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Abstract

We discuss a definition of maximally entangled states in terms of maximum
uncertainty of corresponding measurements. We describe a method of
construction of bases of maximally entangled states. The entangled states
that can be obtained from the maximally entangled states by means of
SLOCC (stochastic local operations assisted by classical communications)
we consider as semistable vectors. We discuss a measure of entanglement

expressed in terms of a geometric invariant.

Keywords: dynamic symmetry, entanglement, quantum fluctuations,

quantum information

1. Introduction

For a long time, entanglement was considered as an academic
problem related to the foundation of quantum mechanics
(Einstein et al 1935, Schrodinger 1935, Bohm 1952, Bell 1966,
Wigner 1970). The realization that quantum entanglement is
an unexpectedly efficient alternative to classical information
(Bennett and Shor 1998)—namely the discovery of quantum
cryptography (Bennett and Brassard 1984, Ekert 1991)
and the transmission of intact quantum states (quantum
teleportation Bennett et al 1993)—has led to development
of quantum information science as an emerging field with
the potential to cause revolutionary advances in science and
technology. The notion of entanglement lies at the very heart
of this new science.

It is possible to say that now everything is known about
the bipartite entanglement of pure states. The reason is that
the bipartite entanglement has a simple mathematical structure
described by the Schmidt decomposition (Ekert and Knight
1995, Eberly et al 2003).

The situation is far more complicated in the case of
bipartite mixed entangled states and multipart entanglement.
For example, some bipartite entangled mixed states exhibit
bound entanglement—though entanglement is necessary to
create these states, none of this entanglement can be distilled
(Horodecki et al 1998). Moreover, the quantum states with
no entanglement can exhibit a peculiar kind of quantum
nonlocality. Animportant example is provided by the coherent

1464-4266/04/030029+08$30.00 © 2004 IOP Publishing Ltd  Printed in the UK

states, which, in a sense, represent an exact antithesis to
entangled states (Klyachko 2002).

It is appropriate to mention here that entanglement is
usually defined to be a feature of composite quantum systems
that cannot be created through the use of local operations,
acting on the different parties separately, or by means of
classical communications between the parties.

Such a definition assigns primary importance to the
nonlocality of the system and hence sets aside a single-
particle entanglement with respect to internal degrees of
freedom (Kim 2003) as well as entanglement of atoms in a
Bose—Einstein condensate, when nonlocality is meaningless
because of the strong overlap of the wavefunctions of different
atoms (Leggett 2001). Other examples are provided by an
ensemble of fermions (a cloud of electrons with an overlapping
wavefunction) and photons in a field.

The difficulties in the description of multipart entangle-
ment and extension of the notion of entanglement to local sys-
tems require a certain revision and sharpening of the very def-
inition of quantum entanglement and its proper measure. This
apparently needs the revealing of the mathematical structure
hidden behind the entanglement and the development of novel
methods for studying and implementation of entanglement.

It was shown that the mathematical structure of
entanglement is adequately reflected by the dynamic symmetry
method and geometric invariant theory (Klyachko 2002).
Further development of the approach have led to a number
of new results (Klyachko and Shumovsky 2003a, 2003b).

S29


http://stacks.iop.org/JOptB/6/S29

A A Klyachko and A S Shumovsky

There are three main objectives of this paper. First, we
discuss a new definition of maximum entanglement, which has
a simple physical meaning and is appropriate for the composite
and local systems. Second, we consider a general method of
construction of bases of maximally entangled states. Third,
we discuss a new measure of entangled states.

The choice of maximum entanglement as a key notion is
motivated by observation of the fact that entanglement can be
either increased or decreased by means of a certain operations
such as the Lorentz transformation (Peres et al 2002, Peres
and Terno 2002, Bergou et al 2003) and SLOCC (stochastic
operations assisted by classical communications) (Bennett ez al
1995, Diir et al 2000, Bennett et al 2001, Verstraete et al 2002).
The point is that all entangled states of a given system can be
constructed from the maximally entangled states by means of
a certain operation.

The paper is organized as follows. In section 2, we
introduce a new definition of maximum entanglement based
on the rate of quantum fluctuations. That is, the amount
of quantum fluctuations in a given state is considered as
the measure of remoteness of this state from ‘classical
realism’. Then, the maximally entangled states are specified
by the maximum remoteness. Physically this means that
the maximally entangled states represent a manifestation of
quantum fluctuations at their extreme. In section 3, we discuss
the choice of generic maximally entangled states such that the
basis of maximally entangled states can be constructed from
the generic one through the use of a local cyclic permutation
operator. In section 4, we discuss a measure of entanglement
represented by the length of a minimal vector in the complex
orbit of the entangled state. The last section 5 contains a
brief summary and concluding remarks. The discussion is
accompanied by a number of examples.

2. Definition of maximum entanglement

2.1. The criterion of maximum entanglement

All one can assume is that the entangled states are maximally
remote from the classical states. The main difference between
the classical and quantum descriptions of a system is that the
observables in the latter case are represented by operators and
manifest quantum uncertainties (quantum fluctuations). The
range of quantum fluctuations depends on the specification
of the quantum state. For example, coherent states manifest
minimal uncertainties (Delbargo and Fox 1970, Perelomov
1986), and therefore they are usually interpreted as almost
classical states.

Following this ideology, we can state that the maximally
entangled states provide the maximum range of quantum
fluctuations (Can et al 2002a, Klyachko 2002, Klyachko and
Shumovsky 2003a, 2003b).

To formulate a rigorous mathematical definition from this
intuitive statement, consider a system S defined in the Hilbert
space H(S) (not necessary a nonlocal system). We choose
to specify the system by the Lie algebra £, generated by
all essential observables, and by the corresponding dynamic
symmetry group G = exp L. The choice of the essential
observables depends on the set of measurements that we are
going to perform over the system, or, what is the same, on the
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Hamiltonians, which are accessible for the manipulation with
quantum states. The possible choice of essential measurements
is discussed below in this section.

Let us denote by M; the measurements, forming a basis
of £. The uncertainties of measurements M; are specified by
the variances

Vi) = (WIAM) W) = (WIMFY) — (WM w)?, (1)

where V is a pure state in HI(S). In the case of mixed states p,
instead of equation (1) we get

Vi(p) = Tr(oM}) — [Tr(pM)I*. (@)

We choose to specify the range of quantum fluctuations (the
‘remoteness’ of the quantum state in H(S) from the classical
one) by the rotal variance

V() = Zwvf). 3)

Definition. A vector Yyvg € H(S) is called the maximally
entangled state of S iff it provides the maximum of the total
variance
V(¥me) = max V(). “
In the case of mixed states, equation (4) should be replaced
by the following:

V(ome) = max V(p). (&)

This definition seems to be quite general. For example, it
is independent of whether S is a composite system or not.
Then, it deals with a simple physical quantity and has clear
physical meaning. At the same time, the magnitude of the
total variance (3) cannot be used as a measure of entanglement.
This is discussed in detail in section 4.

The definition (4) represents a kind of variational
principle in quantum mechanics, defining the maximally
entangled states. In a sense, this is similar to the principle
of maximum entropy in statistical mechanics.

In special cases of interest, certain properties of the
dynamic symmetry group G enable us to somewhat simplify
the analysis of maximum entanglement. That is, if the
enveloping algebra of essential observables contains the
uniquely determined Casimir operator

> M} =CxI,

where [ is the unit operator in H(S), then it is clear that

V(yme) = max V) =C, (6)
provided by the condition
Vi, (Yme|M;[YmE) = 0, (7
or
Vi, Tr(omeM;) = 0, (3)
in the case of mixed maximally entangled states. Condi-

tions (7) and (8) are simpler than (4) and (5) from the op-
erational point of view because they deal with the averages,
whose measurement is easier than that of variances. In fact,
equations (7) and (8) can be used as an operational definition
of maximum entanglement (Can et al 2002a), that is the defi-
nition in terms of what can be measured. Consider now a few
examples.
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2.2. A system of N qubits

As an illustrative example of some considerable interest, we
examine a system of N qubits defined in the Hilbert space

N
Hyy = Q) H, = HY, ©)
j=1

where the two-dimensional space of each party is spanned by
the basis vectors

e = |0), ¢=0,1. (10)

The dynamic symmetry group in (9) is

N
G=SU®2) x - xSUQ) = ]_[ SU(Q2).
j=1

To choose the set of essential observables, assume that the total
access to the local measurements is allowed. In the case of
qubits (spin-% particles), the local measurements are provided
by the Pauli operators (e.g., see Nielsen and Chuang 2000)

My = oy = [0)(1] +[1){0],
M = o = —i|0) (1] +i[1){0],
M3 = o3 = [0)(0] — [1)(L],

an

forming a representation of the infinitesimal generators of the
SL(2,C) algebra, which corresponds to the complexification
of the SU(2) algebra. Let us stress that the complexification
of Lie algebra plays an important role here (Klyachko 2002).
Physically, the complexification is associated with SLOCC
(Dilir et al 2000, Verstraete et al 2002). Since al.z = I, where I,
is the unit operator in Hj, the maximum of the total variance (3)
is

max V, y = 3N. 12)

The so-called Bell states of two qubits manifest the maximum
value in (12) at N = 2 and hence fit the above definition
of maximum entanglement. It should be emphasized that
condition (7) defines infinitely many maximally entangled
states in addition to the Bell states. In more detail, this is
discussed in section 3 (also see Klyachko and Shumovsky
2003a). In turn, the Greenberger—Horne—Zeilinger (GHZ)
states of three qubits also give the maximum value of the total
variance (12) at N = 3 and obey the definition of maximum
entanglement.

At the same time, the simple separable states such as |00)
in the case of two qubits and |000) in the case of three qubits
give the minimum value of the total variance (12) (V,, = 4
and V, 3 = 6, respectively). Hence, they can be interpreted as
the (generalized) coherent states.

It is easily seen that a single qubit does not obey the
conditions (7) and therefore cannot manifest entanglement.

2.3. A system of qutrits

Consider now the case of N qutrits (three degrees of freedom
per party), when the system S is defined in the Hilbert
space Hj y. We again assume that total access to the local
measurements is allowed. We can choose the set of local

measurements as the generators of the SL(2, C) algebra that
have the representation

Jr = (0 (1] +[1){2[ +H.c.),
Jy = (=10){1] = [1){2| = H.c.),
Jo = 10)(0] = 12){2],

13)

in the case of three dimensions (spin-1 particles). At the same
time, the dynamic symmetry of the Hilbert space Hj_y is

N
G=SU@B)x---x SU®B) :HSU(3)
j=1

which allows another choice of the local measurements
provided by the generators

10) (O] — IT)(11, D (1] = 12)(2],

3(0) (1] +[1) (0D, 3D Q1 +12)(1)),
3(12)(01 +10)¢2)),

12)(2 — 10){01,

%(IO)(II — [1{0D, l.(ll)(ZI — 12){1),
i 2i
%(IZ)(OI —10)2D).
i
(14)

Only eight out of nine operators in (14) are independent
because the sum of the operators in the first row in (14) is
equal to zero. To clarify the physical difference between (13)
and (14), we note that the former corresponds to the
measurement of states of spin 1 in a uniform field, while the
latter can be associated with the Stern—Gerlach apparatus.

Consider the states of a single qutrit, that can be written
as follows:

2 2
W) =D vlo), dlwlP=1, =012
=0 =0
(15)

Let us choose (13) as the essential observables. Then, from
the condition (7) we get

W + ¥y +cc. =0,
W5 — Y —cc. =0,
[¥ol* — 1y2]* = 0.

(16)

These equations (16) together with the normalization condition
in (15) have the following solutions:

1/v2, £=0,2,
1 = 1
(M 1l io’ =1 (17)
) o £=0,2, "
@ Wl=1" (18)
B) 2%+l =1,
[¥ol = [¥l, (19)

2argyry — arg Yo — arg Yy, = £ +2nm.
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The corresponding maximally entangled states are
1
V2

@ 1y) =11), (1)
(3) 1Y) = [Yol€?]0) +¢12)) £ilyn e @2 1), (22)

respectively. In the case of spin-1 particle, we can interpret £
in terms of the projection of spin m = 0,%£1 as £ =
1 — m. Thus, a single spin-1 particle can be observed in
the maximally entangled states with respect to the intrinsic
degrees of freedom. The interpretation of this result lies
outside of quantum information theory and could be of
interest for particle physics (Klyachko 2002, Klyachko and
Shumovsky 2003a, 2003b). In the case of a photon emitted by
an electric dipole transition, |£) can be interpreted as a state
with a given projection of the angular momentum of the photon
(Shumovsky 1999).

Itis also seen that a single qutrit cannot manifest maximum
entanglement with respect to the measurements (14). In
general, entanglement of an N-qutrit system with respect to the
local measurements (14) also gives entanglement with respect
to (13) but not vice versa.

M ) =—=10) £2)), (20)

2.4. Entanglement of a photon field

Consider a monochromatic photon field and assume that the
observables are provided by the quadrature operators

la,a™] =1.

(23)
It is well known that, in the coherent state, ((Ag)?) =
((Ap)?) = 1/4, so the total variance (3) is Veoperent = 1/2.
At the same time, the condition (7) gives

(¢) = Re(a),

g =5(a+a"), p=—is(a—a"),

(p) = Im(a),

where « is the parameter of the coherent state. Thus, the
coherent state does not obey the condition of maximum
entanglement (7).

In turn, in the case of the Fock number state 1) we get
(nlg|n) = (n|p|n) = 0, so this state obeys the condition (7).
The total variance (3) in this case has the form

2n +1
V() = o

(24)

which is always greater than Vgperene = 1/2 at n > 1. Thus,
the Fock number state of photons |z) manifests the maximum
entanglement with respect to the measurement of the field
quadratures (23). At the same time, equation (24) corresponds
to the definition of a parametric maximum entanglement,
because it is seen that the remoteness from the almost classical
coherent state increases with increase of the number of photons
n.

Another example of maximum entanglement of a photon
field is provided by the squeezed vacuum state when (q) =
(p) =0and
2coshr — 1

3 )
where r is the parameter of squeezing. This is again the case of
a parametric maximally entangled state. A certain difference

(25)

Vsqueezed =
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between the total variances (24) and (25) is caused by the fact
that the Weyl-Heisenberg algebra of photon operators (23) has
no uniquely defined Casimir operator.

Probably the entanglement with respect to measurements
of field quadratures (23) has only academic interest and is
useless for the purposes of quantum information processing.
The above examples show that the definition of maximum
entanglement (4) also works in the case of photon fields. A
more detailed consideration of different states of two and more
photons requires taking into consideration the intrinsic degrees
of freedom of photons as well.

3. The basis of maximally entangled states

3.1. Generic states

There are usually infinitely many maximally entangled states
of a given system S, determined by the condition (7). In fact,
we should be interested in the sets of maximally entangled
states forming a basis in HI(S). Exactly these basis states are
important for quantum information processes such as quantum
teleportation (Bennett et al 1993). Construction of such a basis
consists of the two steps. First, in the space H,, y of N parties
with n degrees of freedom per party we should determine the
set of n generic maximally entangled states. Then, by the
action of a special local cyclic permutation operator, we can
complete this set within the basis in H,, ».

Denote the local degree of freedomby £ =0, 1, ..., n—1
in the system with n degrees of freedom per party. Consider
the homogeneous state

N
et 0) =) 10);

j=0

in the Hilbert space H,, y and the linear combination

en 1 o
|‘/fr(,%v )>:_Z|u...5). (26)
n=o

We call (26) the generic maximally entangled state. In the
case of n = 2 and N = 2, equation (26) gives the Bell state
%(lOO) +[11)). Atn = 2 and N = 3, it coincides with the
GHZ state. Atn = 3 and N = 2, (26) takes the form

R
V3

Similar states were discussed in the context of the ‘biphoton’
(Burlakov ef al 1999) and in connection with quantum
cryptography (Bechman-Pasquinucci and Peres 2000).

Since the dynamic symmetry group in H, y is G =
]_[jyzl SU (n), it is a straightforward matter to check that the
states (26) obey the condition of maximum entanglement (7)
with respect to the Lie algebra of the complexified group G°.

Beginning with the generic state (26), we can construct
a set of n mutually orthogonal states, consisting of the same
uniform vectors as (26). Consider the operator

[¥3.2) = —=(100) +[11) +22)). e2)

1 0 0 -~ 0

0 £ o ... 0
EEn=|0 0 & ... 0 (28)

0 0 0 gl
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where £&" = 1, so &€ = exp(Rikz/n), k = 0,1,...,n — 1.
Acting with (28) on the generic state (26), we get the set of n
states

en 1 o il (n 2kﬂ
I © = 0, g =TT
(29)

which are mutually orthogonal (Kostrikin et al 1983). It
is again possible to check that all n states in (29) obey the
condition of maximum entanglement (7).

3.2. The local cyclic permutation operator

Equation (29) represents n orthonormal states, while the basis
in H, y should consist of the dimH, y = n" vectors. To
complete the set of generic states (29) with respect to the
basis, we introduce the following local cyclic permutation
operator (LCPO):

Cn) = [0) (1] +[1){2[ +--- +|n = 1)(0], (30)

acting in the single-party subspace H,, C H, y. In the matrix
representation, it has the form of the (n x n) matrix

0 1 o --- 0
0 0 1 - 0
Cn) = e e e
0 0 0o --- 1
1 0 o --- 0

It is seen that LCPO (30) obeys the condition C" = I, and that
the action of different powers of the LCPO on the single-party
states produces cyclic permutations:

Cm0) = [n—1), [CPI0) = [n=2),....[Cm)I"" =1).
Taking into account this property, we can act with (30) on
the generic states (29) (n"¥ — n) times to build the basis of
maximally entangled states in H,, y.

To illustrate the process, consider a three-qubit system
(n =2, N = 3). Then, the generic states (29) take the form

k=0,1,

D (k) = — (1000) + e [111)), 31)
2,3 \/z

which coincide with the GHZ states. In turn, LCPO (30) takes
the form

0 1
C(2)=|0)(1|+|1>(0|=<1 0) (32
which coincides with the Pauli operator o} in (11). Acting
successively with (22) on the states of the first, second and
third parties in the generic state (31), we get the set of six
states

%0100) +e*7011)),

%0010) +e*71101)),
1
V2

that, together with the two states (31), completes the basis
of eight maximally entangled states in H, 3. The maximum

(33)

(1001) +ei*7|110)),

entanglement of states (33) immediately follows from the
condition (7).

In the case of four qubits (n = 2, N = 4), the same
procedure with the generic states

1
V2
and LCPO (32), gives the following fourteen states:

[P (k= 0, 1)) = —=(10000) +e*T[1111)),  (34)

1 . 1 .
%(uoom +ef710111)), %(|0100> +ef711011)),
1 . 1 .
—(]0010) +¢e*7|1101)), —(]0001) +e*7|1110)),
V2 V2
1 , 1 ,
%(moo) +¢e%710011)), %(|1010> +e710101)),
1 .
—(]0110) +e*7|0110)),
V2

completing (34) as the basis of maximally entangled states in
Hy 4.

In the case of two qutrits (n = 3, N = 2), the generic
states (29) have the form

1 . :
(GHZ) _ 2ikm /3 ik /3
(k)) = —(100) + e 11) +e 22)),
V3, ) NG 100) I11) 122)
k=0,1,2, (35)
and LCPO (30) is represented as follows:
010
Cs=|0)(1|+|1>(2|+|2>(0|=(0 0 1>. (36)
1 0 0

Then the states

1 .
%010) +e207/3121) + e*7/3102)),
1
V3

obtained from (35) by means of (36), complete (35) as the
basis of maximally entangled states in Hs ,. In this case, the
maximum entanglement is provided by the condition (7) with
the measurements (14).

Generally, the basis of maximally entangled states of a
bipartite system in HI, , is represented by the states

(120) + e*3|01) + e**7/3112)),

n—1

Wk, m)) = % S (¢ — mymod(n) ® 16,

£,m=0
k=0,1,..

(see Bennett et al 1993).

.,n—1.

4. Entangled states

So far, we have considered maximally entangled states. In
addition, there is an important class of entangled states that
do not obey the condition of maximum entanglement (7). By
definition, the entangled states can be constructed from the
maximally entangled states by means of SLOCC (Verstraete
et al 2002). There is a problem of how to distinguish between
the maximally entangled, entangled and unentangled states and
how to classify and quantify the entanglement (e.g., see Acin
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et al 2002, Diir et al 2000, Luque and Thibon 2003, Pleisch
and BuZek 2003, Rehacek and Hradil 2003, Verstraete et al
2002). Solution of the problem requires a certain measure of
entanglement.

It should be stressed that the total variance (3) cannot be
used as a measure of entanglement. Below in this section we
show that unentangled states may have quite strong quantum
fluctuations that even exceed the level corresponding to certain
entangled but not maximally entangled states.

To choose a proper measure of entanglement, we appeal to
the geometric invariant theory. It has been proved (Klyachko
2002) that the definition of entanglement based on the notion
of maximum entanglement and SLOCC is equivalent to the
following one.

Definition. Any state € H(S) is entangled (not necessarily
maximally entangled) iff  is a semistable vector.

Within the geometric invariant theory, the notion of
semistability means that the state can be separated from zero
by a G®-invariant function 7(gy) = I(y¥) # 0 (Vinberg
and Popov 1992), where g € G and G° is the complexified
dynamic symmetry group in H(S), corresponding to the Lie
algebra of all essential measurements. From the physical point
of view, the invariants 7(y) correspond to the integrals of
motion of the quantum system S.

According to the above definition, the unentangled states
are represented by unstable vectors that can fall into zero
(g — 0). In other words, they cannot be separated from
zero by invariants. This means that the geometric invariants
can be used to measure the entanglement. As the simplest
measure, the length of the minimal vector in the complex orbit

u() = min [gy|? 37)
geG®

can be used (Klyachko 2002). First of all, (37) represents
an entanglement monotone. The notion of a ‘monotone’ was
introduced by Vidal (Vidal 2000), and it is known that any
proper measure of entanglement should obey this property
(Eisert et al 2003). In the case of bipartite systems, (37)
coincides with the concurrence (Hill and Wooters 1997) to
within an inessential factor. For a three-part system, (37)
amounts to the square root of a 3-tangle (Coffman ez al 2000)
that can be expressed in terms of Cayley’s hyperdeterminant
(Miyake 2003).

To illustrate the use of the measure (37), consider the
case of three qubits, when an arbitrary pure state in H, 3 is
represented as follows:

) = Z qurep Ve, Qe

pP.q.r

(3%)

Here e, are the basis vectors (10) in H,. The coefficients v,
are the elements of a three-dimensional matrix (see figure 1).
Concerning the multidimensional matrices and determinants,
see Gelfand ef al 1994. The measure (37) coincides in this
case with Cayley’s hyperdeterminant

Detly] =yl 2 _+yi w2 +yi y2,
+ Wf—-‘/fzﬂ - 2[W+++(1/f++— W——+ + W+—+w—+—
S/ U |/ /N |/ /O |/ —
Sl 1/ P 1/ /S S 1/ P |/ 1/ /|
AW Ve Vs Y Y ). (39)

S34

Yoo Yo11

'u”ooo %1 0

Vo1 V11

V100 VY110

Figure 1. Structure of the three-dimensional matrix, corresponding
to the state (38) of three qubits. Vertices of the cube correspond to
the coefficients v, .

Let us analyse some states of three qubits with the aid of (39).
Consider first the maximally entangled states (31) and (33)
with the total variance Vy,,x = 9. In this case, Det[y] = 1/4
is separated from zero. In the case of separable states of the
type [£££) (€ =0, 1), V = Vi, = 6.and Det[y] = 0, so these
states are coherent and do not manifest any entanglement. For
a slightly more complicated separable state

1
V2

we get V =8 > V,;;, and Det[y/] = 0. Thus, we again have
an unentangled state, which however is incoherent. At the
same time, the relatively strong level of quantum fluctuations
is caused by the quantum correlations between the first and
third parties in (40).

Consider now the so-called W -states (Zeilinger et al 1997,
Diir et al 2000). In view of the results of the previous section,
the complete set of mutually orthogonal W-states of three
qubits has the following form:

(1011) £ [110)), (40)

1 . .
Wi = ﬁ<l011> +e%[101) +e”%|110)),
(1)
1 i i
W) = —=(1100) +¢[010) + % 001)),

V3

where ¢, = 2k /3. It is seen that the states (41) form a basis
of a six-dimensional subspace in the eight-dimensional Hilbert
space Ml 3, corresponding to the discarding of the directions
|000) and |111). In the case of W-states (41), the total
variance (3) is very high: V(W) = 8 +2/3. At the same time,
calculation of Cayley’s hyperdeterminant (39) gives Det[W] =
0 for all states in (41). Thus, equation (41) represents unstable
vectors, corresponding to unentangled states.

Consider one more example of a state that can be
maximally entangled, simply entangled and unentangled
depending of the choice of parameters:

[¥,) = x(]000)+|111))+y(|001)+]110)), x2ey? =1/2.

(42)
This state is a linear superposition of the two maximally
entangled states. At x = 0 and 1 /«/5, this state (42) is
reduced to one of the maximally entangled states with V() =
Vmax = 9 and Det[v, ] = 1/4. Atx = 1/2, (42) degenerates

into a separable state with V(y,) = 8 and Det[¢/,] = 0
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(no entanglement). When x € (0, 1/2) and x € (1/2, 1/\/5),
we get

8 < V() <9, 0 < Det[y,] < 1/4, (43)
which corresponds to entanglement but not maximum
entanglement. It is also seen that in the case of 0.122 <
x < 0.5 and 0.5 < x < 0.696, the state (42) manifests
entanglement, but has total variance less than that of the
unentangled W-states.

The measure (37) can also be calculated explicitly in the
case of four qubits and in many other cases. In factall invariants
and covariants in the case of four qubits have been calculated
recently (Luque and Thibon 2003, Briand et al 2003).

5. Summary and conclusion

We have discussed a novel definition of maximum
entanglement based on the choice of essential measurements
and estimation of the range of quantum fluctuations of these
measurements. This definition has a clear physical meaning.
It specifies the states that are maximally remote from the
classical states. In a sense, this definition fits Zeilinger’s
interpretation of entanglement and quantum information in
terms of correlations (Zeilinger 1998), because the maximum
of the total variance also means the maximum of correlations.

At the same time, the existence of strong correlations
can be observed in the case of separable states such as (40)
and nonseparable but unentangled states such as (41). Hence,
neither the existence of quantum correlations nor a high range
of quantum fluctuations is evidence of entanglement. Only the
maximum range of quantum fluctuations corresponds to the
maximally entangled states.

Let us note that the possible relation between maximum
entanglement and quantum fluctuations (uncertainties) of
certain measurements is widely discussed (Can et al 2002a,
Giihne er al 2002, Giihne 2003, Giihne er al 2003,
Klyachko 2002, Klyachko and Shumovsky 2002, Klyachko
and Shumovsky 2003a, Klyachko and Shumovsky 2003b and
references therein). The new result discussed in the present
paper is the definition of maximally entangled states in terms
of variational principle (4). In other words, the maximum
entanglement is defined to be the manifestation of quantum
fluctuations of observables at their extreme. This assumes
maximum remoteness of maximally entangled states from the
classical states.

It should be stressed that the maximality property (4)
of the total variance plays here an important heuristic role
peculiar to the variational principles. In particular, it helps
one to understand the stabilizing effect of the environment
on entanglement. That is, to prepare a persistent maximally
entangled state, we should bring the system into a state
with maximum possible value of the total variance (maximal
level of quantum fluctuations) and then decrease its energy
up to a (local) minimum, conserving the range of quantum
fluctuations. For implementations of this mechanism, see Can
et al (2002b), Can et al (2003).

Besides that, the definition (4) is independent of whether
the system can be decomposed into separated subsystems or
not. This opens the way to consideration of entanglement of a

single particle with respect to the intrinsic degrees of freedom
(Klyachko and Shumovsky 2003a, 2003b).

We showed that the bases of maximally entangled
states of N qudits can be constructed from the generic
maximally entangled state through the successive use of the
two operations. The first one acts on the whole state ¥ € H, y
and extends the generic maximally entangled state to a set of n
mutually orthogonal maximally entangled states. The rest of
the basis in H,, y is constructed through the use of the LCPO,
producing cyclic permutations of states of individual parties.

We discussed the definition of entangled (not necessarily
maximally entangled) states in terms of the semistable vectors
and showed that the simplest measure is provided by the length
of the minimal vector (37). Inparticular, we showed that the so-
called W-states of three qubits are unentangled although they
manifest quite strong quantum fluctuations, which evidence
the high level of quantum correlations between the parties.

Most of the results in this paper were obtained for pure
states. They can be generalized to the mixed states because a
mixed state can be formally treated as a pure state of a doublet,
consisting of the system § and its ‘mirror image’ (Takahashi
and Umezawa 1996).
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