  7.86  ×  1011 cm−2).

At this stage, the Fermi energy can be expressed as follows 
[28]:

π
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where the ground sub-band level of the 2DEG is given by:
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The Fermi level position with respect to the GaN conduction 
band minimum (ECmin) at zero bias can be expressed as a func-
tion of ND [29]:

( ) π π
ε ε
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⎧
⎨
⎩

⎫
⎬
⎭

� �
E E

qm
N

q

q

m
n0

1 9

8 8
,F Cmin

2

eff
D

2

0 AlGaN eff

2
3
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where � is the reduced Planck’s constant and meff is the 2DEG 
effective mass (meff  =  0.22me). According to the band struc-
ture (illustrated in figure 5), the barrier height of diode 2 is:

φ = ∆ − −E E E0 0 ,cb2 F Cmin( ) [ ( ) ]� (13)

where ∆EC  =  0.34 eV is the Al0.25Ga0.75N/GaN conduction 
band offset. The barrier height φb1 of diode 1 can be obtained 
from equation  (8). By applying the above procedures, the  
barrier heights φb1 and φb2 can therefore obtained as 1.14 and 
0.228 eV, respectively.

The possible energy band diagram of the graphene/
AlGaN/GaN Schottky PD is depicted in figure  5. Because 
of the contact potential that results from the difference of the 
work function of the two materials, electrons accumulate on 
the graphene side, and band bending in AlGaN/GaN forms 
the Schottky barrier in under dark conditions. The electron 
affinity for Al0.25Ga0.75N is about 2.7 eV [30], and the work 
function of the graphene sheet is known to be 4.5 eV below 
the vacuum level [31]. Thus, when AlGaN is in contact with 
the graphene, it is energetically favourable for the photogen-
erated electrons to be transferred from the conduction band 
of AlGaN to the graphene. The graphene side is expected 
to receive a smaller accumulation of electrons owing to its 
high carrier mobility. On the other hand, under illumination 
conditions, AlGaN/GaN absorbs the UV incident light, and 
graphene serves as a transparent carrier collector. The inci-
dent UV light energy (which is larger than the energy gap of 
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AlGaN/GaN) is absorbed, and thus electron–hole pairs are 
generated and rapidly separated by the built-in electric field 
at the graphene/AlGaN interface.

It should be noted that some impurities may originate from 
the chemicals used to release the graphene sheet from the 
Cu foil, which may exist at the graphene/AlGaN interface. 
Moreover, desorption of H2O molecules can be induced on 
graphene during illumination, resulting in trapped electrons 
that may be released to the graphene. The work function  
of graphene is reduced under UV illumination, which will 
lower the Schottky barrier height and increase the Fermi level 
[32, 33]. The separated electrons can then easily move to the 
quantum well at the AlGaN/GaN interface. It should be noted 
that because of the excellent transport properties of graphene, 
the fabricated graphene/AlGaN/GaN-based Schottky UV PD 
should have larger incident light absorption efficiency than the 
metal-based AlGaN/GaN Schottky UV PD. This merit makes 
the graphene/AlGaN/GaN Schottky UV PD a promising can-
didate for potential applications in the large-scale integration 
of GaN technologies.

The responsivity of the graphene/AlGaN/GaN Schottky 
PD is shown in figure 6. A small hump at 300 nm and a clear 

peak at 350 nm appear in the spectrum; these features are 
associated with the intrinsic transitions above the band edges 
of AlGaN and GaN, respectively. The estimated responsivities 
are obtained as 0.56 and 0.079 A W−1, respectively, at a bias 
of  −2 V. The cut-off wavelength of the graphene/AlGaN/GaN 
Schottky PD is in good agreement with the band gap energy 
of Al0.25Ga0.75N and GaN [34].

Figure 7 presents the time dependent photocurrent of the 
graphene/AlGaN/GaN Schottky UV PD illuminated by a 
350 nm with a power density of 36 μW and chopper frequency 
of 390 Hz at a bias voltage of  −2 V. When light is turned on, 
the PD current increases rapidly from initial value of 1.11 nA 
to 0.205 μA at around 2 s. Once the light is switched off, the 
photocurrent decreased and returns to a low value at a fast 
recovery process fist and then slow recovery process. The fast 
recovery time is estimated about 0.1 s and slowly recovery 
time to the initial value within about 13.7 s. The obtained 
raising and recovery time response of the graphene/AlGaN/
GaN Schottky UV PD is comparable to UV PD based on  
colloidal ZnO quantum dot-graphene nanocomposites [35].

4.  Conclusion

A CVD-grown monolayer graphene-based Schottky PD was 
successfully fabricated on an AlGaN/GaN template. The I–V 
characteristics demonstrate a rectifying behaviour, which  
suggests that the Schottky barrier was indeed achieved at the 
interface. The graphene/AlGaN/GaN Schottky PD device 
exhibits low dark current and a large photo-to-dark contrast 
ratio. Moreover, the graphene/AlGaN/GaN Schottky PD 
exhibits a responsivities of 0.56 A W−1 at 300 nm and 0.079 A 
W−1 at 350 nm at a bias of  −2 V. The Schottky parameters were 
evaluated using an equivalent circuit of two diodes connected 
back-to-back in series. The obtained results demonstrate that 
graphene can be successfully used as a transparent electrode 
in AlGaN/GaN-based PDs. Furthermore, the obtained results 
suggest that the transparent, conductive graphene electrode 
may be integrated into existing GaN-based technologies.
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