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Abstract In the past decades computational homogeniza-
tion has proven to be a powerful strategy to compute
the overall response of continua. Central to computational
homogenization is the Hill–Mandel condition. The Hill–
Mandel condition is fulfilled via imposing displacement
boundary conditions (DBC), periodic boundary conditions
(PBC) or traction boundary conditions (TBC) collectively
referred to as canonical boundary conditions.WhileDBCand
PBC are widely implemented, TBC remains poorly under-
stood, with a few exceptions. The main issue with TBC
is the singularity of the stiffness matrix due to rigid body
motions. The objective of this manuscript is to propose a
generic strategy to implement TBC in the context of compu-
tational homogenization at finite strains. To eliminate rigid
body motions, we introduce the concept of semi-Dirichlet
boundary conditions. Semi-Dirichlet boundary conditions
are non-homogeneous Dirichlet-type constraints that simul-
taneously satisfy the Neumann-type conditions. A key fea-
ture of the proposed methodology is its applicability for both
strain-driven as well as stress-driven homogenization. The

The term semi-Dirichlet exists in mathematics but, in the completely
different context of semi-Dirichlet forms and should not be confused
with our non-homogeneous Dirichlet-type constraints.
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performance of the proposed scheme is demonstrated via a
series of numerical examples.
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1 Introduction

Almost allmaterials in nature possess a heterogeneousmicro-
structure at a certain length scale. Furthermore, composites
consisting of two or more constituents showmore interesting
properties compared to homogeneousmaterials and are often
particularly tailored for specific purposes. Therefore, it is
extremely important to predict the overall material response
based on the constitutive behavior of its underlying micro-
structure. In doing so, several multi-scale techniques have
been developed in the past. Multi-scale models are tradition-
ally categorized into the homogenization method [1,2] and
the concurrent method [3–5]. This contribution details on the
homogenization method where the length scales of micro-
and macro-problems are sufficiently separate.

The main objective of the homogenization method is
to estimate the effective macroscopic properties of a het-
erogeneous material from the response of its underlying
micro-structure thereby allowing to substitute the hetero-
geneous material with an equivalent homogeneous one.
Homogenization techniques are commonly classified into
two general categories of analytical homogenization and
computational homogenization. Preliminary steps in ana-
lytical homogenization were made in the pioneering works
of [6–11] further developed in [12–15] among others; see
[16–19] for an overview on analytical homogenization mod-
els. Although the analytical homogenization method renders
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useful information and is computationally favorable, it is gen-
erally not suitable for complex geometries where the shape,
size, distribution pattern and volume fraction of the inclu-
sions greatly influence the final characteristic of composites.
In order to deal with such complexities, the computational
homogenization method has been established in the past two
decades [20–50] and thoroughly reviewed in [51–55]. The
most popular technique among computational homogeniza-
tion models is the direct micro-to-macro transition method
which evaluates the stress-strain relationship at each quadra-
ture point of the macro-scale through solving the associated
boundary value problem at the micro-scale. It is commonly
assumed that the behavior of thematerial at themicro-scale is
known and defined through an energy density function.Alter-
natively, it is possible to develop physically interpretable and
micro-mechanically motivated material models as discussed
in [56–58]. In the literature, the “appropriate” micro-scale
sample is referred to as the representative volume element
(RVE); see for instance [59–62] for detailed discussions about
the definition and the size of the RVE.

Central to the homogenization method is the Hill–Mandel
condition that enforces an incremental energy equivalence
between the micro-scale and the macro-scale. The bound-
ary conditions of the micro-problem are chosen such that the
Hill–Mandel condition is a priori satisfied. Among numerous
boundary conditions satisfying the Hill–Mandel condition,
linear displacement (DBC), periodic displacement and anti-
periodic traction (PBC) and constant traction (TBC) are
more recognized and are collectively referred to as canon-
ical boundary conditions. It is relatively well-established
that in purely mechanical problems and for a finite size
of the RVE, the effective behavior obtained under PBC is
bounded by DBC from above and TBC from below [63–
66]. Therefore, PBC has become the most commonly used
boundary condition in homogenization problems. However,
it has been discussed [22,67,68] that PBC provides the most
precise results only for periodicmicro-structures and not nec-
essarily for micro-structures with random distributions of
inclusions. Moreover, Drago and Pindera [69] have shown
that the overall transverse Poisson’s ratio obtained via PBC
is not necessarily bounded betweenTBCandDBC in contrast
to what is commonly expected.

The computational algorithms to implement DBC and
PBC have been widely discussed and are well-established.
Nevertheless, the implementation of TBC have been rarely
detailed mainly due to the associated problems arising from
the singularity of the stiffness matrix caused by prescrib-
ing a purely Neumann-type boundary condition on the RVE.
Various techniques proposed to treat this problem include
using the Lagrange multiplier method and mass-type diag-
onal perturbation to regularize the stiffness matrix [70] or
construction of a free-flexibility matrix to preserve the rigid
body modes [71]. In this contribution, we propose a novel

algorithm to implement TBC for the finite deformation set-
ting. The robustness of the proposed strategy is illustrated
through a series of numerical examples. Although through-
out this paper wemainly devote our attention to strain-driven
computational homogenization, the proposed algorithm is
particularly attractive since it is suitable for stress-driven
homogenization, too.

The remainder of this manuscript is organized as follows.
The finite deformation formulations governing the response
of the micro-structure, admissible boundary conditions and
the connection between the scales are briefly discussed in
Sect 2. Section 3 furnishes the finite element formulation of
themicro-problem and elaborates on the proposedmethodol-
ogy to implement TBC. The utility of the proposed algorithm
is elucidated through various numerical examples. Section 4
concludes this work and provides further outlook.

2 Theory

This section details on theoretical aspects of modeling the
micro-structure of a heterogeneousmaterial undergoing large
deformations. This work is based on first-order strain-driven
homogenization in the sense that the macroscopic defor-
mation gradient is the input of the micro-problem and the
macroscopic Piola stress is sought.

The configuration B0 defines the RVE in the material con-
figuration whose boundary is denoted ∂B0 with the outward
unit normal N , see Fig. 1. The spatial configuration of the
RVE is defined analogously. Let X be the position vector of a
point in B0. The non-linear deformation ϕ maps X to its spa-
tial counterpart x via x = ϕ(X). A material line element dX
is mapped to its counterpart dx in the spatial configuration
as dx = F ·dX with F = Gradϕ being the deformation gra-
dient. The governing equations of the micro-problem are the
balances of linear and angular momentum. The local form of
the balance of linear momentum reads

DivP = 0 in B0 subject to P · N = t0 on ∂B0 and

t0 = tp0 on ∂B0,N , (1)

in which t0 denotes the traction on the boundary ∂B0 and P
is the Piola stress.1 The prescribed traction on the Neumann
part of the boundary ∂B0,N ⊂ ∂B0 is denoted tp0 . The volume
and inertia forces at the micro-scale are neglected due to
the assumption of scale separation. The local form of the

1 The term Piola stress is adopted instead of the more commonly used
first Piola-Kirchhoff stress. Nonetheless, it seems that the term Piola
stress ismore appropriate for this stressmeasure. Recall, P is essentially
the Piola transform of the Cauchy stress and ties perfectly to the Piola
identity. Also historically, Kirchhoff (1824–1877) employed this stress
measure after Piola (1794–1850), see also the discussion in [72].

123



Comput Mech (2017) 59:21–35 23

Fig. 1 Graphical summary of
computational homogenization.
The material configuration B0

corresponds to a RVE which is
mapped to its spatial
configuration through the
non-linear deformation ϕ. The
local macroscopic response is
determined through
homogenizing the response of
the corresponding
micro-structure obtained from
solving the associated boundary
value problem

balance of angular momentum in the material configuration
P · Ft = F · P t is essentially equivalent to the symmetry of
Cauchy stresses.

In contrast to the micro-scale, the material response at
the macro-scale is unknown. Nevertheless, the macro Piola
stress MP is related to the macro deformation gradient MF
through homogenization.Motivated by the average strain and
stress theorems, the macroscopic deformation gradient and
the macroscopic Piola stress are defined as the volume aver-
age of their microscopic counterparts as

MF := 〈F〉 = 1

V0

∫
B0

F dV = 1

V0

∫
∂B0

ϕ ⊗ N dA,

MP := 〈P〉 = 1

V0

∫
B0

P dV = 1

V0

∫
∂B0

t0 ⊗ X dA , (2)

with V0 the volume of the RVE. The averaging relations (2)
relate the deformation gradients and the stresses between the
two scales. The next task is to enforce the incremental energy
equivalence between the two scales, referred to as the Hill–
Mandel condition

〈P : δF〉 − MP : δMF
!= 0 . (3)

With the aid of the Hill’s lemma, the Hill–Mandel condition
can be converted into the surface integral

〈P : δF〉 − MP : δMF

=
∫

∂B0

[δϕ − δMF · X] · [t0 − MP · N] dA , (4)

from which the admissible boundary conditions to be
imposed on the micro-sample are determined. Among
numerous choices satisfying the Hill–Mandel condition (3),

linear displacement boundary conditions (DBC), periodic
displacement and anti-periodic traction boundary conditions
(PBC) and constant traction boundary conditions (TBC) are
more recognized. These conditions guarantee the conser-
vation of the incremental energy in the transition from the
micro-scale to the macro-scale. In the current contribution,
we only detail on computational aspects of TBC and refer
the interested readers to [55,60,70,73–75] for further details
about computational implementations of DBC and PBC. We
emphasize that the purpose of the current manuscript is to
render a generalized framework to implement TBC and not
to introduce a generalized type of boundary condition such
as [74,75] or for material layers [41,76,77].

3 Computational aspects

The main objective of this section is to detail on the compu-
tational aspects of TBC. First, the finite element formulation
of the problem is briefly discussed. It is then followed by
elaborating on the computational algorithms to implement
TBC for two- and three-dimensional problems in the context
of strain- and stress-driven homogenization frameworks.

Derivation of the weak formulation as well as the dis-
cretization are straightforward and well-established and,
hence are not presented here for the sake of conciseness,
see for instance [55] for details. The discretized weak form
of the balance of linear momentum (1) reads

R I :=
#be
A

β=1

∫
Bβ

0

P · GradNi dV

︸ ︷︷ ︸
R I
int

−
#se
A

γ=1

∫
∂Bγ

0,N

tp0 · Ni dA

︸ ︷︷ ︸
R I
ext

!= 0 ,

(5)
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where #be and #se represent the number of bulk and surface
elements, respectively. The domain of the bulk element β

is denoted Bβ
0 , and ∂Bγ

0,N denotes the domain of the surface
element γ upon which traction is prescribed. Moreover, the
shape functions are denoted N and i is the local equivalent of
the global node I. Next, the nodal residuals R I are arranged
in a global residual vectorR and the fully-discrete non-linear
system of equations becomes

R = R (d)
!= 0, R = Rint + Rext , (6)

where d is the unknown global vector of deformations and
Rint andRext are the assembled vectors of R I

int and R I
ext, cor-

responding to internal and external residuals, respectively.
The Newton–Raphson scheme is employed to find the solu-
tion of the system of Eq. (6). The consistent linearization of
the resulting system of equations yields

R (di+1) = R (di ) + K · �di
!= 0 with K = ∂R

∂d
|i ,

di+1 = di + �di , (7)

where i is the iteration step and K is the assembled tan-
gent stiffness matrix of nodal stiffness. Solving the system of
Eq. (7) yields the iterative increment �di and consequently
di+1.

The micro-scale boundary value problem requires the
boundary conditions to be imposed on the system of Eq. (7)
and the boundary condition of interest here is TBC. That is,
the boundary of the micro-sample undergoes uniform distri-
bution of MP · N . Recall in the context of the strain-driven
homogenization, the input of the problem is MF and the out-
put is MP . Hence, at the beginning of the algorithm, MP is not
known and an initial guess is required. We initiate MP with
zero. This guess is then updated iteratively until 〈F〉 = MF
is achieved.

Obviously, the solution of the micro-problem is unique
only up to rigid body motions. Therefore, sufficient con-
straints should be added on the boundary of the RVE to
completely remove the rigid body motions. In doing so,
we introduce and employ the concept of semi-Dirichlet
boundary conditions. That is, we assign Dirichlet boundary
conditions to three degrees of freedoms in two-dimensional
problems and six degrees of freedoms in three-dimensional
problems. Simultaneously we guarantee that the generated
tractions at the Dirichlet parts are identical to the hypothet-
ically prescribed tractions by updating the locations of the
semi-Dirichlet constraints until they entirely accommodate
the TBC. This procedure is further elaborated in what fol-
lows.

Assume themicro-sample is a square spanning the domain
[0, 1]2, as shown in Fig. 2, whose boundary is subject to a
uniform distribution of MP · N . In order to remove trans-

Fig. 2 The entire boundary ∂B0 except point A in both directions and
point B in y direction is prescribed with MP · N . Point A is fixed in
both directions and point B is fixed in y direction so as to remove rigid
body motions. Fixing these points can lead to spurious tractions ζ on
the Dirichlet part of the boundary. The dashed line and the solid black
line indicate the deformation of the micro-structure in the absence and
presence of the spurious forces, respectively

lational rigid body motions, a Dirichlet boundary condition
is assigned to an arbitrary point A on the boundary in both
directions. Assigning Dirichlet boundary condition to any
other point (e.g. point B with XB

x �= XA
x ) in y direction

eliminates the rotational rigid body motions. If the solu-
tion of TBC, illustrated using the dashed line, necessitates
the point B to move in the direction that it is fixed, extra
tractions (in addition to the contributions from MP · N)
would develop on the Dirichlet constraints. Existence of
such extra tractions disturbs the uniform distribution of the
tractions over the boundary of the RVE, hence, violating
TBC. We refer to these extra tractions as spurious trac-
tions, denoted ζ , in the sense that they do not comply with
TBC.

The total nodal tractions on points A and B read tA =
MP · NA + ζA and tB = MP · NB + ζB with ζA

x = 0 and
ζA
y = −ζB

y following the balance of forces. Accordingly, the
volume average of the Piola stress reads

〈P〉 = 1

V0

∫
∂B0

tp0 ⊗ X dA = 1

V0

∫
∂B0

[MP · N] ⊗ X dA

+ 1

V0

∑
i=A,B

ζ i ⊗ X i δAi

= MP + 1

V0

{ [
0
ζA
y

]
⊗

[
XA
x

XA
y

]
+

[
0
ζB
y

]
⊗

[
XB
x

XB
y

] }
δA

= MP + 1

V0

[
0 0

ζA
y XA

x + ζB
y X

B
x ζA

y XA
y + ζB

y X
B
y

]
δA ,

(8)

assuming that the effective nodal areas of A and B are iden-
tical and equal to δA. As we will see shortly, this assumption
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Fig. 3 Graphical illustration of the TBC implementation setting. We

prescribe and update MP · N and η iteratively until 〈F〉 − MF
!= 0 and

ζB
y

!= 0 are satisfied

does not restrict the applicability of the presented frame-
work and is made here only for the sake of brevity. In order
to ensure that the Dirichlet part is under the same traction
as prescribed on the Neumann part, both ζA

y and ζB
y must

always vanish. The positions of A and B on the material con-
figuration are arbitrary. A simple concrete setting is to assign
point A to [0,0] and point B to [1,0], as illustrated in Fig. 3.
Inserting these coordinates into the relation (8) yields

〈P〉 = MP + 1

V0

[
0 0
ζB
y 0

]
δA , (9)

from which the required condition to suppress the spurious
traction component ζB

y is derived as

ζB
y

!= 0 ⇔ 〈Pyx 〉 − MPyx
!= 0 . (10)

Note that the effective nodal area δA is solely intro-
duced to relate the tractions to the forces and consequently,
their balance. More importantly, the effective nodal area δA
vanishes from the condition (10) which is crucial from a
numerical implementation viewpoint. One can show that
the effective nodal areas of A and B do not have to be
identical and thus, the proposed methodology holds for
non-regular meshes, as well. Satisfying (10), ensures the
uniform distribution of traction MP · N over the entire
boundary of the RVE. In order to fulfill (10), we succes-
sively update the current position of B in the y direction,
denoted η, until it no longer introduces a spurious trac-
tion.

Algorithm 1: constant traction boundary conditions in
a strain-driven homogenization framework

input: MF, material parameters
MP = 0, η = 0

assign homogeneous Dirichlet and semi-Dirichlet

BC to eliminate rigid body motions

while MP and η are not correct do
apply MP · N on the Neumann part and update

semi-Dirichlet BC

solve the system of Eq. (7)

evaluate 〈P〉 and 〈F〉
�(MP, η) = [〈F〉 − MF, ζB

y ]t
if ||�|| < tol then

MP and η are correct

else

solve � + H [�MP,�η]t != 0
MP = MP + �MP

η = η + �η

end

end

output: MP

In addition to the condition (10), the condition 〈F〉−MF
!=

0 must be satisfied at the same time. These conditions are
inserted into an error vector denoted � which is a non-linear
function of MP and η

�(MP, η) = [〈F〉 − MF, ζB
y ]t != 0 . (11)

The consistent linearization of this non-linear vector function
reads

�(MP i+1, ηi+1) = �(MP i , ηi ) + ∂�

∂MP
|i : �MP i

+∂�

∂η
|i �ηi

!= 0 , (12)

from which the increments �MP i and �ηi are obtained and
the state is updated according to MP i+1 = MP i + �MP i and
ηi+1 = ηi + �ηi where i is the iteration step. The system of
Eq. (12) can be presented in matrix format as
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〈F〉xx − MFxx

〈F〉xy − MFxy

〈F〉yx − MFyx

〈F〉yy − MFyy

ζB
y

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂〈F〉xx
∂MPxx

∂〈F〉xx
∂MPxy

∂〈F〉xx
∂MPyx

∂〈F〉xx
∂MPyy

∂〈F〉xy
∂MPxx

∂〈F〉xy
∂MPxy

∂〈F〉xy
∂MPyx

∂〈F〉xy
∂MPyy

∂〈F〉yx
∂MPxx

∂〈F〉yx
∂MPxy

∂〈F〉yx
∂MPyx

∂〈F〉yx
∂MPyy

∂〈F〉yy
∂MPxx

∂〈F〉yy
∂MPxy

∂〈F〉yy
∂MPyx

∂〈F〉yy
∂MPyy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂〈F〉xx
∂η

∂〈F〉xy
∂η

∂〈F〉yx
∂η

∂〈F〉yy
∂η

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V =
[

∂ζB
y

∂MPxx

∂ζB
y

∂MPxy

∂ζB
y

∂MPyx

∂ζB
y

∂MPyy

]
S =

[
∂ζB

y

∂η

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
H

�MPxx
�MPxy

�MPyx

�MPyy
�η

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

!= 0 .

The algorithm to implement TBC is given in Algorithm 1.
Positions of A and B are arbitrary Changing the initial

positions of the points A and B would lead essentially to the
same condition as (10). For example, assume the configu-
ration in which point A is assigned to [1,1] and point B is
assigned to [0.5,0], as shown in Fig. 4. Based on this setting
and using the relation (8), the volume average of the Piola
stress reads

〈P〉 = MP + 1

V0

[
0 0
ζA
y + 0.5ζB

y ζA
y

]
δA

= MP + 1

V0

[
0 0
−0.5ζB

y −ζB
y

]
δA ,

in which the equality ζA
y = −ζB

y is considered. In order to
ensure uniform distribution of the traction over the entire
boundary of the RVE, the condition

ζB
y

!= 0 ⇔ 〈Pyx 〉 − MPyx
!= 0 or 〈Pyy〉 − MPyy

!= 0 ,

must be met which clearly shows that the condition ζB
y

!= 0
is independent of the choice of the constraints A and B.

Theproposed framework extends readily to 3DSixdegrees
of freedoms need be fixed to prevent rigid body motions
in three dimensions. Figure 5 illustrates how to imple-
ment TBC for three-dimensional problems. Similar to the
two-dimensional case, we assign homogeneous Dirichlet
boundary condition to point A in x, y and z directions to
eliminate translational rigid bodymotions and semi-Dirichlet
boundary conditions to B in x direction, C in y direction and
D in z direction to remove rotational rigid body motions. We
update the locations of B, C and D successively until a uni-
form distribution of traction over the boundary of the RVE

is achieved. As long as B, C and D have not reached their
final positions, spurious forces on the Dirichlet parts of the
boundary are observed. The nodal tractions on points A, B, C

andD are t i = MP ·N i +ζ i for i = A, B, C, D. Accordingly,
the volume average of the Piola stress reads

〈P〉 = 1

V0

∫
∂B0

tp0 ⊗ X dA = 1

V0

∫
∂B0

[MP · N] ⊗ X dA

+ 1

V0

∑
i=A,B,C,D

ζ i ⊗ X i δAi ,

which can be expanded as

〈P〉 = MP + 1

V0

{ ⎡
⎣ζA

x
ζA
y

ζA
z

⎤
⎦ ⊗

⎡
⎣0
0
0

⎤
⎦ +

⎡
⎣ζB

x
0
0

⎤
⎦ ⊗

⎡
⎣0
0
1

⎤
⎦ +

⎡
⎣ 0

ζC
y
0

⎤
⎦

⊗
⎡
⎣1
0
0

⎤
⎦+

⎡
⎣ 0

0
ζD
z

⎤
⎦ ⊗

⎡
⎣0
1
0

⎤
⎦

}
δA=MP+ 1

V0

⎡
⎣ 0 0 ζB

x
ζC
y 0 0
0 ζD

z 0

⎤
⎦ δA ,

Fig. 4 Another example of TBC implementation setting. Positions of
the constraints are arbitrary. All different choices of A and B would
essentially lead to the same condition to be satisfied to guarantee uni-
form distribution of tractions over the boundary of the micro-structure
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Fig. 5 Graphical illustration of the TBC implementation setting in
three-dimensional problems. We prescribe and update MP · N , ηB, ηC

and ηD iteratively until 〈F〉 − MF
!= 0, ζB

x
!= 0, ζC

y
!= 0 and ζD

z
!= 0

are satisfied. Note, point D is free to move in x and y directions

from which the required conditions to suppress the spurious
forces are obtained as

ζB
x

!= 0 ⇔ 〈Pxz〉 − MPxz
!= 0 ,

ζC
y

!= 0 ⇔ 〈Pyx 〉 − MPyx
!= 0 ,

ζD
z

!= 0 ⇔ 〈Pzy〉 − MPzy
!= 0 .

In order to satisfy these conditions, we prescribe and suc-
cessively update the positions of the points B, C and D in x,
y and z directions, respectively. Hence, the error vector reads

�(MP, ηB, ηC, ηD) = [〈F〉 − MF, ζB
x , ζC

y , ζD
z ]t != 0 with

ηB, ηC and ηD being the prescribed displacements on points
B, C and D. The consistent linearization of the error function
at iteration step i reads

�(MP i+1, η
B
i+1, η

C
i+1, η

D
i+1) = �(MP i , η

B
i , ηCi , ηDi )

+ ∂�

∂MP
|i : �MP i + ∂�

∂ηB
|i �ηBi

+ ∂�

∂ηC
|i �ηCi + ∂�

∂ηD
|i �ηDi

!= 0 ,

which furnishes the iterative increments �MP i , �ηBi , �ηCi ,
�ηDi that are used to update the state according to MP i+1 =
MP i + �MP i , ηBi+1 = ηBi + �ηBi , ηCi+1 = ηCi + �ηCi and
ηDi+1 = ηDi + �ηDi .

The proposed strategy reduces to the Lagrange multiplier
algorithmA commonly accepted strategy to implement TBC
is based on imposing the prescribed macro deformation gra-
dient via a Lagrange multiplier [70] briefly formulated in
Appendix A, see also [78–80]. Firstly, note that our pro-

posed methodology would become identical to the Lagrange
multiplier algorithm if we insert the condition (11) into the
residual vector and update the displacements, macro Piola
stress and η simultaneously. Roughly speaking, we regard
the residual and the condition (11) in a staggered manner
while the Lagrangemultiplier algorithm [70] solves both sys-
tems of equations in a monolithic sense. Secondly and more
importantly, the applicability of our proposed approach is not
limited to the strain-driven computational homogenization
but, it is also capable of efficiently dealing with stress-driven
homogenization. TheLagrangemultiplier algorithm is intrin-
sically developed for strain-driven homogenization.We have
implemented the approach in [70], too and both methods
obviously lead to identical results.

Stress-driven homogenization follows naturally In the
context of the stress-driven homogenization, the macro Piola
stress is the input of the problem. Therefore, no iteration
for updating the macro Piola stress is required. However,
the displacement to be prescribed on the semi-Displacement
constraints has to be updated until uniform distribution of the
traction over the boundary of the RVE is guaranteed. Hence,
condition (11) and the system of Eq. (12) reduce to one single
condition

	(η) = ζB
y

!= 0 ,

that is satisfied iteratively as

	(ηi+1) = 	(ηi ) + ∂	

∂η
|i �ηi

!= 0 , ηi+1 = ηi + �ηi ,

The algorithm to implement TBC in a stress-driven com-
putational homogenization is given in Alg. 2. Here, we
have only considered two-dimensional problems and the
setting illustrated in Fig. 3. However, the given algo-
rithm remains formally identical for two-dimensional prob-
lems with different settings and three-dimensional prob-
lems.

Semi-Dirichlet boundary conditions do not update in
small-strain settingMacroscopic balance of angular momen-
tum manifests itself in vanishing spurious forces ζ . In a
finite deformation setting, the macroscopic balance of angu-
lar momentum reads MP · MFt = MF · MP t and carries
geometrical information via MF = 〈F〉. This interpretation
is particularly important to explain an analogous strategy to
prescribe TBC for strain-driven homogenization in a small
strains. For a small-strain setting, the macroscopic balance
of angular momentum reads Mσ = Mσ t with σ being the lin-
earized symmetric stress at the material configuration often
referred to as Cauchy stress. At small strains, the spurious
forces must vanish to guarantee the symmetry of Cauchy
stresses and equivalently, or rather consequently in this case,
to satisfy the balance of angular momentum. More precisely,
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in contrast to the finite deformation setting, the balance of
angular momentum at small strains does not contain any
geometrical quantity. Thus, vanishing spurious forces do not
furnish any information regarding the update of the semi-
Dirichlet boundary condition nor it is required to update the
semi-Dirichlet boundary condition, at all, since the macro-
scopic balance of angular momentum is satisfied a priori.

Semi-Dirichlet boundary conditions intrinsically utilize
the uniqueness of the solution It is clear that the proposed
strategy heavily relies on the uniqueness of the solution to
the problem. For instance, if non-uniqueness arises due to
bifurcation instabilities, this methodology captures only one
of the possible solutions. It is however possible to perturb the
current position of the semi-Dirichlet constraints to obtain all
the possible solutions or to employ the eigenvalue analysis
to track the solution of interest or the one associated to the
lowest energy mode [81,82].

The proposed methodology is fully compatible with FE2

methods The current manuscript elaborates on the imple-
mentation of semi-Dirichlet constraints in a computational
homogenization setting and avoids the discussion on com-
puting the consistent tangents within a full FE2 framework.
This is simply due to the fact that the associated FE2 frame-
work is not influenced by our proposed methodology. In our
recent reviewarticle [55],wehave shownhowSemi-Dirichlet
boundary condition compares to other canonical boundary
conditions in a complete FE2 context via numerical exam-
ples.

4 Numerical examples

This section demonstrates the performance of the proposed
algorithm to implement TBC via a series of numerical
examples. We conduct our numerical analysis on both
two-dimensional numerical examples corresponding to fiber
reinforced composites as well as a three-dimensional micro-
structure representing particle reinforced composites. In
particular, we study the evolution of η for different macro
deformation gradients. More specifically, the settings illus-
trated in Figs. 3 and 5 are employed and the value of η for
two-dimensional micro-structures and the values of ηB, ηC

and ηD for the three-dimensional micro-structure are inves-
tigated. Moreover, we investigate the evolution of f :=
〈Pyx 〉 − MPyx according to Eq. (9) with respect to the macro
deformation gradient for the case that Dirichlet boundary
condition is used to eliminate rotational rigid body motions
instead of semi-Dirichlet boundary conditions. The existence
of a non-zero f clearly demonstrates the importance of semi-
Dirichlet boundary conditions as compared to the classical
Dirichlet boundary conditions. Obviously, f vanishes itera-
tively when semi-Dirichlet boundary conditions are utilized.
The prescribed macroscopic deformation gradient of inter-

Algorithm 2: constant traction boundary conditions in
a stress-driven homogenization framework

input: MP , material parameters

η = 0

assign homogeneous Dirichlet and semi-Dirichlet

BC to eliminate rigid body motion

while η is not correct do
apply MP · N on the Neumann part and update

semi-Dirichlet BC

solve the system of equations (7)

evaluate 〈P〉
	(η) = ζB

y

if ||	|| < tol then
η is correct

else

solve 	
!= 0

η = η + �η

end

end

output: MF

est corresponds to simple-shear in the xy-plane of the form
MF = I +MFxy ex ⊗ ey with MFxy representing the shear. In
addition, the convergence rate of the residual vector (6) and
the error vector (11) are detailed. The inclusion volume frac-
tion is assumed to be 25 % for all the examples. The samples
are discretized for simplicity using bilinear and trilinear finite
elements in 2D and 3D problems, respectively. The samples
and the associated finite element discretizations are shown
in Fig. 6.

The energy density and the associated constitutive resp-
onse of the micro-samples are assumed to be known. For the
sake of presentation, both the inclusion and the matrix are
assumed to behave according to a hyperelastic model with
the free energy density function ψ per unit volume in the
material configuration of the form

ψ =ψ(F)= 1
2 μ [F : F−3−2 log J ]+ 1

2 λ log2 J with

J =det F , (13)

and the associated Piola stress

P := ∂ψ

∂F
= P(F) = μ [F − F−t] + λ log J F−t , (14)

with μ and λ denoting the Lamé parameters. The material
parameters of the matrix are assumed the shear modulus μm

= 8.0 and the Poisson’s ratio νm = 0.3. The same Poisson’s
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(a) (b) (c) (d)

Fig. 6 Mesh set-ups of the two- and three-dimensional samples

ratio is chosen for the inclusion material. Both the inclu-
sion and the matrix are assumed to behave according to the
free energy density (13). The inclusion to matrix stiffness
ratio is denoted r. That is, r=10 for micro-structures with
inclusions 10 times stiffer than the matrix and r=0.1 for the
ones containing inclusions 10 times more compliant to the
matrix. Perfect bonding between thematrix and the inclusion
is assumed. All the examples are solved using our in-house
finite element code in C++ syntax. The solution procedure is
robust and for all examples shows the asymptotic quadratic
rate of convergence associated with the Newton–Raphson
scheme.

4.1 Two-dimensional micro-structures

Figure 7 illustrates the evolution of η and f for two-
dimensional micro-samples undergoing 0 up to 250 %
simple-shear deformation in the xy-plane for r = 0.1 and r =
10. Three different micro-samples (a), (b) and (c) in Fig. 6,
are considered. The numerical results show that the evolution
of η is non-uniform and very complex, in general. The value
η depends on the amount of the macroscopic deformation,
position of the inclusion as well as the inclusion to matrix
stiffness ratio. In particular, it is observed that when r = 0.1,
irrespective of the prescribed deformation value, η remains
always positive for the micro-sample (a). In contrast, the val-
ues ofη obtained for themicro-sample (c) are always negative
for all the prescribed deformations. An opposite behavior is
observed for r = 10. For both cases of r = 0.1 and r = 10
and for all the deformation values, η is greater for micro-

sample (c) compared to the micro-sample (a). In particular,
when 250 % of deformation is prescribed on micro-sample
(c), the value of η approaches −0.28 for r = 0.1 and 0.35
for r = 10. Another interesting point is that η can vanish
even for nonzero deformations. Furthermore, the evolution
of f := 〈Pyx 〉 − MPyx is illustrated. The parameter f man-
ifests the force that would have been generated if a classical
Dirichlet boundary condition was used instead of the newly
proposed semi-Dirichlet boundary condition. As expected, f
evolves oppositely to η and f reaches zero when η vanishes.

4.2 Three-dimensional micro-structures

The main objective of this section is to demonstrate the
performance of the proposed scheme for three-dimensional
problems using a micro-sample with a spherical inclusion
in the center. The evolution of both MPxy and η versus the
prescribed shear value MFxy ∈ [0, 2.5] are investigated. Fig-
ure 8 illustrates that the overall response of the material is
nearly linear for both cases of r = 0.1 and r = 10. Moreover,
the displacement to be prescribed at point B in x direction
is always vanishing for this particular load case. However, a
very wide range of values of η are required to be prescribed
at semi-Displacement constraints D and C.

4.3 Convergence behavior

Finally, in order to demonstrate the detailed performance of
our proposed algorithm, we study the convergence behavior
of both residual vector (6) and the error vector (11) when a
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Fig. 7 Evolution of η (solid line) and f (dashed line) for three different
two-dimensional micro-structures undergoing 0 up to 250 % simple-
shear deformation. The parameter η is the required displacement at the
semi-Dirichlet boundary condition so that the spurious forces vanish.
The parameter f manifests the force that would have been generated if
a classical Dirichlet boundary condition was used instead of the newly

proposed semi-Dirichlet boundary condition. Both cases of more com-
pliant inclusion (left) and stiffer inclusion (right) are considered. The
deformation modes depicted below the plots, from left to right, cor-
respond to the results of the TBC for MFxy = 0.625, MFxy = 1.3
and MFxy = 1.875, respectively
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Fig. 8 Evolution of xy-component of macro Piola stress and η for the
three-dimensionalmicro-structure containing a spherical inclusion at its
center and undergoing 0 up to 250 % simple-shear deformation. Both
cases of more compliant inclusion (top) and stiffer inclusion (bottom)

are considered. The depicted deformation modes, from left to right,
correspond to the results of the TBC for MFxy = 0.625, MFxy = 1.3,
MFxy = 1.875 and MFxy = 2.5, respectively

two-dimensional micro-structure undergoes 10 % and 50 %
of simple-shear deformation. Similar to theprevious sections,
both cases of r = 0.1 and r = 10 are considered. Here, the
two-dimensional micro-sample containing a circular inclu-
sion at its center is chosen.

As reported in Table 1, the convergence rate of both
the residual vector and the error vector are asymptotically
quadratic. When 50 % of simple-shear deformation is pre-
scribed, the macro Piola stress, which is initially zero, is

updated 4 times until it reaches the correct solution. More-
over, after the first update of the macro Piola stress, 9
iterations for r = 10 and 8 iterations for r = 0.1 are required
for the residual vector to be converged. When 10 % simple-
shear deformation is prescribed, a better convergence trend
is observed. In this case, 3 updates of the initial guess of the
macro Piola stress is sufficient for the problem to converge.
We emphasize that for all the cases reported in Table 1, the
problem is solved in a single load increment and conver-
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Table 1 Convergence behavior of the residual vector (6) and the error vector (11) for two different values of simple-shear macro deformation
gradient with MFxy = 0.1 and MFxy = 0.5. Both cases of r = 0.1 and r = 10 are considered

The L2 norms of the residual vector and the error vector are denoted ||R|| and ||�||, respectively. In addition, the correction
procedure of the macro Piola stress is given. In this table, i denotes the number of iterations to solve the system of Eq. (7).
These steps are distinguished from iterations to solve the system of Eq. (12) and macro Piola corrections by a gray highlight.
In all the cases, the problem is solved in one load increment

gence is achieved in less than 1 second on an average laptop.
Obviously, the convergence trend improves significantly for
a larger number of load steps.

5 Concluding remarks

In this manuscript, we have presented a novel approach to
implement TBC in a computational homogenization frame-
work at finite strains. Themain issuewith the implementation
of TBC is to deal with the singularity of the stiffness
matrix due to rigid body motions. Our proposed algorithm is
based on employing semi-Dirichlet boundary conditions to
eliminate the rigid body motions. Semi-Dirichlet boundary
conditions are non-homogeneous Dirichlet-type constraints
that simultaneously satisfy the Neumann-type conditions.

The commonly accepted strategy to implement TBC
in a strain-driven homogenization framework is given by
Miehe [70]. This approach is essentially based on employ-

ing a variational formulation and imposing the prescribed
macro deformation gradient via a Lagrangemultiplier.While
this methodology is suitable for strain-driven computa-
tional homogenization, it cannot be readily extended to
stress-driven computational homogenization. This lack of
uniformity has been the primary motivation of the present
contribution. Our main objective is to provide a computa-
tional algorithm for constant traction boundary conditions
suitable for both strain-driven aswell as stress-driven homog-
enization. The performance of the proposed scheme is
demonstrated via a series of numerical examples.

In summary, this manuscript presents an attempt to shed
light on the micro-to-macro transition for both stress-driven
as well as strain-driven homogenization frameworks. This
allows us to predict the overall material response via com-
putational homogenization using TBC. We believe that this
generic framework is broadly applicable to enhance our
understanding of the behavior of continuawith a large variety
of applications.
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Appendix: ImplementationofTBCvia theLagrange
multiplier method

This methodology is essentially based on solving the incre-
mental minimization problem of homogenization

MW (MF) = inf
d

MW (d) with

MW (d) = 1

V0

∫
B0

W (F; X) dV , (15)

with d being the unknown global vector of deformations
which minimizes the average incremental energy of the
micro-structure for a given macro deformation gradient. In

order to impose the constraint 〈F〉 − MF
!= 0, the Lagrange

multiplier method is used which yields the Lagrangian

L(d,λ;MF) = MW (d) − λ : [〈F〉 − MF] , (16)

withλbeing theLagrangemultiplier. It can be readily verified
that

∂L(d,λ;MF)

∂MF
= MP with MP = λ . (17)

Next, the derivatives of the Lagrangian functional with
respect to its variables are set to zero and the following sys-
tem of equations is obtained.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂L(d,MP;MF)

∂d
=0 ⇒ ∂MW (d)

∂d︸ ︷︷ ︸
Rint

−MP : ∂〈F〉
∂d︸ ︷︷ ︸

Rext

=0 ,

∂L(d,MP;MF)

∂MP
=0 ⇒ MF−〈F〉=0 .

(18)

Linearization of this system of equations yields

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rint(di+1)−Rext(
MP i+1)=Rint(di )−Rext(

MP i )

+∂Rint

∂d
|i ·�di − ∂Rext

∂MP
|i : �MP i

!= 0 ,

MF−〈F〉(di+1)=MF−〈F〉(di )− ∂〈F〉
∂d

|i ·�di
!= 0 .

(19)

where K = ∂Rint/∂d is the assembled tangent stiffness
matrix. In order to represent the system of Eq. (19) in matrix
format, all tensor products should be reformulates as matrix
multiplications. To do so,wefirst derive the nodal equivalents
of the global matrices ∂Rext/∂

MP and ∂〈F〉/∂d as

∂

∂MP
(MP : ∂〈F〉

∂ϕ J
) = I ⊗ 〈GradN J 〉 and

∂〈F〉
∂ϕ J

= I ⊗ 〈GradN J 〉 , (20)

respectively. The non-standard tensor product⊗ of a second-
order tensor A and a vector b is the third-order tensor D =
A⊗ b with components Di jk = Aikb j . Next, the double
contraction of the third-order tensor (20)1 with�MP and the
dot product of the third-order tensor (20)2 with nodal �ϕ J

in matrix format are derived as

I ⊗ 〈GradN J 〉 : �MP = �MP · 〈GradN J 〉
≡

[ 〈GradN J 〉x 〈GradN J 〉y 0 0
0 0 〈GradN J 〉x 〈GradN J 〉y

]

⎡
⎢⎢⎣

MPxx
MPxy
MPyx
MPyy

⎤
⎥⎥⎦ , (21)

I ⊗ 〈GradN J 〉 · �ϕ J = �ϕ J ⊗ 〈GradN J 〉

≡

⎡
⎢⎢⎣

〈GradN J 〉x 0
〈GradN J 〉y 0
0 〈GradN J 〉x
0 〈GradN J 〉y

⎤
⎥⎥⎦

[
�ϕ J

x
�ϕ J

y

]
, (22)

respectively. Hence, the final matrix format representation of
the system of Eq. (19) the reads

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈∇N 1〉x 〈∇N 1〉y 0 0
0 0 〈∇N 1〉x 〈∇N 1〉y

K
...

〈∇N n〉x 〈∇N n〉y 0 0
0 0 〈∇N n〉x 〈∇N n〉y

〈∇N 1〉x 0 〈∇N n〉x 0

[0]〈∇N 1〉y 0 〈∇N n〉y 0
0 〈∇N 1〉x · · · 0 〈∇N n〉x
0 〈∇N 1〉y 0 〈∇N n〉y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�ϕ1
x

�ϕ1
y

...

�ϕn
x

�ϕn
y

�MPxx
�MPxy
�MPyx
�MPyy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
i

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1
ext,x − R1

int,x
R1
ext,y − R1

int,y
...

Rn
ext,x − Rn

int,x
Rn
ext,y − Rn

int,y
〈Fxx 〉 − MFxx
〈Fxy〉 − MFxy
〈Fyx 〉 − MFyx

〈Fyy〉 − MFyy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
i
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where n denotes the total number of nodes and GradN is rep-
resented as ∇N for the sake of space. This system turns out
to be not singular and can be solved without further modifi-
cations.
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