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Abstract
We propose a setup of an open quantum system in which the environment can be tuned such that
either Markovian or non-Markovian system dynamics can be achieved. The implementation uses
ultracold Rydberg atoms, relying on their strong long-range interactions. Our suggestion extends
the features available for quantum simulators of molecular systems employing Rydberg
aggregates and presents a new test bench for fundamental studies of the classification of system–

environment interactions and the resulting system dynamics in open quantum systems.

Keywords: Rydberg aggregates, dipole–dipole interactions, electromagnetically induced
transparency, open quantum systems, non-Markovian dynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

The formalism of open quantum systems, i.e., quantum sys-
tems interacting with an environment, is a widely used con-
cept in many areas of physics. Its backbone is the separation
of a large quantum system into a small system of interest and
an environment, encapsulating all other degrees of freedom
present in the full system. Sometimes, such an approach
makes it possible to derive a tractable and physically mean-
ingful equation of motion for the small system, rather than
propagating the full system in time. This concept [1, 2] has
become a common tool in atomic, molecular, and condensed
matter systems, and also finds applications in nuclear [3, 4]
and particle [5, 6] physics. It is further crucially important in
the field of quantum information and computation, making it
possible to assess the role of decoherence in quantum infor-
mation protocols [7].

In many physical systems, the environment consists of a
large number of degrees of freedom at finite temperature.
Often, such an environment exhibits a back-action onto the
system, which depends on previous system dynamics. In open
quantum system terms, this memory of the environment is
related to the concept of (non-)Markovianity.

From a practical point of view, a memoryless (Marko-
vian) environment enables one to derive simple equations of
motion, such as the Lindblad form [8], that allow for an

efficient numerical solution of the dynamics restricted to the
small system space. For strongly coupled environments with
memory, typically sophisticated and numerically expensive
methods are required. From this point of view it would be
advantageous to possess so called quantum simulators [9, 10]
that can capture such non-Markovian dynamics. Over the last
years, several setups have been suggested with which such
non-Markovian quantum simulators could be realized
[11–20].

In the present work, we propose an experimentally fea-
sible setup where Markovian and non-Markovian dynamics
can be studied in a controlled fashion using ultracold Rydberg
atoms. The idea relies on the combination of two achieve-
ments, which have been reached separately in two recent
experiments: coherent oscillations of a Rydberg dimer due to
resonant dipole–dipole interactions [21] and imaging of a
Rydberg excitation by destroying the resonance condition of
electromagnetically induced transparency (EIT) for a back-
ground gas through van der Waals interactions [22, 23].
Interfacing a coupled Rydberg dimer with an optically driven
background gas atom provides, on the one hand, a test bench
to study the Markovian to non-Markovian transition, and on
the other hand it might be useful in view of recent proposals
to use Rydberg ensembles as quantum simulators for open
quantum systems [24–26].
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We first describe the setup in detail in section 2, and
present our numerical results with experimentally accessible
parameters in section 3. In section 4, the results are sum-
marized and their implications for future work are discussed.
We set ÿ=1 throughout the manuscript.

2. Setup

The basic setup and the relevant states are sketched in
figure 1. We consider two Rydberg atoms (Rydberg dimer’)
in states ∣ ∣a nñ = ñℓ and ∣ ∣b nñ = ¢ ¢ñℓ respectively, with ν, ν’
denoting the (large) principal quantum numbers and ℓ, ¢ℓ the
angular momentum quantum numbers. The state configura-
tion is chosen such that coherent Rabi oscillations due to
resonant dipole–dipole interactions [21] are enabled between
the pair states ∣ ∣a bñ = ñ1 , and ∣ ∣b añ = ñ2 , . The essential
dynamics for the pair states specified below is thus captured
in a two-state picture with the Hamiltonian

(∣ ∣ ∣ ∣) ( )= ñá + ñáH J 2 1 1 2 . 1S

Here, J denotes the resonant dipole–dipole matrix element
given by =J C R3

3, where C3 is a state-dependent interac-
tion coefficient and R the interatomic separation of the dimer
(see figure 1(a)). The dimer constitutes our system S. We now
bring a third, laser-driven atom into the vicinity of the dimer.
This driven atom constitutes our environment and is from
now on referred to as the detector [25]. The laser field (probe
field) couples the ground state ∣ ñg of the detector atom to some
intermediate level ∣ ñe , which in turn is coupled to a Rydberg
state ∣ ñr by a second laser field (control field). In the rotating
wave approximation, the detector is described by the
Hamiltonian

∣ ∣ ∣ ∣

∣ ∣ ( )∣ ∣ ( )

=
W

ñá +
W

ñá +

- D ñá - D + D ñá

⎛
⎝⎜

⎞
⎠⎟H e g r e

e e r r

2 2
h.c.

, 2

D
p c

p p c

where Ωp, Ωc denote the Rabi frequencies and Δp, Δc the
detunings of the probe- and coupling fields. As Rydberg
states have a very long (though finite) lifetime [27, 28], we

neglect the spontaneous decay of the state ∣ ñr in our scheme.
The intermediate state ∣ ñe , however, is chosen to undergo
radiative decay, which takes place on the time scale of the
dynamics of the system. In order to account for this effect, we
model the spontaneous decay with rate Γp from this level by
the Lindblad operator

∣ ∣ ( )= G ñáL g e . 3p

In the absence of interactions between the dimer (system)
and the detector (environment), the dimer dynamics is simply
governed by the unitary von-Neumann equation

˙ [ ] ( )r r= - Hi , 4S S S

and the dynamics of the detector (environment) by a master
equation in Lindblad form

˙ [ ] ( ) ( )† † †r r r r r= - - + -H L L L L L Li ,
1

2
2 . 5D D D D D D

Here, ρS and ρD are the density operators of system and
detector, respectively. The system–environment coupling
emerges due to strong van-der-Waals-type interactions
between the Rydberg state of the detector with the Rydberg
states of the dimer.

Our exploitation of a single three-level atom as an
‘environment’ may seem unusual, given the more typical
situation where the environment is characterized by a parti-
cularly large number of quantum states. It makes sense
though, since the Lindblad treatment of spontaneous decay
(3) embodies the coupling of this atom to the radiation field,
which even if in the vacuum has a large number of quantum
states available.

We now specify the states of the Rydberg atoms of our
proposal. As in [25] we take the dimer states to be ∣ ∣ñ = ñps1
and ∣ ∣ñ = ñsp2 , with ∣ ∣ñ = ñp p43 and ∣ ∣ñ = ñs s43 of Rb87 .
These dimer states are coupled via dipole–dipole interaction,
which results in a Hamiltonian of the form of equation (1),
with p m=C 2 1619 MHz m3

3. For the states of the detector
we take ∣ ∣ñ = ñr s38 , ∣ ∣ñ = ñe p5 and ∣ ∣ñ = ñg s5 [23]. Then, the
interactions between the dimer states ∣ ñ1 and ∣ ñ2 and the

Figure 1. Sketch of the setup. (a) Atoms 1 and 2 form the Rydberg dimer with interatomic separation R, and the laser-driven detector atom
placed in their vicinity. The distances of the detector to the dimer atoms are denoted by RD1 and RD2, respectively. (b) Level sketch of the
setup. The dimer states ∣ ñ1 and ∣ ñ2 are coupled to each other via resonant dipole–dipole interaction with strength J and interact with the
Rydberg level ∣ ñr of the detector atom via the interactions U1, U2. The ground state ∣ ñg of the detector is coupled to the state ∣ ñe by the probe
field with Rabi frequency Wp and detuning Δp, and the state ∣ ñe to the Rydberg level ∣ ñr by the control field (Ωc, Δc). Γp is the spontaneous
decay rate of the level ∣ ñe .
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Rydberg state of the detector are given by

( )= +U
C
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Here, p = -C 2 87 MHzrs
6 mm6 and p = -C 2 1032 MHzrp

4
mm4 are the interaction coefficients between ∣ ñr and the states
∣ ñs and ∣ ñp , respectively, and the distances RD1, RD2 denote the
separation of the detector from atom 1 and atom 2 of the
dimer. The system–environment interactions (6) conserve the
system population. Note that our proposal does not rely on the
specific states chosen, but on the state-dependence of
interactions between dimer and detector, which, in principle,
can also be achieved with different choices.

The system–environment interaction Hamiltonian can
then be written as

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )= ñá Ä ñá + ñá Ä ñáH U r r U r r1 1 2 2 7SD 1 2

and the master equation encapsulating the system, the
environment and their interaction reads as

˙ [ ] ( ) ( )† † †r r r r r= - - + -H K K K K K Ki ,
1

2
2 . 8

Here, ρ is the full density operator, H the full Hamiltonian

( )= Ä + Ä + H H H H , 9S D S D SD

 the unity operator in a given Hilbert space and K is the
extension of the Lindblad operator L in the full Hilbert space,

= ÄK LS with L given in equation (3).

3. Numerical results

In this section, we show illustrative calculations that
demonstrate that, despite its simplicity, the environment
provided by the detector atom is highly tunable, and in
particular that the time evolution of the dimer can be tuned
from Markovian to various degrees of non-Markovian
dynamics. Over the last few years, a suitable measure to
quantify non-Markovianity in an open quantum system has
been actively pursued and debated (see e.g. [29–48]), as well
as used to gain insight into the dynamics of physical systems
[16, 49–51]. In what follows, we adopt the measure related to
the information flow from the environment to the system [31].
By this definition, the dynamics is non-Markovian whenever
the trace distance between two initial density operators of the
system increases at some point during their time propagation.
The trace distance between two density matrices P, Q is
defined as

( ) ∣ ∣ ( )= -D P Q P Q,
1

2
Tr , 10

with ∣ ∣ †=A A A . For a two-level system (∣ ∣ñ ñ1 , 2 ), this
expression simplifies to [30]

( ) ( ) ∣ ∣ ( )= - + -D P Q P Q P Q, . 1111 11
2

21 21
2

The rate of change of the trace distance for some initial states
P(0), Q(0) is given by

( ( ) ( )) ( ( ) ( )) ( )s =t P Q
t
D P t Q t, 0 , 0

d

d
, 12

and σ>0 signifies non-Markovianity. To quantify the
strength of non-Markovianity given the initial states P(0), Q
(0), the above expression is to be integrated over all time
intervals in which it takes a positive value:

( ( ) ( )) ( ) ò s=
s>

t t P Qd , 0 , 0 . 13P Q,
0

Note that to obtain an actual measure, maximization over all
pairs (P(0), Q(0)) has to be performed in equation (13)
[30, 31]. In the following, we take initial states

( ) ∣ ∣ ∣ ∣r = ñá Ä ñág g0 1 11 and ( ) ∣ ∣ ∣ ∣r = ñá Ä ñág g0 2 22 , which
can be easily prepared (and probed) experimentally and have
numerically shown to yield large values r r,1 2

[52]. The
corresponding system states ( ) ( ) ( )r r= =i0 Tr 0 , 1, 2i iS, D

have maximal initial trace distance ( ( ) ( ))r r =D 0 , 0 1S,1 S,2 .
We propagate both states in time according to equation (8)
and thereupon obtain the trace distance DS and the rate σS in
the subsystem of interest (dimer) by tracing out the
environment first and subsequently applying the definitions
(10) and (12).

Before discussing non-Markovianity we illustrate how
the dimer dynamics depends on the properties of the
environment constituted by the detector atom, and how these
properties can be tuned. In figure 2(a) we show different
dimer dynamics arising for different Rabi frequencies Ωp of
the probe field driving the detector atom, indicating that both
dephasing strength and steady-state value of the dimer
dynamics can be easily controlled via the parameters of lasers
acting on the detector atom.

The different strengths of dephasing can be understood
on grounds of the strong asymmetry in the interactions
U U1 2. In this way, the environment can distinguish whe-

ther the system is in state ∣ ñ1 or ∣ ñ2 and acts as a measurement
device, causing dephasing and decoherence in the system
[25]. Consider the case when the laser fields are applied
resonantly, Δp=Δc=0. The detector is then tuned to the
condition of EIT [53], giving rise to a so called dark state
which has no contribution from state ∣ ñe . If the dimer is in the
state ∣ ñ2 , the detector remains in the dark state since the
interaction U2 is negligible by design of the experiment.
However, if the dimer is in the state ∣ ñ1 , the strong interaction
U1 shifts the Rydberg level of the detector ∣ ñr out of reso-
nance, disturbing the EIT condition, which yields a non-zero
population of the state ∣ ñe . This state then decays with the rate
Γp, and the emitted photons provide a potential observer with
information about the state of the dimer. The stronger the
driving Ωp, the more photons will be scattered by the detector
atom, allowing to infer the state of the dimer more quickly,
and thereby dephasing the dimer dynamics more quickly.

However, as depicted in figure 2(b), various dimer
dynamics with vastly different dephasing time scales and
steady-state values can still be purely Markovian according to
equation (13). This cautions one that looking at the population
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dynamics alone can be misleading when trying to estimate the
Markovianity of the dynamics.

We now demonstrate the tunability of our setup. By
modifying the interatomic distances as well as the laser
parameters, we can switch the dimer dynamics from Marko-
vian to non-Markovian, as shown in figure 3. Now, strong
oscillations with σS>0 can be seen in figure 3(b), leading to
a clearly nonzero  »r r 2.7,1 2

quantifying non-Markovianity.
In the chosen configuration, the non-Markovianity of the
system dynamics is not only reflected in the trace distance
change rate σS, but can also be seen in the population
dynamics figure 3(a) which displays a clear revival at ≈1 μs
of the damped population oscillations.

It has to be noted, though, that visible non-Markovian
features in the population dynamics are not necessarily pre-
sent even if the system dynamics is non-Markovian. Indeed,

in figure 4 we show another example of non-Markovian
system dynamics, in which the clearly positive contributions
σS>0 in panel (b) lead to a nonzero  »r r 0.2,1 2

while the
population dynamics displayed in panel (a) does not exhibit
noticeable revivals or other features often associated with
non-Markovian dynamics. Comparing the figures obtained
from equation (13), we see that r r,1 2

and thus the degree of
non-Markovianity is significantly larger in figure 3 than in
figure 4, explaining the lack of non-Markovian features
observed in the population dynamics in figure 4. Upon
decreasing the rate of dissipation in the environment (spon-
taneous decay rate Γp), however, even in this setting revivals
become visible.

In summary, to observe non-Markovianity in the system
dynamics we have found that one needs several ingredients:
(i) long detector equilibration time and intrinsic dynamics in

Figure 2. Dynamics of the system (dimer) for three different values of the Rabi frequency Ωp. Panel (a) shows the population of the state ∣ ñ1 for
the initial state ρ1(0), and panel (b) the trace distance change rate σS between ρS,1(t) and ρS,2(t) in the system, if system plus environment are
prepared in ρ1(0) and ρ2(0), respectively (see main text). The parameters are Γp/2π=6.1 MHz, J/2π=0.28 MHz, Ωc/2π=20MHz, U1/
2π=−26.4 MHz and U2/2π=−0.37 MHz, corresponding to the interatomic distances R=18 μm, R1D=2.5 μm and R2D=15.5 μm. The
detunings Δp, Δc are set to zero. The Rabi frequencies are Ωp/2π=1.2 MHz (red solid curve), Ωp/2π=6 MHz (blue dashed curve) and Ωp/
2π=20 MHz (green dashed–dotted curve). As evident from the time evolution of σS, the three sets correspond to completely Markovian system
dynamics according to the definition equation (13), although the population dynamics in the system shows very different equilibration time
scales as well as steady-state values.

Figure 3. Same as in figure 2 but using the parameters p =J 2 3.16 MHz, p pW = W =2 2 30 MHzp c , U1/2π=−36.9 MHz, and U2/
2π=−0.8 MHz, corresponding to the interatomic distances R=8 μm, R1D=2.3 μm and R2D=8.3μm. The detunings are

p pD = -D =2 2 50 MHzc p . As evident from the time evolution of σS, the system dynamics is non-Markovian ( »r r 2.7,1 2
), also

reflected in the population revival at ≈1 μs seen in panel (a).

4
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the detector atom. Long detector equilibration time can be
achieved by e.g. reducing the radiative decay rate Γp (which
is, however, experimentally impractical) or by introducing a
large detuning Δp of the intermediate state while at the same
time keeping the two-photon resonance condition
Δp+Δc∼0. (ii)Comparability of time scales of aggregate
and detector dynamics. This can be most easily attained by
tuning the aggregate coupling J, as the detector time scale
results from a complex interplay of laser parameters, radiative
decay and interactions. (iii)Correlation between aggregate
dynamics and photon emission from the detector atom, i.e.,
ability to deduce the state of the aggregate by measuring the
photons emitted by the detector atom. Though this condition
is not fully separable from the previous one (ii), it can be met
by ensuring a strong interaction U1 between aggregate atom 1
and detector atom and a strong asymmetry U U1 2 between
the interactions U1 and U2 of the two aggregate atoms with
the detector atom. Whereas the first condition (i) guarantees
the presence of environment memory, (ii) and (iii) guarantee
the visibility of the environment dynamics in the system
dynamics. This can be seen in figures 3 and 4: to reduce the
degree of non-Markovianity in figure 4 as compared to
figure 3, we reduced the detuning ∣ ∣Dp , the interaction U1 and
the aggregate coupling J. Reducing the detuning ∣ ∣Dp

decreases the equilibration time of the detector dynamics,
decreasing the interaction U1 reduces the correlation between
aggregate and detector, and reducing the aggregate coupling J
decreases the visibility of the back-action induced by the
detector dynamics.

4. Discussion and summary

The presented setup provides a test bench to study con-
trollable non-Markovianity in open quantum systems. We
have shown that both Markovian as well as non-Markovian
system dynamics can be achieved by the driven-dissipative
environment provided by the detector atom. Besides, our

analysis reveals that (non-)Markovianity of the system
(dimer) dynamics cannot be easily inferred from population
dynamics alone, but rather a measure relying on the infor-
mation provided by the full density matrix of the system has
to be employed.

Our proposal represents a first step towards a non-Mar-
kovian quantum simulator harnessing ultracold Rydberg
atoms and should be accessible by state-of-the-art exper-
imental setups. In addition to using the environment as a
measurement device for the dimer dynamics [22, 23, 25], in
our setup the single detector atom operates as gateway to the
environment of electromagnetic field modes implicitly
responsible for its spontaneous decay. The system dynamics
can be extracted by different means [21].

Having shown the variety of Markovian/non-Markovian
dynamics as well as dephasing time scales and steady-state
values of the system in the case of a simple setup employing a
single detector atom, we expect even richer tunability of the
dynamics in the case of many detector atoms. This might
open up new prospects for using Rydberg aggregates as
quantum simulators with a controlled environment.
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