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Abstract: A stability condition is derived for cyclic systems with time delayed negative
feedback. The result is an extension of the so-called secant condition, which is originally
developed for systems without time delays. This extension of the secant condition gives a new
local stability condition for a model of GRNs (Gene Regulatory Networks) under negative
feedback. Stability robustness of homogenous networks is also investigated.
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1. INTRODUCTION

Let us consider an nth order linear time invariant plant
consisting of cascade connections of n stable first order
filters whose DC gains are normalized to unity and pole
locations are s = —\;, ¢ = 1,...,n. Assume that this plant
is in negative feedback with a static controller whose gain
is £ > 0, and let 7 > 0 be the time delay in the feedback
loop. Then, the characteristic polynomial of this feedback

system is
. S —Ts
x(s) il:[l(/\i—i—l)—i—ke : (1)
Clearly, by the small-gain theorem, the feedback system is
stable independent of time delay if k < 1. However, it is
well known that the small-gain condition is conservative in
general. In other words, there are (k,7) pairs with k > 1,
and 7 > 0, for which the feedback system is stable. For the
case where \;’s are distinct, analytic computation of the
exact stability region may not be possible, and one resorts
to graphical/numerical methods such as Nyquist or Bode
plots, see e.g. Ozbay (1999) and Michiels and Niculescu
(2007).

For the delay-free systems the secant condition, see e.g.
Sontag (2006), is less conservative than the small-gain
condition. Accordingly, when 7 = 0, the feedback system
is stable if the following condition holds:

™
k< —)". 2

< (sec ) )

The inequality (2) is known as the secant condition. Note

that when n = 1 or n = 2, under 7 = 0, the system is
stable for all k£ € Ry. So, the problem of finding a stability

* Corresponding author Hitay Ozbay.

range for k becomes more interesting when n > 3. On the
other hand, (sec 7)™ > 1 for n > 3, so the secant condition
is less conservative than the small gain condition: 8 to 2
times less conservative for n between 3 and 7, respectively,
see Figure 1.
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Fig. 1. The secant condition is less conservative than the
small gain condition.

In this paper, the secant condition is extended to include
time delays. That leads to a condition on stability of the
feedback system whose characteristic equation is in the
form (1). Moreover, this result is applied to a time-delayed
cyclic dynamical network representing Gene Regulatory
Networks (GRNs) under negative feedback, to derive con-
ditions regarding local stability of the network. This prob-
lem was considered earlier in Ahsen et al. (2014a). Due to
a sign mistake in Ahsen et al. (2014a) the local stability
condition presented there (Lemma 6) is valid only for the
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positive feedback case. Here we correct this mistake and
provide a local stability analysis for the negative feedback
case. Further discussion on this topic can be found in
the recent book Ahsen et al. (2015). Another problem
investigated in the present paper is stability robustness for
homogenous GRNs under negative feedback. A stability
condition was derived in Ahsen et al. (2015) for homoge-
neous networks with a special Hill type of nonlinearity.
Here we examine how much deviation from homogeneity
can be tolerated.

In the next section, some notation and preliminary results
are given. An extension of the secant condition to systems
with time delays is presented in Section 3. Applications of
this result to local stability of the GRNs are the subject
of Section 4. Homogenous GRNs and stability robustness
to perturbations in the nonlinear functions is considered
in Section 5. Concluding remarks are made in Section 6.

2. NOTATION AND PRELIMINARY RESULTS

The GRNs considered here are cyclic connection of n stable
first order filters whose inputs are subject to a static
nonlinearity. Typically, in biological systems, these non-
linear functions are Hill type nonlinearities. In this work
we will consider a more general class, where the nonlinear
functions are assumed to have negative Schwarzian deriva-
tives. In order to set-up the notation for the rest of the
paper, in this section, we provide the definition of functions
with negative Schwarzian derivatives, see Chapter 3 of
Ahsen et al. (2015) for more detailed discussion on relevant
properties of such functions.

Let f™ denote the function obtained by m compositions of
a given function f. For a function f, the point x is a fixed
point if f(x) = x. Let a function f be defined from R4 to
R,. Suppose it is at least three times continuously differ-
entiable. Then, the Schwarzian derivative of the function
f, denoted as Sf(x), is given by the following expression,
see Sedaghat (2003),

—00 if f'(z) =

@) 3 (@Y
Fila) 2(f%ﬂ) ff()#o(w

Some immediate results can be deduced from the above
definition as follows.

Sf(x) =

Lemma 1. Let I C R be an interval and suppose f,

h € D3(R,) such that the function f o h is well-defined.
Suppose also that we have

fx)#0  Vz e (0,00), (4)
then the following properties hold:

(1) For any c € R and d € R\ {0}, Sf(x) =
and Sf(x) = S(df (x)).

(2) S(foh)(z) = Sf(h(x)) W(x)*+ Sh(z).
(3) If Sf(x) <0, Sh(z) <0 then S(foh)(z) <0
)

(4) If Sf(z) < 0 Vz € int(I), then f'(z) cannot have
positive local minima nor negative local maxima. O

S(f(z) +¢)

The proofs of the properties mentioned in Lemma 1
can be found in Sedaghat (2003). From (3), one can

calculate Schwarzian derivatives of some functions that are
frequently used in the analysis of biological systems:

() -5 (i) - 25 o

S(p tanh(gz)) = —2¢*> a,b,p,q>0 meN. (6)

We can see that Hill functions, given in equation (5), have
negative Schwarzian derivatives for m > 2. Moreover, tan-
gent hyperbolic functions appearing frequently in neural
networks also have negative Schwarzian derivatives.

3. AN EXTENSION OF THE SECANT CONDITION
FOR SYSTEMS WITH TIME DELAYS

Consider a linear plant with the following state space
representation:

x(t) = Apx(t) + Bu(t),

y(t) = Ca(t)
where
[ X1 b1 O 0 ]
0 Xy by 0---
Ay = 0 o . 0
. b
0 Lo 0 A
B:[(_) 0 1" —
C=[10 --- 0

It is assumed that A\; > 0 for i = 1,...,n, and b; € R for
i =1,...,n — 1. Suppose now we apply a delayed static
output feedback control in the form

u(t) = bny(t - T)a
where b,, is the constant controller gain. Then, the feed-
back system is described by state space equation
z(t) = Aoz (t) + Arz(t — 1), (7)
where A; = b,CB. The characteristic polynomial of the

feedback system, det(sI — Ao — A1), can be computed
to be in the form

x@=<H@+&O—&T5 8)

i=1

5=Hbz‘- 9)

In this paper, we assume that the system is under negative
feedback, which means that 8 < 0. Accordingly, define

p
ki=————
H;L:1 Ai
which is positive. The characteristic function x(s) defined

in (8) has all its roots in C_ if and only if the transfer
function

T(s):=G(s)(1 +G(s))~*
is stable, where

(10)

ke—TS

G = I s/n)
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is the open loop transfer function. Cyclic systems of the
form (7) (where Ag and A; have special structures given
above) are frequently encountered in modeling of biological
processes such as gene regulation, which is a motivation for
the current work, see Ahsen et al. (2014a), Enciso (2007),
Hori et al. (2013) and their references for specific examples.

When £ > 0 and 7 = 0, i.e. there is no time delay, the
secant condition states that if
k<:( W)n ! (11)
sec— | = ———,
n (cos 7)™

then, the transfer function T'(s) is stable.

Next result extends the secant condition for systems with
a time delay, i.e. 7 > 0. It is also included in our recent
book Ahsen et al. (2015).

Proposition 1. Consider the system given by (7), with
Ai > 0fori=1,...,n, and assume that k > 1 (clearly, if
0 < k <1 then, the feedback system stable for all 7 > 0).
Suppose now 7 is fixed and let A := max; A;. If
e n

k< (sec n) , (12)
and
T — M arccos ( { 1/k)
T <

(13)

= Tm,

W,
where w,, = AV VEk2 — 1, then the system (7) is stable.

Proof: The proof is included here for completeness and
for setting up the notation for the next section. It is
taken from Chapter 5 of Ahsen et al. (2015) with slight
modification on the notation.

Let pr(w) and ¢, (w) be
n w 2
w =TT (5) +1
i=1 t

s w
T = t b .
qr(w) ;:1 arctan <)\i> + Tw

Note that both p and ¢, are increasing functions of w. Let
w, be the gain-crossover frequency such that p(w.) = k. By
using the Nyquist criteria for stability, we conclude that
T'(s) is stable if

(14)

qr(we) < . (15)
Now assume that (12) holds so the delay free system is
asymptotically stable by the secant condition. Let

W,
0; = arctan | ~ | .
arcan()\i)

Since each 6; is positive, by the definition of tangent
inverse function we have 6; € (0,7/2) for all i. The system

remains stable if
n
TWe < T — g ;.
i=1

A2
cos(®) =131 w2

1
[T, cos(6;)

Note that

so we have
= k.

Similar to Sontag (2006), we use the fact that

n ’(L 91 n
Hcos(ﬁi) < (cos (241)> , (16)
n

i=1

so we have
b 1 S 1
H?:l COS(ei) - (COS (W))n ’
The above equation implies that
Zﬂi < narccos(\"/l/k) . (17)

i=1
Therefore,

ﬂ—narccos(’{”/l/—k) < w—i@i.
i=1

Hence, if Tw, < m — narccos ( ty 1//€), then the system is
stable. Let A = max; \;, and define

W = M k7 — 1.

Note that, w. < wy,. Therefore, if
T — n.arccos ( 1 l/k)

T < =Tm
Wm

then the system is stable, which concludes the proof. O

(18)

Note that the necessary and sufficient condition for stabil-
ity of the system (10) is
n
T< T2z i Liz1 b = Te.
We

Clearly, 7, < 7, in general. The computation of 7. can
be done numerically; what is preventing us to find an
analytical expression like 7,,,, (18), is that for a given k,
the crossover frequency w,. can only be determined using
numerical tools. On the other hand, when A\; = )\ for
all ¢ = 1,...,n, the gain crossover frequency w. can be
computed analytically as w. = w,,. Moreover, in this case
the inequality (16) becomes equality which implies that
Te = Tm. In other words, for the case A; = A for all
1, the secant condition derived in Proposition 1 becomes
necessary and sufficient for feedback system stability. See
e.g. Arcak and Sontag (2006), Arcak and Sontag (2008),
Sontag (2006), and references therein for further discus-
sions on the interpretations of the secant condition. It
should also be pointed out that a different version of the
secant condition obtained here was derived in Wagner and
Stolovitzky (2008). This point is discussed in the next
section with an example.

(19)

4. A MATHEMATICAL MODEL REPRESENTING
GENE REGULATORY NETWORKS

The cyclic feedback model we study in this paper is given
as:

@1(t) = =Mzi(t) + g1(22(t))
io(t) = —Xowa(t) + ga(2s(t))
. (20)

Tn(t) = =Anzn(t) + gn(x1(t — 7)).
We assume that A\; > 0 for all ¢ = 1,...,n, and the
nonlinear functions g; satisfy the following properties for
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all i: g;(z) is a bounded function defined on Ry; gi(z) <0
or gi(z) > 0, and Sg;(z) < 0 for all z € (0,00). Note
that, in general, there may be time delays between each
cascade connection above. But they can be handled by
a state transformation, and the system can be put in the
form (20), where there is a single delay, which is equivalent
to total delay in the feedback loop, see Chapter 4 of Ahsen
et al. (2015).

Systems of the form (20) is observed in biological sys-
tems. Examples arise in the construction of genetic toggle
switches, Gardner et al. (2000), and in the repressilator
gene networks that generate circadian rhythms, Buse et
al. (2010), Elowitz and Liebler (2000). The most impor-
tant of such networks that can be modeled in the form
of (20) are the GRNs; see Ahsen et al. (2014a), Chen
and Aihara (2002), Hori et al. (2013) Ma et al. (2005),
Morarescu and Niculescu (2008) for the justification of the
model and literature survey. Accurate modeling of GRN
can help us understand the underlying mechanism of the
biological processes; thus, it can provide researchers new
tools to control cellular processes, which may lead to better
treatments of diseases.

Now define a new function

1 1

9= (5010 (5 g0 %gn). (21)

An important point to note is that by Lemma 1, g(z) has
negative Schwarzian derivative, i.e. Sg(z) < 0 holds.
Definition 1. The gene regulatory network (20) is said to
be under negative feedback if

gd(x)<0 Ve (0,0)
and it is under positive feedback if
g (x) >0 Yz € (0, 00).

In this work we consider the negative feedback case, as in
Ahsen et al. (2014a). The positive feedback case has been
studied in Ahsen et al. (2014b). Next, we briefly present an
equilibrium analysis from Ahsen et al. (2014a), and using
the results of the previous section we derive a local stability
condition. Due to a sign mistake in Ahsen et al. (2014a) the
local stability condition presented there (Lemma 6) is valid
only for the positive feedback case. Here we correct this
mistake and provide an analysis for the negative feedback
case.

The following result illustrates the relation between the
equilibrium points of (20) and the fixed points of (21).

Lemma 2. Let h(z) : R} — Y C R" be defined as

where

9i(z:) Ry =Y, TR, Vi=1,2,...,n.
At any equilibrium point point z., of (20), we have
h(ZTeq) = Teq- Then, there is a bijection between the fixed

points of the functions h and g. In particular, if g has
a unique fixed point, then the system (20) has a unique
equilibrium point.

Proof: See Ahsen et al. (2014a). O

Note that each g;(x) > 0 for z > 0, so in order to have
an equilibrium in the positive cone R’ , we need g(0) > 0.
But then, under negative feedback, ¢’(z) < 0 for all x > 0;
so we have a unique equilibrium point in this case. Let
Teq = [21,...,z,]T be the unique equilibrium point of the
GRN. Then, the linearization of the GRN around z.,
results in a system in the form (7), with

b1 =gi(x2), -y bu—1 = gn_1(@n), bn = gp(21).
Thus, the characteristic equation of the linearized system
is of the form (8) where

B=g1(2) gp_1(zn) - gn(21) -
It is a simple exercise to check that
_B
H?:l Ai
By the negative feedback assumption, ¢’'(z1) < 0, so, we
have k > 0, and thus the result of Proposition 1 is appli-
cable for this system. More precisely, (20) is locally stable
around its equilibrium x., = [21,...,2,]" independent of
delay, if |¢’(z1)| < 1. Furthermore, (20) is locally stable
around its equilibrium if

k=— = —g'(x1).

k= V|g(z1)] < secg (22)
and (1/r)
m —narccos(1l/k

=!Tm 23

! AvkZ =1 § (23)

S Ant
It is clear that (22) is equivalent to

where A = max{J\q,..

T
— <1
cos — < /K,
so, arccos(1/k) < m/n. Hence 7, > 0 when (22) holds.

Note that we only provide a local stability result around
the unique equilibrium point of the GRN (20). Our results
are inconclusive about the global behavior of the system.
Nevertheless, in Ahsen et al. (2014a) it is shown that if
l¢’(x1)] < 1 then the system is globally stable around
its unique equilibrium point. The small gain condition
|¢’(xz1)] < 1 also implies delay independent stability of the
linearized network. However, when |¢'(z1)| > 1, we can not
make any conclusions regarding the global stability of the
system. Our extensive simulations suggest that the local
stability of the system also implies the global stability of
the network. The proof of such a result would most likely
require a modified version of the Poincaré-Bendixson type
of result obtained in Mallet-Paret and Sell (1996). See also
Ahsen et al. (2015) for further discussions.

Ezample. See also Exercise Problems at the end of Chap-
ter 5 of Ahsen et al. (2015). Consider the cyclic system:

@1(t) = =Mz (t) + g1(z2(1)) (24)
B2(t) = —Aaz2(t) + g2(21(t — 7)), (25)

where Ay = 2 and Ay = 0.5, g1(2) = 357, g2(z) = {255
and 7 > 0. The unique equilibrium point of (24)—(25) is
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xe. = [0.55, 1.86]7, so we define x; = 0.55 and 2o = 1.86. It
is easy to verify that the fixed point of g = (%191) °© ()%292)
is 1 = 0.55 and ¢'(z) < 0 for all z > 0, i.e. the cyclic
system is under negative feedback. In particular,

g1(x2) - g5(z1)
AL A2

Hence k = v/1.9447 = 1.3945. Since sec(w/2) = oo, the
inequality (22) is automatically satisfied. By using (23)
we compute 7, = 0.8227; whereas the exact delay bound
7. for local stability around z. is calculated numerically
from the delay margin of the feedback system whose
open loop transfer function is G(s) = m by
using the Bode plots and allmargin command of Matlab:
7. = 2.3585. The conservatism introduced here is due to
the fact that A\; and Ay differ by a factor of 4; in this case
Te/Tm = 2.87. We expect that as A; and A2 get closer to
each other, 7, increases to 7.

k= =1.9447 = —¢'(z1) .

Recall from the proof of Proposition 1 that the system is
locally stable if

m — narccos(1/k)

T < (26)

We

where k = ¥k and w, is the solution of the equation

2 2
2 _ We We

As mentioned before, analytical computation of w,. is

typically impossible especially when n > 3 and \;’s are

distinct. This is the reason why w,, is determined as an

upper bound and it has been used in (18). However, it is

possible to determine another bound by re-writing (27) as
2n

w
= 5" + R(w.

g R
where R(w.) > 0 for all w, € Ry, and R(w.) is an
increasing function of w.. This motivates the definition of
wm, as the solution of

(27)

k2 -1

(:j2n

that is
Om =\ Ak2 -1 A=A M,
Clearly, w. < @y,. Thus another estimate of 7. is
— narccos(1/ Vk
e AT, (28)
A k2 -1

and we have 7,;, < 7.. In conclusion, for finding an estimate
of w, rather than taking the maximum of \;’s, it may be
preferable to use their geometric mean. See Wagner and
Stolovitzky (2008) where a similar analysis is conducted.

where

Returning to the numerical example, we see that A = 1,
and @,, = 1.2915; these give 7,,, = 1.2383. This represents
an improvement in the estimate of 7.: we now have
Te)Tm = 1.9.

However, we should point out that it is not always possible
to compare 7, and 7, as illustrated by the following
example. In (24)—(25) let us now take A\; = 2 and Ay =
1. Then, the equilibrium point shifts to z; = 0.7441,
ro = 1.4254; linearization around this point gives the
gain k = 1.2975. Then, we compute 7. = 3.1035, with
we = 0.7052; the estimates are 7,,, = 1.9646 and 7,,, =

1.666. In this particular case using (28) over (18) is not
preferable. In conclusion, these two analytical bounds
should be computed side by side and the larger one should
be used as a lower bound of 7.

5. ROBUSTNESS ANALYSIS OF THE
HOMOGENEOUS NETWORK

In this section we consider the following homogeneous
network

#1(t) = —w1(t) + g1(z2(?))
Ta(t) = —x2(t) + ga(xs(t))
. (29)
() = —2n(t) + gulwa (t — 7)),
with each g;(x) is given as
gz(x) = Eim, (30)

where @ > 0, b > 0, and m € N with m > 2, are common
constants for each of the nonlinearities; the variables ¢; can
be seen as perturbations from homogeneity of the network.
Note that in order to have negative feedback n should be
an odd number. The dependence of the global stability
of the network on the parameters ¢; is determined by the
following.

Proposition 2. Consider the homogenous GRN model
given in (29). Let z., = [z1,...,2,]" denote the unique
equilibrium point of the system. If for each i we have

/b
i bm )
@ € < m—1

then the system is globally stable around its unique
equilibrium point z,.

(31)

Proof: In the light of Proposition 2 of Ahsen et al. (2014a),

it is sufficient to show that (31) implies |¢'(z1)| < 1. Note

that the following equalities hold at the equilibrium point
a

Ti=€——0— i=1,...,n (32)
b+ i,
with 2,41 := x1. We can calculate |¢'(z1)]| as
n m—1
€ amx;
'@l =11 7 s
iI;[l (b+aity)?
B xlmx;n_l o Tp_1mam1 . :vnmxi”_l
 b+ap b+ zm b+ a7
mal®
= L 33
E b+ (33)
Now, if the following inequality holds for each @
ma]®
< 34
b+ (34)
then |¢'(z1)| < 1. So, it is sufficient to check that (34) is
satisfied for each i. Note that the function f(x) = bi% is

monotonically increasing for all z > 0. Also, from (32) we
have

xr; < € a/b
Therefore, if mf(e;a/b) < 1 then (34) holds. In other
words,

(€i a/b)™

— <1 Vi=1,...
mb—l—(ei a/b)™ < T

(35)
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implies |¢’(z1)] < 1. By re-arranging the terms in the
above inequality, it is easy to see that (35) is equivalent to

having
[ b
e a<b t—, Vi=1,...,n,
m—1

which completes the proof. O
Recall from Ahsen et al. (2014a) that

m m] b
m—lb m—1

a <
is a sufficient condition for |¢'(z1)] < 1, when ¢ = 1
for all « = 1,...,n. Therefore, we have introduced some

conservatism in order to derive a sufficient condition for
global stability when the system deviates from homogene-
ity. The conservatism comes from the use of the inequality
x; < € a/b. In fact, if we use the exact value given in
(32), then the above arguments lead to the following result:
l¢’(x1)] < 1 holds if

[ b
eia<(b+xﬁ1) mm, V’L:L,TL

Clearly, the above inequality is less conservative than (31),
but it involves the values of z1, ..., z, (the coordinates of
equilibrium point).

6. CONCLUSIONS

The secant condition derived earlier for delay-free cyclic
systems is revisited for the case where there is time delay in
the feedback loop. The negative feedback case is considered
here, and the result is applied to gene regulatory networks
to derive an analytic sufficient condition for the local
stability, when the small gain is inconclusive.

The small gain condition for the homogenous GRNs leads
to a global stability condition which can be checked by
verifying an inequality depending on the parameters of
the Hill function defining the nonlinear couplings, Ahsen
et al. (2014a). In the present work we have also extended
this result by discussing how much we can increase the
gain of the Hill function without violating the small gain
condition.
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