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Abstract: In this paper we perform stability analysis of a class of cyclic biological processes
involving time delayed feedback. More precisely, we analyze the genetic regulatory network
having nonlinearities with negative Schwarzian derivatives. We derive a set of conditions
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case, we also consider homogenous genetic regulatory networks and obtain an appropriate
stability condition which depends only on the parameters of the nonlinearity function.
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1. INTRODUCTION

In this work, we will be concerned with the asymptotic sta-
bility of a class of biological systems, the so-called gene reg-
ulatory networks with delayed feedback (see, e.g. Smolen
et al. (2000a,b)). Basically, a gene regulatory network can
be described as the interaction of DNA segments with
themselves and with other biological structures such as
the enzymes in the cell. Therefore, it can be thought as
an indicator of the genes transcription rates into mRNA,
which is used to deliver the coding information required for
the protein synthesis, see e.g. Levine and Davidson (2005).
The model proposed in Chen and Aihara (2002) consists
of a set of differential equations in the following form:

pi(t) = — p1D1 (t) + Ip1 (gm (t — Tgm))
51(t) = —kgg1(t) + for(p1(t — 1))

: (1)
Pm(t) = —kpmPm(t) + fom(gm-1(t — 7g,,_,))
gm(t) = —kg1gm () + fom(Pm(t — Tpm)),

where p; and g; represent the protein and mRNA concen-

trations respectively. Models similar to (1) are frequently
encountered in the modeling of biological processes such as
mitogen-activated protein cascades and circadian rhythm
generator Goldbeter (1996), Townley et al. (1999) and

Sontag (2002). For instance, in Chen and Aihara (2002), a

simplified version of the system (1) is analyzed and a local

stability result is given. An explicit computation of the
allowable upper bounds on the delay value can be found

in Morarescu and Niculescu (2008).
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The system (1) under single time-delay and negative feed-
back has been studied and discussed in Enciso (2006),
where an easy condition for asymptotic stability has been
obtained. By using a Hopf bifurcation approach Enciso
(2006) showed the existence of oscillations in some cases.
He also used the arguments used in Liz et al. (2003), An-
geli and Sontag (2004) to embed the system (1) to a
discrete time system. In the present work, we will analyze
the gene regulatory network under positive feedback using
some of the results of Ahsen (2011). We will assume that
the functions f,; and fg; are nonlinear and have nega-
tive Schwarzian derivatives. As a subcase of the positive
feedback, we will consider the homogenous gene regulatory
network and obtain a sufficient condition for asymptotic
stability of the system which depends only on the param-
eters of the nonlinearity function.

The remaining parts of the paper are organized as follows:
In the next section we formulate the problem studied and
give some preliminary results. In Section 3 the main results
are stated. lllustrative examples are given in Section 4, and
concluding remarks are made in the last section.

2. NOTATION, PRELIMINARIES AND PROBLEM
FORMULATION

In this section, we present some basic definitions and
notations that are frequently used in the paper. For the
analysis of system considered here we will use properties
of Schwarzian derivatives, that are commonly employed
in analysis of these types of cyclic nonlinear feedback
systems, see e.g. Miiller et al. (2006). Let a function f
be defined from Ry to Ry. Suppose it is at least three
times continuously differentiable. Then, the Schwarzian

10.3182/20120622-3-US-4021.00020
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derivative of the function f, see Sedeghat (2003), denoted
as Sf(x), is given by the following:

—00 , if f'(z)=0
Sf)=1 '@ 3(f (2 o
i) 2 <f’(w)> 170

We use the notation f™ to denote the function obtained
by m compositions of f. We say that x is a fixed point of

fif f(x) =a.

In the sequel, we analyze the following simplified system
which is equivalent to (1), where we have a single delay in
the feedback channel:

a1(t) = =M1 (t) + gi(z2(t))
Ta(t) = —Aawa(t) + go(w3(t))

Tn(t) = =AnZn(t) + gn(z1(t — 7)).
Note the following relation between 7 and 7y, 7p;:

T= Z(Tpi + 7gi)- (3)

=1

In Section 3, we present conditions for the asymptotic
stability and existence of oscillations regarding the nonlin-
ear time delayed feedback system (2) under the following
simplifying assumptions.
Assumption 1 For alli=1,2,...,n, we have \; >0 .
Assumption 2 For all i = 1,2,...,n, the nonlinearity
functions g; satisfy:
(i) gi(x) is a bounded function defined on R ;
(i) we have either

gi() <0 or  gi(xr)>0 Vre(0,00). (4
Assumption 2 means that each g; is a monotone func-
tion and takes positive values. The nonlinearity functions
have R} as their domain since their domain represents
biological variables which take positive values. Also note
that ¢;(0) = 0 is allowed, since it does not violate the
monotonicity of g;. We will now define a new function g
in the following way:

g= (Ailgn o (590 e %gn). (5)

Definition 1. We say that the gene regulatory network is
under positive feedback if

gl(ac) >0 YV € (0,00).

Conversely, the gene regulatory network is said to be under
negative feedback if the above inequality is reversed.

In this work, we will only be concerned with the positive
feedback case. For the negative feedback case we refer to
Ahsen (2011).

Throughout the paper, we will make use of the following
result.

Theorem 1. (Smith (2008)). Consider the system (2) un-
der positive feedback. Any solution (2) with any nonneg-
ative initial condition converges to one of its equilibrium
points.

The above result is very important in the sense that the
solution does not diverge or show oscillatory behavior.
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However, the system may have a number of equilibrium
points, so which one is the attractor for a given initial
condition is not specified. Moreover, it is important to
identify the conditions under which we have a single
equilibrium point and multiple equilibrium points. In this
paper we will deal with these issues.

First obvious consequence of Theorem 1 is that when we
have single equilibrium point, we have global stability
(all non-negative initial conditions are brought to the
equilibrium point). In the following Corollary a condition
for single equilibrium is also given.

Corollary 2. Consider system (2) under positive feedback.
If the function g defined in (5) has a unique fixed point,
then the system (2) has a unique equilibrium point x4
and any solution of the system with a non-negative initial
condition will converge to its unique equilibrium point z.

Proof. If g has a unique fixed point, then it is shown in
Ahsen (2011) that the system has a unique equilibrium
point. The global convergence result follows directly from
Theorem 1. a

3. ANALYSIS OF THE CYCLIC NETWORK UNDER
POSITIVE FEEDBACK

In the sequel, we will analyze system (2) subject to positive
feedback. We assume that the nonlinearity functions have
negative Schwarzian derivatives and Assumptions 1 and 2
are satisfied.

Proposition 1. Consider the system (2) under positive
feedback and assume that g defined in (5) has negative
Schwarzian derivative. Then, the following results hold:
(i) The function g has at most three fixed points.
(i) If

g(z) <1 Vz>0,
then g has a unique fixed point. In this case, the system
defined by (2) has a unique equilibrium point x., which is
globally attracting.
(i) If g/(O) > 1 then g has a unique positive fixed point.

Proof. See Ahsen (2011). a

Therefore, if g satisfies conditions (ii) or (iii) of Proposition
1, then the unique equilibrium point of the system (2) is
globally attractive.

3.1 Homogenous Gene Regulatory Network under Positive
Feedback

In this section we deal with homogenous gene regulatory
network under positive feedback. Consider system (2)
under positive feedback with

gi(x) = f(x), Ai=1 Vi=1,2,..,n.
Notice that we did not assume any special form for f yet.
We start our analysis with the following Lemma:

Lemma 8. Let k(z) : R+ — I C R4 be a three times
continuously differentiable function satisfying

k (z) >0 YV € (0, 00).
Let h be defined on R} as
h(z) = k™ (x).

Then, any fixed point of h is a fixed point of k.
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Proof. Suppose that h(0) = 0 and k£(0) > 0 then we have
h(0) = E™(0) > ... > k(k(0)) > k(0) >0

which is contradiction. Therefore, k£(0) = 0 and 0 is a fixed
point of the function k. Let = > 0 be a fixed point of the
function h and suppose k(z) # . Then we have either

x < k(x) or k(x) < a.
If © < k(z), then since k is a strictly increasing function
we have

h(z) = k" (x) > ... > k(z) > z,
which gives us a contradiction. Similarly, if we have k(z) <
x then

hiz) =k"'(z) <..<k(z)<z
which is again a contradiction. Therefore, we should have
k(z) = x. Also, it is easy to see that any fixed point x of k
is a fixed point of h. Thus we conclude that the functions
k and h have the same fixed points. O

Remark 4. The homogenous system is under positive feed-
back either if

(i) f'(z) > 0 for all z € (0,00) or

(ii) f'(z) < 0 for all z € (0,00) and n = 2m for some
positive integer m. O

We will first deal with the case (ii) of Remark 4. From
linear algebra, we know that every positive number has a
unique prime decomposition. We also know that n is an
even integer. Then, we have either

(i) n = 2! for some positive integer [ or

(ii) n = 21p2...pln | where po, ps3, ..., pn are distinct odd
primes and I; > 0.

We have the following Lemma regarding case (ii) of Re-
mark 4:

Lemma 5. Consider the homogenous gene regulatory net-
work (2) under positive feedback with

f(x) <0,
Moreover, suppose that f has negative Schwarzian deriva-
tive. Then, f has a unique fixed point, say z¢o > 0, and
one of the following holds:
(i) We have n = 2. In this case

g(z) = f"(z) (6)
has the unique fixed point xg provided that

|f (zo)| < 1.
If | f'(z0)| > 1, then g has exactly three equilibrium points.
(ii) When n = 24 pk .. plr | we define h as

h(z) = fP (),

where P =TT"_, pﬁl In this case h has a unique fixed point
xo which is also the unique fixed point of f. If

|f/(1170)| <1

then we have |h'(z9)] < 1 and g defined in (6) has the
unique fixed point xg. If we have

|fl(‘r0)| > 17

then |h'(x0)] > 1 and g defined in (6) has exactly three
equilibrium points.

Proof. Firstly, since f is monotonically decreasing we
know that it has a unique fixed point xo. Suppose n = 2!

and let
g(z) = f"(2).
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Now, let hi(z) = f2 ' (2), then we have
g(x) = hy (b1 () hi(r) >0 Ya € (0,00).
From Lemma 3 with m = 2, we conclude that any fixed
point x of ¢g is a fixed point of the function h;. Let
ho(z) = f2° (), then we have
hi(x) = ha(h2(z))
and again from Lemma 3 we conclude that any fixed point

of hy is a fixed point of hs. Since n = 2! we know that g
has as many fixed points as h;—; which is defined as

hi-1(@) = f(f(x)).
If (z0)] < 1

at the unique equilibrium point zg of f, we conclude
that h;_1 has a unique equilibrium point. Therefore, from
Lemma 3 we deduce that g has a unique fixed point.
Lemma 3 also implies that if

|f ($0)| > 17
then the function h;_1(z) has exactly three fixed points.
Therefore, from Lemma 3 the function g(x) has three fixed
points.

and

If we have

Now for the second part, consider n = 24 pl;....pﬁ{l and let

P = pl;....pﬁl“.
and
h(z) = [ (x).
Since P is an odd number, we have
K(z)<0  Vze(0,00).

We also know that h has negative Schwarzian derivative
by the convolution property of Schwarzian derivatives, see
Sedeghat (2003). Therefore, h has a unique fixed point.
Since f is decreasing it has a unique fixed point xg. Also

note that

h(zo) = [ (w0) = @0,
from which we conclude that the unique fixed point zy of
f is the unique fixed point of h. Also note that

W (z0)| <1 & |f (z0) < 1.
Similarly, we have
W (@)l >1 & |f (w0)| > 1.
Notice that
g(w) = 1" (@). (7)
Then the rest of the arguments are the same as the proof
of the first part. ]

We will continue our analysis with case (i) of Remark 4. We
consider the homogenous gene regulatory network under
positive feedback with f satisfying

F (@) >0 Ve (0,00). (8)
Lemma 6. Consider the homogenous gene regulatory net-

work (2) under positive feedback with the nonlinearity
function f satisfying (8). Then, the function

g(x) = f"(x)
has as many fixed points as f. In particular, if f has a

unique fixed point, then system (2) has a unique equilib-
rium which is globally attractive.

Proof. Lemma 3 and Proposition 1 gives us the desired
result. a
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We are interested in the fixed points of the function f. If,
further, f has a negative Schwarzian derivative, we know
that it has one, two or three fixed points. As an example,
let us consider the following Hill type of functions and try
to find some conditions regarding its fixed points. The type
of functions we will consider is given by
ax™
fla) =
so we rule out zero as a fixed point by taking the constant ¢
strictly positive. Then x > 0 is a fixed point of the function
defined in (9) if x is a root of the following polynomial:

h(z) = 2™ — (a + ¢)2™ + bx — be. (10)
Some interesting cases regarding the function (10) may

occur. Let us consider one such interesting example. Let
a=3.6,b=>5 m=2and ¢c= 0.4, then we have

h(z) = 2™ — (a+ c)2™ 4+ bx — be = (x — 1)%(x — 2)
which implies that the function f has exactly two fixed
points.

+c¢, a,b c>0 (9)

We will try to find a sufficient condition depending on the
parameters a, b, ¢ and m so that the function f defined
in (9) has a unique equilibrium point. First note that for
arbitrary positive constants a, b, ¢ and m, we have

h(0) = —bc < 0.
Therefore, if we have
K(z)>0 VzeR,, (11)

then h can have at most one positive root so f has a unique
fixed point. For m > 1, we have

B (z)=(m+1Da™ — (m)(a+c)z™ " +b
=2™ H(m+ 1)z —m(a+c)) +b=hi(z)+b.

In order to guarantee (11) , we should have

hl(I) > —b Vo € R+.
But h; takes its minimum at the point y where
hy(y) = 0. (12)

As a result of (12), we get the following equations:

hy(z) = (m +1)(m)a™ " = (m)(m — 1)(a + c)a™ >

= "2 m)m + (e~ T (a+ o)
= I =06y = T (ato)

= min(h (z)) = by (::L 1((1 * C))
o (m— 1>m_1 (a+o)m.

m—+1

Combining this with (11) and (12), we arrive at the
following result:

m+1
Hence the following result has been established.

m—1 m—1 )
( ) (a+c¢)" <b= hi(x)>—-b=h(x)>0.

Proposition 2. Let f be given as a function in the form
(9). Then the following holds:

(i) If m = 1, then for any positive constants a, b and c,
the function f has a unique fixed point.
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(i) Ifm =2, 3,...

satisfy
m—1 m—1
o - m <y

(m—l—l) (a+e)™ <b,

then f has a unique fixed point.

and the positive constants a, b and ¢

Proof. We already proved the case (ii). For the case where
m =1, let a, b and ¢ be arbitrary positive constants. If y
is a fixed point of the function f, we have
h(y) =y* + (b —a — c)y — be = 0.

But h can have at most two roots. Since

h(0) <0
h has only one positive root; so, f has a unique fixed point.
O

h(—00) = oo,

We have said in Theorem 1 that under positive feedback,
the solution converges to one of the equilibrium points
independent of delay, see also Smith (2008). Therefore,
there should always exist at least one equilibrium point
which is locally stable. The following result establishes this
property:

Proposition 3. Consider the system (2) under positive
feedback, i.e., g defined in (5) satisfies:

g (z)>0 Vo e Ry.

Suppose that g is bounded and continuously differentiable,
then ¢ has a fixed point 1 € Ry such that

g (z1) < 1.
Thus, the system is locally stable around the equilibrium
point z.q = (z1, 2, ..., Tn), Where

Tn = gn(@1)/An, ..., 22 = g2(23) /2.

Proof. Since the function g is bounded, the following
supremum is well-defined:

a = sup (g(x)).
rER

(13)

It is clear that if = is a fixed point of g, then x < a. Let
the set S be defined as

S:{‘TER-F g((E):iC},
then, because of (13), b = sup(S) exists. Note that since

g is bounded and positive, the set S is nonempty. Since
b = sup(S), there exists a sequence z; € S such that

g(x;) =2; and lim (z;) =b.

Since g is continuous, we have

g(b) ="b.
Suppose that for all fixed points x of g, we have

g (z) > 1.
Then, g(b) = b and ¢ (b) > 1, but since g bounded then
dz > b such that

9(z) = z.
But this is contradiction to (13), so there exists some
1 € Ry such that

g (x1) < 1. (14)
The system has the following linearized transfer function
around the equilibrium point z.,:

B g (@) T (N)e™ |
Gls) = (1 * [T (s + i) )
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The system is locally stable around ., if the roots of G(s)
are in the left half plane. Combining (14) and the fact that
the system is under positive feedback, we can verify the
following:

0< g/(xl) < 1.
By applying small gain argument, we can see that the

system is locally stable independent of the delay value 7.
O

4. EXAMPLES

We now illustrate the theoretical results obtained in the
previous section by examples.

Ezxample 1. Let the function f be in the following form:

3.622

fla) = 5+ x2

Let n = 3, in this case the system has two equilibrium
points

+0.4. (15)

81 = (1’17 ]‘), 82 = (2,272)' (16)
From Theorem 1, we expect the general solution of the
system either to converge to e; or to es. First, we present
the simulation result shown in Figure 1 which corresponds
to initial conditions z1(0) = 0.9, x22(0) = 0.95 and
23(0) = 0.85 and time delay 7 = 0 (here, we give the result
corresponding to x1(t), other coordinates show similar
behavior). As can be seen from Figure 1, the solution
converges to the equilibrium point e;. Next, we simulate
the same system with initial conditions x1(0) = 1, 22(0) =
3, x3(0) = 4 and time delay 7 = 2. The simulation results is
shown in Figure 2. When we change the initial conditions,
the system converges to the other equilibrium eo which is
compatible with the theoretical results we obtained.

—X (state)

0.98[
0.96

0.94

9 . . . .
o 2000 4000 6000 8000 10000
Time

Fig. 1. z1(¢) vs t graph for the homogenous gene regulatory
network under positive feedback with 7 = 0.

350 — 0
— %0
0

. . .
0 5 10 15 20 25 30 35 40 45
Time (t)

3(t) and 7 = 2 vs t graph with
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Ezample 2. In this example we will investigate the positive
feedback with n = 3 and having the following nonlinearity

function
2x

f@) =5~
This gives the unique equilibrium point z., = (2,2,2),
so we expect the solutions to converge to z., for any
arbitrary initial condition and time delay. Figures 3 and 4
show the simulation results of the system corresponding
to the initial conditions z(0) = (3,0.5,4), 7 = 0 and
z(0) = (5,3,0.7),7 = 5 respectively. As we expect the
solution converges to the unique equilibrium point ..

+ 1.

(17)

351 X, (1)
()

3 X,()

25
%

ok _
15F

4L
0.5 . .

0 5 10 15

Time (t)

Fig. 3. z1(t), x2(t) and x3(t) vs t graph with z(0) =
(3,0.5,4), 7 = 0.

x(t)

3
25&

Time (t)

Fig. 4. 21(t), x2(t) and x3(t) vs ¢ graph with z(0) =
(5,3,0.7), T =5.
Ezample 3. In this example, we will investigate the ho-
mogenous positive feedback case with three equilibrium
points. Namely, consider the system (2) with A; = 1 and
gi(x) = f(x) is given by
f(x) =goyg(x),
where g has the following form:
2

9@ = 535128
The function g has the unique fixed point yo = 1.1442 and
the function f has y; = 0.0039, yo = 1.1442 and y3 = 8
as its three fixed points. Therefore, the system has three
equilibrium points z1 = (y1,y1,¥1), 22 = (y2,92,y2) and
z3 = (Y3, 3, y3). If we calculate the derivative of f at its
fixed points, we get the following results:

) = f'(ys) =213-107° <1 f'(y2) = 6.6 > 1.
The characteristic equation HZ(s) of the linearized system
around each z; is given by the following formula:

(f(@:)’e™™

Hi(s)=1+ (5117

i=1,2,3.

Since we have

(fwi))? <1 for i=1,3,
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the system is locally stable independent of delay around z;
and z3. The linearized system around z, has the following
characteristic equation:

288e77¢

(s+1)3"

It can be shown that the system is unstable independent
of delay in this case. Therefore, we expect the solution to
converge to either z; or z3. Figure 5 shows the solution
of the system with z(0) = (1,1.2,1.4), 7 = 0. Although
x(0) is near to z the solution converges to zs. Figure 6
shows the simulation results of the system with z(0) =
(1,0.9,0.8) and 7 = 2. Again, z(0) is near to zo but the
solution converges to z; which confirms our theoretical
expectations.

HZ(s)=1+G.(s) =1+

. . .
10 15 20 25
Time (t)

Fig. 5. z1(t), x=2(t) and z3(t) vs ¢t graph with z(0) =
(1,1.2,1.4), 7=0

0.8

0.6

x(t)

0.4

0.2

10 Time 15 20 25

Fig. 6. z1(t), x2(t) and z3(t) vs ¢t graph with z(0) =
(1,1.2,1.4), 7=0

5. CONCLUSIONS

In this work we considered gene regulatory networks mod-
eled as cyclic nonlinear dynamical systems with time de-
layed feedback. We analyzed the gene regulatory network
under positive feedback and under the assumption that the
nonlinearity functions have negative Schwarzian deriva-
tives.

We derived conditions for single positive equilibrium point,
which is asymptotically stable independent of delay. In
some cases there are more than one equilibrium point.
For these situations, we demonstrated how to compute
these equilibrium points and whether they are stable or
not. We also investigated the homogenous network under
positive feedback and derived sufficient conditions for
asymptotic stability. As a special case, homogenous gene
regulatory networks with Hill type of nonlinearities are
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considered and sufficient conditions depending only on
the parameters of the nonlinearity, are derived for the
asymptotic stability independent of delay.

In this paper, we have shown that multiple stable equilib-
rium points may exists for the system (2). An interesting
question as a future extension of the current work is to
estimate the radius of convergence for each stable equilib-
rium point.
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