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a b s t r a c t

We study the hub location and routing problem where we decide on the location of hubs, the allocation
of nodes to hubs, and the routing among the nodes allocated to the same hubs, with the aim of
minimizing the total transportation cost. Each hub has one vehicle that visits all the nodes assigned to it
on a cycle. We propose a mixed integer programming formulation for this problem and strengthen it
with valid inequalities. We devise separation routines for these inequalities and develop a branch-and-
cut algorithm which is tested on CAB and AP instances from the literature. The results show that the
formulation is strong and the branch-and-cut algorithm is able to solve instances with up to 50 nodes.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In a network where traffic is collected from many origins to be
distributed to many destinations, connecting all origins and destina-
tions with direct links is often not justified in economical terms.
Hubbing is used to combine traffic demands from many origins to
many destinations and route them together.

The classical Single Allocation p-Hub Median Problem (SApHMP)
is defined as follows. Let us consider a set of nodes, pairwise traffic
demands, routing costs and economies of scale factor. The problem
is to select p nodes (called hubs) and assign each node to exactly
one of these hubs to minimize the total cost of routing the traffic.
The traffic from i to j must traverse at least one and at most two
hub nodes. (The traffic can go directly from one node to another
when one of them is a hub and the other is assigned to it.) If node i
is assigned to hub j and node m is assigned to hub l, then the traffic
from node i to node m follows the path i-j-l-m. Hence the
traffic traveling from hub node j to hub node l is the traffic from
nodes assigned to hub j to nodes assigned to hub l. This traffic
is routed through the hub network at a discounted cost due to
economies of scale.

In this study, we consider the Hub Location and Routing Problem
(HLRP). As in SApHMP, we are given a set of nodes, pairwise traffic
demands and routing costs. HLRP consists of selecting p hubs,
assigning each node to exactly one of these hubs, and connecting
the nodes assigned to each hub with a cycle. Each cycle is limited
to at most q nodes. The hub nodes are directly connected by
(uncapacitated) links. The aim of the problem is to minimize the

total cost of assigning nodes to hubs and the cost of routing the
traffic in the network. The traffic between nodes assigned to
the same hub is routed on the cycle incident at this hub, whereas
the traffic between nodes assigned to different hubs is routed
through the hub network and through the cycles. The cost of
routing on the cycles is independent of the traffic and is a function
of the distance traversed. On the other hand, the routing cost in
the hub network is a function of the distance and the traffic. Fig. 1
illustrates a potential HLRP solution for an instance with 4 hubs
and 11 non-hub nodes. The solid lines represent the inter-hub
complete network. Hubs 1 and 4 have two or more non-hub nodes
assigned that are connected to them by a cycle. Hub 2 has only one
non-hub node assigned, and hub 3 has none. Then, the traffic
going from hub 2 to hub 3 is the sum of the traffic originating at
nodes 8 and 2 with destination to node 3. The traffic going from hub
3 to 4 is the sum of the traffic with origin at node 3 and destination to
node 4 or to any of the non-hub nodes assigned to it.

HLRP arises in transportation and logistics applications where
hubbing is used and nodes do not have sufficient demand to justify
direct connections with the hubs (see, e.g. [8,11,18,36,44] for
similar situations). In particular, this situation often appears in
postal delivery and cargo delivery applications, where many small
branch offices are located in population centers and vehicles
collect their traffic and carry them to a hub. One of the largest
cargo delivery companies in Turkey operates 844 branch offices,
most of which are small in traffic volume. Instead of connecting
directly each branch office with a hub, which would be very
expensive, hubs have vehicles that collect the parcels from the
branch offices and bring them to the hub to be sorted and
rerouted.

HLRP is a combination of hub location and multi-depot vehicle
routing problems and, consequently, it is a difficult problem. The
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literature on HLRP is very limited. Here we first briefly review
exact approaches for related problems.

If the costs associated with the cycles are zero, then HLRP
reduces to SApHMP. O'Kelly [38] models the SApHMP as a quad-
ratic 0-1 problem. Campbell [12] and Skorin-Kapov et al. [43]
propose 4-index linearizations. A 3-index linearization for the
special case where the routing costs satisfy the triangle inequality
is given by Ernst and Krishnamoorthy [22]. Ebery [21] presents a
2-index linearization and a formulation for two or three hubs.
Ernst and Krishnamoorthy [23] propose a branch-and-bound
method, where shortest-path problems are solved to compute
lower bounds. Labbé and Yaman [28] compare two multicommod-
ity formulations and study their projections. Labbé et al. [30]
propose another 2-index formulation, derive valid inequalities and
use them in a branch-and-cut algorithm.

For a more extensive review of the studies on SApHMP, we
refer the reader to the surveys by Campbell et al. [13], Alumur and
Kara [2], and the recent article by Campbell and O'Kelly [16]. Most
of these studies are based on many assumptions, such as the hub
network is complete, no fixed costs are incurred for routing, each
node is connected to a hub with a direct link, and the traffic cost
on a hub link is discounted by a factor that does not depend on the
amount of flow. In recent years, there have been quite a number of
studies trying to relax these assumptions to make the problem
more realistic. O'Kelly and Miller [40], Nickel et al. [37], Yoon and
Current [50], Calik et al. [9] and Alumur et al. [3] consider hub
location problems where the hub network is not necessarily
complete. Labbé and Yaman [29], Yaman [46] and Yaman and
Elloumi [48] consider star hub networks. Contreras et al. [20]
study a tree structure and Yaman [47] and Alumur et al. [4]
consider hierarchical hub networks. Campbell et al. [14,15] study
the problem of locating a given number of hub arcs with
discounted costs rather than locating hubs. Podnar et al. [41]
discount the transportation cost on a link if the flow on this link
exceeds a threshold. O'Kelly and Brian [39], Horner and O'Kelly [26]
and Camargo et al. [10] relax the assumption of a fixed discount
factor on hub links and model economies of scale as a function of
flow. Yaman et al. [49] study the problem with stopovers with the
aim of minimizing the longest travel time and Yaman [45] studies
the r-allocation variant where a node can be allocated to up to r hub
nodes. Recent studies are mostly focused on relaxing assumptions
related to the hub networks. There are few studies on the design of
the networks connecting a hub and the nodes assigned to it. We
aim to fill this gap in the hub location literature.

If the cost of routing traffic on the hub network is zero, then
HLRP reduces to a variant of the plant-cycle location problem for
which Labbé et al. [27] propose a branch-and-cut algorithm.
Albareda-Sambola et al. [1] propose a compact formulation
defined on an auxiliary network and derive lower bounds. The
plant-cycle location problem is a special case of location-routing
problem where each facility has one vehicle. In the general

location-routing problem, a facility can serve its clients using
multiple vehicles. The single facility version of this problem is
studied by Laporte and Nobert [31]. Laporte et al. [32,34] propose
exact methods to solve the multiple facility problem with capaci-
tated vehicles and maximum route costs, respectively, and Belen-
guer et al. [7] present a branch-and-cut algorithm.

Another closely related problem is the multi-depot vehicle
routing problem (MDVRP). If the hub locations and the number
of cycles incident to hubs are fixed and the routing costs on the
hub-to-hub links are zero, then HLRP is a MDVRP. There are few
studies on exact methods for this problem. Laporte et al. [33,34]
propose branch-and-bound algorithms. Baldacci and Mingozzi [6]
note that MDVRP is a heterogeneous VRP where the vehicles at
each depot are seen as different types of vehicles. They propose an
exact algorithm for the heterogeneous VRP and present computa-
tional results for MDVRP.

Finally we mention related studies on hub location and routing
problems. Nagy and Salhi [36] consider a hub location and routing
problem with capacity and distance constraints. The objective
function is the sum of the fixed costs of installing hubs and the
fixed costs on hub-to-hub links and on routes visiting customers.
A customer can be visited by two routes, one for pickup and one
for delivery. The authors present a model and propose a nested
solution methodology. Çetiner et al. [18] study a multiple alloca-
tion hub location and routing problem for the Turkish postal
services. They assume that the demand nodes allocated to a hub
are served by uncapacitated vehicles that start and end their trips
at the hub node. Their problem has two objectives, the minimiza-
tion of the variable transportation cost and of the number of
vehicles needed to achieve a given service level. They minimize
the first objective by imposing an upper bound on the number of
vehicles. They propose an iterative hubbing and routing heuristic
and present computational results using Turkish data where they
allow tours of at most 450 km (one day travel time). Camargo et al.
[11] study the single allocation version of a similar problem where
the lengths of cycles are bounded from above to ensure service
quality. They propose a solution approach based on Benders’
decomposition. Wasner and Zäpfel [44] study another postal
service application where they allow direct connections between
non-hub nodes and the routing costs depend on the number of
vehicles required. The authors propose a heuristic method and
present a case study using data from Austria. Different from the
studies above, in HLRP, each hub has a single vehicle and each
vehicle can service at most q nodes. We summarize the different
features of the related studies in Table 1. Some other variants
of hub location and routing problems have been addressed by
Aykin [5], Catanzaro et al. [17], and Rieck et al. [42].

This paper proposes strong formulations for HLRP and
describes an exact solution method. Our study contributes to the
literature by proposing a solution methodology that handles
decisions on different levels of the network simultaneously to
find an optimal solution. The rest of the paper is organized as
follows. Section 2 presents the notation, a mixed integer program-
ming formulation and valid inequalities. Section 3 describes a
branch-and-cut algorithm. We present the results of our computa-
tional experiments in Section 4 and write conclusions in Section 5.

2. MIP formulation and valid inequalities

We first introduce the notation. Let V be the set of nodes and p
be the number of hubs to open. We denote the traffic demand
from node iAV to node mAV by wim and the cost of routing a unit
of traffic from node jAV to node lAV by cjl. We assume that the
routing costs satisfy the triangle inequality. Let oi ¼∑mAVwim be
the total amount of demand originating at node i and
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Fig. 1. A HCLP solution example.
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di ¼∑mAVwmi be the total amount of demand with destination at
node i. We compute the cost of assigning node i to hub j as
cijoiþcjidi. When i and j are hubs then the routing cost is reduced
by a factor of α. We can assign at most qZ2 nodes (including the
hub itself) to a hub. Clearly, we need pqZ jV j for feasibility.

Let G¼ ðV ; EÞ be an undirected graph, with E¼ f½i; j� : i; jAV ;
ia jg, representing the links that can be in a cycle. For SDV , let
δðSÞ be the set of edges with exactly one endpoint in S and E(S) be
the set of edges with both endpoints in set S. If S¼ fig, we simply
write δðiÞ instead of δðSÞ. We denote by fe the cost of using the edge
eAE in a cycle. A cycle can be defined by two nodes i and j, thus an
edge ½i; j� can be used twice, and then the cost of the cycle is 2fij.
We use a factor β to change the relative weight of the cycle edge
costs in the objective function. Note that β is not related to the
discount factor for collection used in the classical hub location
models.

We define z1jj to be 1 if node jAV is a hub and no other node is
assigned to j, z1ij to be 1 if node jAV is a hub and node iAV \fjg is
the only other node assigned to it, and z2ij to be 1 if node jAV is a
hub with at least two other nodes assigned to it and if node iAV is
assigned to j. The variables take value 0 otherwise. With these
definitions, node j is a hub if ∑iAVz1ijþz2jj is 1. Node i is assigned to
node ja i if z1ijþz2ij ¼ 1. The flow variable gijl represents the amount
of traffic that originates at node iAV and travels from hub jAV to
hub lAV\fjg. We also use the edge variable xe for each eAE to
represent the cycles with at least three edges. For E0DE, we define
xðE0Þ≔∑eAE0xe.

The HLRP can be modeled as follows:

min ∑
iAV

∑
jAV\fig

ðcijoiþcjidiÞðz1ijþz2ijÞþα ∑
jAV

∑
lAV\fjg

cjl ∑
iAV

gijl

þβ ∑
iAV

∑
jAV\fig

2f ijz
1
ijþ ∑

eAE
f exe

 !
ð1Þ

s:t: ∑
jAV\fig

z1ijþz1iiþ ∑
jAV\fig

z1jiþ ∑
jAV

z2ij ¼ 1 8 iAV ; ð2Þ

∑
iAV

z2ijrqz2jj 8 jAV ; ð3Þ

∑
jAV

∑
iAV

z1ijþz2jj

 !
¼ p; ð4Þ

∑
lAV\fjg

gijl� ∑
lAV\fjg

gilj ¼ ∑
mAV\fi;jg

wimðz1ijþz2ij�z1mj�z2mjÞ

þwij z1ijþz2ij� ∑
kAV

z1kj�z2jj

 !
8 i; jAV ; ia j; ð5Þ

∑
lAV\fjg

gjjl� ∑
lAV\fjg

gjlj ¼ ∑
mAV\fjg

wjm ∑
kAV

z1kjþz2jj�z1mj�z2mj

 !
8 jAV ;

ð6Þ

xðδðiÞÞ ¼ 2 ∑
jAV

z2ij 8 iAV ; ð7Þ

xðδðSÞÞZ2 ∑
jAV\S

z2ij 8S� V ; iAS; ð8Þ

xii0 þz2ijþz2i0j0 r2 8½i; i0�AE; j; j0AV ; ja j0; ð9Þ

xeAf0;1g 8eAE; ð10Þ

z1ijAf0;1g 8 i; jAV ; ð11Þ

z2ijAf0;1g 8 i; jAV ; ð12Þ

gijlZ0 8 i; jAV ; lAV \fjg: ð13Þ

The objective function (1) is the sum of the classical objective
function in hub location problems (i.e., the cost of assigning nodes
to hubs and the cost of routing in the hub network) plus new
terms to consider the routing part within a cycle (i.e., the cost of
cycles of two edges and the cost of cycles of at least three edges).
Constraints (2) impose that a node i is either the only node
assigned to another hub (case ∑jAV\figz1ij ¼ 1), or it is a hub with
no other node assigned to it (case z1ii ¼ 1), or it is a hub with one
other node assigned to it (case ∑jAV\figz1ji ¼ 1), or it is a hub or is
assigned to another hub with at least two other nodes (case
∑jAV z2ij ¼ 1). Constraints (3) are capacity constraints to guarantee
that a cycle does not contain more than q nodes. The number of hubs
to open is p due to constraint (4). Constraints (5) and (6) are the flow
balance constraints for the traffic on the hub network. Constraints (7)
state that two edges should be adjacent to a node that is assigned to a
hub with at least two other nodes. Constraints (8) ensure the
connectivity of the cycles. If a node iAS is assigned to a hub in set
V\S, then the cycle that contains node i has to cross the cut defined by
subset S and xðδðSÞÞZ2. Constraints (9) forbid nodes assigned to
different hubs to be on the same cycle. Constraints (10)–(13) are
variable restrictions. Note that (1)–(13) is a model for the SApHMP
when β¼ 0, and for the plant cycle location problemwhen α¼0 and
the constraints involving flow variables gijl are excluded.

In the remaining part of this section, we provide several
families of valid inequalities. The first family is

z2ijrz2jj 8 i; jAV ; ia j: ð14Þ

Similar inequalities are

xii0 þz2i0i0 r1þz2ii0 8 ½i; i0�AE; ð15Þ

stating that if edge ½i; i0� is part of a cycle and node i0 is a hub, then
node i is assigned to hub i0.

Next, we propose a family of valid inequalities that dominate
both constraints (9) and the valid inequalities (15).

Table 1
Studies on hub location and routing.

Study Allocation Num. of hubs Objectives Capacity Cycle length bound Num. of vehicles Solution approach

Nagy and Salhi [36] One for pickup Not fixed Cost Yes Yes Not fixed MIP formulation,
One for delivery heuristic

Çetiner et al. [18] Multiple Not fixed Cost and No Yes Not fixed Heuristic
num. of vehicles

Camargo et al. [11] Single Not fixed Cost No Yes Not fixed MIP formulation,
Benders decomposition

Wasner and Multiple Not fixed Cost Yes Yes Not fixed MIP formulation,
Zäpfel [44] direct shipment heuristic
Present study Single Fixed to p Cost At most q No One per MIP formulation,

nodes per cycle hub branch-and-cut
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Table 2
Results for CAB25 with q¼ jV j.

p α β r-gap r-time nodes time nCuts totalCost %-access %-interHub %-cycle hubs

3 0.2 0.01 98.76 2.85 90 4.40 424 858.76 74.04 16.22 9.74 5; 12; 17
0.05 100.00 2.17 0 2.17 395 1193.41 53.28 11.67 35.05 5; 12; 17
0.2 100.00 2.28 0 2.29 440 2448.35 25.97 5.69 68.34 5; 12; 17

0.4 0.01 97.40 3.03 73 4.77 402 998.04 63.71 27.91 8.38 5; 12; 17
0.05 99.48 3.78 6 4.51 433 1332.69 47.71 20.90 31.39 5; 12; 17
0.2 100.00 4.59 0 4.60 533 2587.63 24.57 10.77 64.66 5; 12; 17

0.8 0.01 96.10 4.73 292 10.97 461 1254.02 52.45 39.96 7.59 2; 4; 12
0.05 97.00 6.72 492 27.30 588 1605.91 50.25 23.70 26.05 5; 8; 18
0.2 98.89 9.13 15 11.28 593 2827.03 31.29 13.61 55.10 12; 20; 23

4 0.2 0.01 99.02 1.61 29 3.40 288 720.84 66.08 22.74 11.17 4; 12; 14; 17
0.05 100.00 1.72 0 1.72 288 1041.09 46.17 15.86 37.97 4; 12; 14; 17
0.2 100.00 2.17 0 2.18 399 2227.04 21.58 7.42 71.00 4; 12; 14; 17

0.4 0.01 98.34 2.25 30 3.93 304 876.30 55.25 34.62 10.13 1; 4; 12; 17
0.05 99.30 2.25 13 3.78 327 1206.25 39.84 27.38 32.77 4; 12; 14; 17
0.2 99.36 5.01 14 5.88 506 2392.19 20.09 13.81 66.10 4; 12; 14; 17

0.8 0.01 96.06 3.43 721 18.19 476 1176.44 42.63 49.83 7.55 1; 4; 12; 18
0.05 95.87 5.52 1190 30.17 639 1528.42 43.11 30.54 26.35 4; 8; 18; 24
0.2 99.44 9.14 15 10.87 618 2615.26 31.40 15.47 53.13 8; 12; 20; 23

5 0.2 0.01 99.62 2.23 12 2.73 235 626.71 59.02 26.95 14.03 4; 7; 12; 14; 17
0.05 100.00 2.07 0 3.53 279 947.54 40.40 18.31 41.29 4; 7; 12; 14; 17
0.2 100.00 2.70 0 2.95 442 2027.18 22.00 8.00 70.00 4; 12; 14; 17; 23

0.4 0.01 98.66 1.76 61 4.15 223 795.61 46.49 42.46 11.05 4; 7; 12; 14; 17
0.05 98.52 2.34 64 4.99 314 1120.99 34.15 30.95 34.90 4; 7; 12; 14; 17
0.2 99.67 3.79 4 4.59 455 2179.65 25.55 12.83 61.62 5; 8; 12; 17; 23

0.8 0.01 95.60 6.40 2913 47.11 741 1126.18 37.58 54.24 8.18 1; 4; 7; 12; 18
0.05 96.24 8.36 827 25.80 481 1446.56 32.73 42.23 25.04 4; 12; 18; 23; 24
0.2 98.76 6.19 74 9.31 560 2457.77 31.93 16.95 51.12 8; 12; 20; 22; 23

Table 3
Results for CAB25 with q¼ ⌈jV j=2⌉.

p α β r-gap r-time nodes time nCuts totalCost %-access %-interHub %-cycle hubs

3 0.2 0.01 98.35 4.84 128 6.60 407 865.42 72.58 16.49 10.93 4; 12; 17
0.05 99.03 3.31 24 4.01 436 1213.10 52.08 12.47 35.45 12; 17; 21
0.2 99.39 5.68 15 7.13 594 2495.76 25.45 6.12 68.43 12; 17; 21

0.4 0.01 97.52 3.35 67 4.68 388 999.62 64.16 26.37 9.47 4; 12; 18
0.05 97.77 4.99 398 15.01 588 1359.94 47.87 20.51 31.62 5; 12; 17
0.2 98.30 7.33 322 16.65 585 2648.59 23.98 11.54 64.48 12; 17; 21

0.8 0.01 96.05 5.40 601 20.87 683 1254.02 52.45 39.96 7.59 2; 4; 12
0.05 96.06 5.07 558 21.64 641 1623.26 41.34 30.51 28.15 12; 21; 25
0.2 97.05 14.43 1103 56.69 983 2917.72 27.98 13.07 58.95 5; 8; 18

4 0.2 0.01 99.06 1.64 26 2.14 255 720.84 66.08 22.74 11.17 4; 12; 14; 17
0.05 100.00 1.54 0 1.54 268 1041.09 46.17 15.86 37.97 4; 12; 14; 17
0.2 100.00 1.36 0 1.42 339 2227.04 21.58 7.42 71.00 4; 12; 14; 17

0.4 0.01 98.26 2.00 39 4.17 283 876.30 55.25 34.62 10.13 1; 4; 12; 17
0.05 99.28 2.56 17 3.20 336 1206.25 39.84 27.38 32.77 4; 12; 14; 17
0.2 99.59 3.71 24 4.48 479 2392.19 20.09 13.81 66.10 4; 12; 14; 17

0.8 0.01 96.08 4.96 889 23.07 512 1176.44 42.63 49.83 7.55 1; 4; 12; 18
0.05 95.97 5.85 1736 53.17 667 1528.42 43.11 30.54 26.35 4; 8; 18; 24
0.2 96.72 11.22 535 29.14 797 2716.52 23.77 18.02 58.21 4; 8; 17; 24

5 0.2 0.01 99.62 2.03 13 2.43 225 626.71 59.02 26.95 14.03 4; 7; 12; 14; 17
0.05 99.95 1.51 2 1.67 271 947.54 40.40 18.31 41.29 4; 7; 12; 14; 17
0.2 99.47 5.18 14 6.29 543 2040.02 21.70 8.27 70.02 4; 12; 14; 17; 23

0.4 0.01 98.69 2.12 42 3.17 231 795.61 46.49 42.46 11.05 4; 7; 12; 14; 17
0.05 98.43 2.48 26 3.37 327 1120.99 34.15 30.95 34.90 4; 7; 12; 14; 17
0.2 98.69 5.82 39 7.25 503 2208.83 20.04 15.28 64.67 4; 12; 14; 17; 23

0.8 0.01 95.54 4.23 3788 62.45 923 1126.18 37.58 54.24 8.18 1; 4; 7; 12; 18
0.05 96.28 6.08 881 23.28 568 1446.56 32.73 42.23 25.04 4; 12; 18; 23; 24
0.2 97.17 6.16 1106 43.21 925 2514.93 23.33 21.41 55.26 5; 8; 12; 18; 23
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Proposition 1.
xii0 r ∑

jAV\S
z2ijþ ∑

j0 AS
z2i0j0 ð16Þ

is valid for all ½i; i0�AE and S� V such that iAS and i0AV\S.

Proof. If ∑jAV\Sz2ijþ∑j0 A Sz
2
i0 j0 ¼ 0, then ∑jAV\figz1ijþz1iiþ∑jAV\figz1jiþ

∑jA Sz2ij ¼ 1 and ∑j0 AV\fi0 gz
1
i0j0 þz1i0 i0 þ∑j0 AV\fi0 gz

1
j0i0 þ∑j0 AV\Sz

2
i0 j0 ¼ 1. The

first part implies that node i is assigned to a hub in set S, or it is in
a cycle of length two, or it is a hub node with no other nodes
assigned to it. Similarly, the second part implies that node i0 is
assigned to a hub in set V\S, or it is in a cycle of length two, or it is
an isolated hub. In all cases, i and i0 cannot be in the same cycle
and, as a result, edge ½i; i0� cannot be in a cycle. □

Note that inequalities (16) dominate constraints (9) since

xii0 þ ∑
jAS

z2ijþ ∑
j0 AV \S

z2i0j0 r2� ∑
kAV\fi;i0 g

ðz1ikþz1kiþz1i0kþz1ki0 Þ�z1ii�z1i0i0 �2z1ii0 �2z1i0 i:

The particular case of inequalities (16) with S¼ V\fi0g is
xii0 rz2ii0 þ ∑

j0 AV\fi0g
z2i0j0

which is the same as

xii0 þz2i0i0 r1þz2ii0 � 1� ∑
j0 AV

z2i0 j0

 !
:

Observe that the above inequality dominates inequality (15) since
1�∑j0 AV z

2
i0j0 Z0.

The following family of inequalities is used by Labbé et al. [27]
to solve the plant cycle location problem. Let S� V , iAS and
i0AV\S. The generalized subtour elimination constraint is

xðδðSÞÞZ2 ∑
jAV\S

z2ijþ ∑
jAS

z2i0j

 !
: ð17Þ

Inequalities (17) are stronger than constraints (8). If
∑jAV\Sz2ijþ∑jASz2i0 j ¼ 2, then node iAS is assigned to a hub in V\S

and node i0AV\S is assigned to a hub in S. Hence, at least two
cycles cross the cut and as a result xðδðSÞÞZ4.

Next, we consider inequalities that take into account the
capacity constraints.

Proposition 2.
xðEðSÞÞ� ∑

iA S
z2iir jSj� jSj

q

� �
ð18Þ

is valid for all SDV .

Proof. We first prove that all feasible solutions satisfy

xðEðSÞÞ� ∑
iA S

z2iir ∑
iA S

∑
jAV

z2ij�
∑iA S∑jAV z2ij

q

& ’
: ð19Þ

When ∑iA Sz2ii ¼ 0 set S contains no hub node that is on a cycle
of at least three nodes. In this case it is easy to see that the number
of edges of a solution (that is, edges in cycles) inside the set S
cannot be more than

∑
iA S

∑
jAV

z2ij�
∑iA S∑jAVz2ij

q

& ’
:

For each hub node iAS with z2ii ¼ 1 we may have at most one
additional edge of a cycle inside S. Then, the inequality is satisfied
by all feasible solutions.

Inequality (18) is valid since

jSj� jSj
q

� �
Z ∑

iA S
∑
jAV

z2ij�
∑iA S∑jAV z2ij

q

& ’
: □

Table 4
Results for CAB25 with q¼ ⌈jV j=p⌉.

p α β r-gap r-time nodes time nCuts totalCost %-access %-interHub %-cycle hubs

3 0.2 0.01 98.04 3.98 114 5.57 391 943.25 72.81 16.31 10.88 4; 12; 18
0.05 96.23 6.66 971 26.99 988 1348.93 50.99 11.42 37.59 4; 12; 18
0.2 95.05 12.01 3611 151.59 2148 2789.59 26.22 6.15 67.63 12; 13; 17

0.4 0.01 95.76 7.02 391 16.24 865 1089.05 65.49 25.09 9.42 4; 18; 19
0.05 94.40 8.24 1381 49.23 1529 1494.95 47.78 18.30 33.92 4; 18; 19
0.2 94.03 12.82 4828 348.46 2650 2926.27 27.87 7.82 64.31 5; 8; 17

0.8 0.01 95.32 5.49 951 26.35 866 1302.98 60.98 31.24 7.78 2; 4; 8
0.05 93.98 8.44 5755 230.48 2035 1708.64 46.50 23.82 29.68 2; 4; 8
0.2 95.17 8.28 3197 208.74 2318 3099.42 32.94 8.45 58.61 1; 2; 4

4 0.2 0.01 99.82 0.62 3 0.80 141 721.98 64.54 23.65 11.81 4; 12; 16; 17
0.05 99.88 1.20 3 1.25 208 1063.03 43.83 16.06 40.10 4; 12; 16; 17
0.2 99.85 5.23 3 5.73 573 2341.94 19.90 7.29 72.81 4; 12; 16; 17

0.4 0.01 99.11 2.31 20 2.89 242 881.26 54.57 35.75 9.67 1; 4; 12; 17
0.05 99.71 3.99 13 4.84 373 1222.30 39.35 25.78 34.88 1; 4; 12; 17
0.2 99.46 5.94 8 8.25 509 2501.22 19.23 12.60 68.18 1; 4; 12; 17

0.8 0.01 96.61 6.22 400 18.42 542 1178.69 42.82 49.58 7.60 1; 4; 12; 18
0.05 97.32 8.36 648 20.78 525 1531.41 42.37 29.79 27.84 1; 4; 8; 18
0.2 97.69 12.37 306 25.30 628 2810.33 23.09 16.23 60.68 1; 4; 8; 18

5 0.2 0.01 97.05 4.04 242 7.50 433 686.85 61.14 24.89 13.97 4; 6; 12; 17; 24
0.05 95.82 4.56 1165 22.53 1016 1050.38 40.80 16.57 42.64 9; 11; 12; 17; 24
0.2 94.72 4.46 3901 126.97 2202 2393.88 17.90 7.27 74.83 9; 11; 12; 17; 24

0.4 0.01 95.99 2.79 1134 14.79 466 857.24 52.29 36.52 11.20 1; 4; 6; 12; 17
0.05 95.31 3.68 1000 16.26 650 1221.48 37.60 25.73 36.66 1; 9; 12; 17; 21
0.2 94.64 5.44 11106 1011.78 5598 2564.98 17.91 12.25 69.84 1; 9; 12; 17; 21

0.8 0.01 95.39 4.35 4103 107.34 1786 1165.79 51.37 40.40 8.23 1; 4; 6; 8; 17
0.05 95.29 5.97 2176 63.84 2128 1532.11 39.81 30.96 29.23 1; 8; 9; 17; 21
0.2 94.72 7.22 4094 165.03 2588 2875.61 21.21 16.49 62.29 1; 8; 9; 17; 21
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Using Eqs. (7), inequalities (19) can be written as

xðδðSÞÞZ2
∑iA S∑jAV z2ij

q

& ’
� ∑

iA S
z2ii

 !
:

These inequalities are stronger than (18) but non-linear. Another
alternative to obtain linear inequalities is motivated by the Multi-
Star inequalities for the Capacitated Vehicle Routing Problem (see
Letchford et al. [35]). Indeed, by simply removing the rounding
operator we get the fractional capacity cuts:

xðδðSÞÞZ2
∑iA S∑jAV z2ij

q
� ∑

iA S
z2ii

 !
;

which can be strengthened as follows.

Proposition 3.

xðδðSÞÞZ2
∑iA S∑jAV z2ijþxðδðSÞÞ=2

q
� ∑

iAS
z2ii

 !
ð20Þ

is valid for all SDV .

Proof. A vehicle serving nodes in S must also have capacity to
serve the nodes not in S visited immediately after serving a node
in S. The number of such nodes is xðδðSÞÞ in general but, since there

may be only one node in the vehicles's route outside S, that figure
must be divided by two. □

3. Branch-and-cut algorithm

In this section we describe a branch-and-cut algorithm to solve
the HLRP. The branch-and-cut scheme for integer programming
problems combines a branch-and-bound method for exploring a
decision tree and a cutting plane method for computing bounds.
At each node of the search tree, the cutting plane method
improves a linear relaxation of the problem. When this is not
further possible, the branch-and-bound algorithm proceeds. A key
point is to have a mathematical model whose linear relaxation is
close to the integer problem, and efficient procedures to solve the
separation problems and identify violated inequalities within the
cutting plane phase.

We now outline the main features of our branch-and-cut
algorithm.

3.1. Initial relaxation

At the root node of the branch-and-cut tree we initialize the
linear program (LP) model by relaxing constraints (8) and (9) as
well as the integrality constraints on the variables of the original

Table 5
Results for AP25.

q p β r-gap r-time nodes time nCuts totalCost %-access %-interHub %-cycle hubs

jV j 3 1 99.42 3.34 3 3.74 291 155,482.14 85.53 14.32 0.15 7; 14; 18
100 99.13 4.17 39 6.30 315 177,838.26 74.78 12.52 12.70 7; 14; 18
500 99.54 7.82 18 10.84 349 262,544.57 50.08 10.27 39.65 2; 9; 18

1000 99.75 11.14 22 15.91 439 366,638.05 35.86 7.36 56.78 2; 9; 18

4 1 98.98 3.15 57 5.74 270 139,430.10 79.91 19.93 0.17 2; 7; 14; 18
100 98.73 4.65 129 11.76 269 161,485.26 69.08 18.29 12.62 2; 9; 17; 18
500 99.85 6.49 3 8.03 329 243,004.56 45.91 12.16 41.93 2; 9; 17; 18

1000 100.00 9.94 0 10.72 376 344,903.68 32.35 8.57 59.09 2; 9; 17; 18

5 1 99.52 2.54 12 3.35 215 123,802.90 76.37 23.45 0.18 2; 7; 14; 17; 18
100 99.86 4.99 10 6.18 263 145,099.06 64.51 20.76 14.73 2; 8; 17; 18; 20
500 99.90 4.68 11 6.13 275 227,204.68 43.74 12.32 43.94 2; 7; 14; 17; 18

1000 100.00 3.42 0 3.60 259 327,043.26 30.39 8.56 61.06 2; 7; 14; 17; 18

⌈jV j=2⌉ 3 1 99.44 3.09 3 3.68 292 155,482.14 85.53 14.32 0.15 7; 14; 18
100 99.26 5.76 7 6.52 306 177,838.26 74.78 12.52 12.70 7; 14; 18
500 99.31 5.96 13 8.13 310 262,544.57 50.08 10.27 39.65 2; 9; 18

1000 99.55 8.02 36 11.11 390 366,638.05 35.86 7.36 56.78 2; 9; 18

4 1 98.94 2.89 35 5.24 266 139,430.10 79.91 19.93 0.17 2; 7; 14; 18
100 98.65 3.74 87 7.96 250 161,485.26 69.08 18.29 12.62 2; 9; 17; 18
500 99.92 5.41 6 6.61 316 243,004.56 45.91 12.16 41.93 2; 9; 17; 18

1000 100.00 8.13 0 8.28 352 344,903.68 32.35 8.57 59.09 2; 9; 17; 18

5 1 99.57 2.53 13 3.48 209 123,802.90 76.37 23.45 0.18 2; 7; 14; 17; 18
100 99.93 3.53 5 4.68 243 145,099.06 64.51 20.76 14.73 2; 8; 17; 18; 20
500 99.91 4.77 3 5.77 256 227,204.68 43.74 12.32 43.94 2; 7; 14; 17; 18

1000 100.00 4.12 0 4.26 257 327,043.26 30.39 8.56 61.06 2; 7; 14; 17; 18

⌈jV j=p⌉ 3 1 100.00 1.84 0 1.86 230 156,287.34 84.78 15.08 0.14 7; 14; 18
100 100.00 2.82 0 2.95 241 178,328.06 74.30 13.21 12.48 7; 14; 18
500 99.14 11.20 96 18.27 384 267,381.48 49.56 8.81 41.63 7; 14; 18

1000 98.54 12.29 295 32.76 431 376,932.18 37.75 4.98 57.27 8; 17; 18

4 1 99.47 3.14 5 4.12 208 139,876.23 83.02 16.82 0.16 7; 14; 17; 18
100 99.50 4.15 5 5.49 219 161,720.99 71.80 14.55 13.64 7; 14; 17; 18
500 98.26 14.15 193 34.71 417 249,982.62 46.45 9.41 44.13 7; 14; 17; 18

1000 97.21 12.07 1335 106.14 1726 359,669.90 33.42 6.45 60.13 7; 14; 17; 18

5 1 99.68 4.82 12 5.63 243 130,727.14 74.88 24.94 0.18 2; 7; 14; 17; 18
100 98.64 3.92 91 7.05 251 154,151.28 63.50 21.15 15.35 2; 7; 14; 17; 18
500 97.40 6.38 757 29.69 728 245,105.99 40.65 13.40 45.95 2; 7; 14; 17; 18

1000 97.52 16.30 2851 166.38 2004 357,731.82 27.85 9.18 62.97 2; 7; 14; 17; 18
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formulation. Hence, the initial LP model is (1)–(7) and the
continuous relaxation of (10)–(13).

3.2. Cutting plane phase

Given a fractional solution ðxn; zn1; zn2; gnÞ, the separation rou-
tines for constraints (14)–(16), (20), (8), and (18) are applied, in
this sequence. The violation of constraints (17) is checked only if
no other violated cuts have been found. The number of cuts added
to the model in each cut generation step is limited to 100.

3.2.1. Separation of inequalities (8)
The subtour elimination constraints for the TSP can be sepa-

rated in polynomial time by solving a max-flow/min-cut problem
on an appropriately defined support graph. We follow the same
idea to devise a separation procedure for inequalities (8), similar to
the one used in Labbé et al. [27]. First note that inequalities (8) can
be written as

xðδðSÞÞþ2∑
jAS

z2ijZ2 ∑
jAV

z2ij 8S� V ; iAS:

For each given node iAV such that ∑jAVzn2ij 40, let us consider
a graph G0 ¼ ðV 0; E0Þ with V 0 ¼ V [ fsg, where s is a dummy node.
The edge set E0 contains all edges eAE such that xne40, plus all
edges connecting s with nodes jAV such that zn2ij 40. The capacity
of an edge eAE is xne , and the capacity of an edge ½s; j� is 2zn2ij . Then,

a set S� V 0 with s=2S and iAS defines a violated inequality (8) if the
capacity of the cut δðSÞ is smaller than 2∑jAVzn2ij . Hence, finding

the most violated inequality (8) involving i, if any, is equivalent to
solving a min-cut problem for i and s on G0.

We solve each min-cut problem using the path-relabel flow
algorithm proposed by Goldberg and Tarjan [25], which has
complexity Oðmn2Þ on a graph with n vertices and m edges. So,
the overall complexity of our separation procedure is OðjEjjV j3Þ.

3.2.2. Separation of inequalities (14)–(16)
We separate constraints (15), despite being dominated by

constrains (16), because they have proven to be useful in our
computational experiments. Constraints (14) and (15) can be
separated in OðjV j2Þ by complete enumeration.

Inequalities (16) can also be separated in polynomial time. For a
given edge ½i; i0�AE, we define S¼ fig [ fjAV \fi0g : zn2ij Zzn2i0j g. If the
inequality for this choice of S is not violated, then there exists no
violated inequality (16) for edge ½i; i0�. The overall complexity of the
separation algorithm is OðjV j3Þ.

3.2.3. Separation of inequalities (17)
The separation procedure for inequalities (17) is an adaptation of

the one used in Labbé et al. [27]. We can rewrite constraints (17) as

xðδðSÞÞþ2∑
jAS

z2ijþ2 ∑
jAV\S

z2i0 jZ2 ∑
jAV

z2ijþ ∑
jAV

z2i0 j

 !
8S� V ; iAS; i0AV\S:

Table 6
Results for AP40.

q p β r-gap r-time nodes time nCuts totalCost %-access %-interHub %-cycle hubs

jV j 3 1 99.56 35.94 7 44.94 614 159,131.34 85.63 14.19 0.19 12; 22; 28
100 99.11 59.09 538 181.37 838 188,910.27 72.13 11.95 15.92 12; 22; 28
500 98.55 100.01 1128 688.68 1564 306,243.01 44.46 7.98 47.56 12; 23; 28

1000 99.26 153.57 676 646.09 1583 445,218.18 33.55 5.57 60.88 4; 13; 28

4 1 99.41 30.03 13 39.73 532 144,269.55 82.46 17.33 0.21 12; 22; 26; 28
100 99.06 46.11 245 108.81 925 174,036.22 68.36 14.37 17.28 12; 22; 26; 28
500 98.42 129.76 2910 1322.81 1711 291,653.08 42.96 9.03 48.01 7; 12; 23; 28

1000 98.64 229.32 960 910.67 1254 430,540.90 29.19 6.65 64.16 4; 12; 15; 28

5 1 98.85 50.25 413 105.38 913 134,569.34 78.77 21.00 0.23 3; 12; 22; 26; 28
100 98.54 48.44 1092 411.62 1961 164,038.24 65.62 16.74 17.64 7; 12; 22; 26; 28
500 98.86 99.12 811 518.69 1422 277,247.49 40.49 11.01 48.50 4; 7; 12; 23; 28

1000 99.54 126.06 128 186.53 892 411,710.46 27.27 7.41 65.32 4; 7; 12; 23; 28

⌈jV j=2⌉ 3 1 99.61 34.46 9 45.86 572 159,131.34 85.63 14.19 0.19 12; 22; 28
100 99.19 61.67 454 233.88 1194 188,910.27 72.13 11.95 15.92 12; 22; 28
500 98.48 84.79 1121 712.00 1718 306,243.01 44.46 7.98 47.56 12; 23; 28

1000 99.24 146.75 647 600.46 1852 445,218.18 33.55 5.57 60.88 4; 13; 28

4 1 99.34 31.48 42 46.22 519 144,269.55 82.46 17.33 0.21 12; 22; 26; 28
100 99.10 61.28 241 130.92 644 174,036.22 68.36 14.37 17.28 12; 22; 26; 28
500 98.38 110.42 1178 773.80 1342 291,653.08 42.96 9.03 48.01 7; 12; 23; 28

1000 98.63 160.09 2386 1900.23 3146 430,540.90 29.19 6.65 64.16 4; 12; 15; 28

5 1 98.88 42.92 398 138.65 792 134,569.34 78.77 21.00 0.23 3; 12; 22; 26; 28
100 98.47 47.99 459 133.82 980 164,038.24 65.62 16.74 17.64 7; 12; 22; 26; 28
500 98.87 100.84 560 381.52 809 277,247.49 40.49 11.01 48.50 4; 7; 12; 23; 28

1000 99.62 174.80 77 244.52 1048 411,710.46 27.27 7.41 65.32 4; 7; 12; 23; 28

⌈jV j=p⌉ 3 1 98.56 38.42 530 155.02 1073 161,989.74 84.61 15.20 0.18 12; 22; 28
100 98.54 62.40 289 130.54 675 191,404.41 71.61 12.87 15.52 12; 22; 28
500 97.94 110.09 871 583.62 1298 309,484.80 45.27 7.18 47.55 11; 22; 28

1000 97.96 89.70 3015 3447.42 3804 454,614.67 30.74 5.45 63.81 12; 22; 28

4 1 99.36 25.55 22 34.87 514 145,732.10 81.24 18.54 0.21 12; 23; 26; 28
100 98.86 33.09 442 117.67 1321 176,241.71 67.46 15.07 17.47 12; 23; 26; 28
500 98.22 63.24 2782 1521.90 4931 295,787.67 41.19 8.91 49.90 12; 15; 27; 28

1000 97.95 94.57 10053 4550.67 8508 443,393.74 27.48 5.94 66.58 12; 15; 27; 28

5 1 98.05 40.70 625 185.50 1115 139,032.42 76.90 22.88 0.22 5; 11; 23; 26; 28
100 98.20 42.48 3268 630.09 2996 168,736.29 63.39 18.97 17.64 5; 11; 23; 26; 28
500 98.09 91.67 3340 2472.09 5069 286,728.55 37.70 11.05 51.26 5; 11; 23; 27; 28

1000 93.69 88.62 9004 t.l. 17450 453,254.27 25.01 6.85 68.14 3; 20; 23; 27; 28
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Table 7
Results for AP50.

q p β r-gap r-time nodes time nCuts totalCost %-access %-interHub %-cycle hubs

jV j 3 1 99.75 114.77 17 147.25 993 158,880.67 85.43 14.38 0.20 14; 28; 35
100 99.59 150.82 94 237.14 1063 189,643.25 71.57 12.05 16.39 14; 28; 35
500 98.88 395.54 1033 1963.21 2078 313,509.45 43.40 7.38 49.22 14; 28; 35

1000 99.46 463.62 198 771.47 1536 461,294.25 32.54 4.63 62.83 9; 14; 35

4 1 99.77 89.87 36 112.20 877 143,692.01 82.38 17.40 0.22 14; 28; 33; 35
100 99.74 130.99 18 166.33 946 174,356.01 67.96 14.28 17.76 14; 28; 33; 35
500 99.03 377.09 1685 3351.32 2679 297,364.38 40.01 8.44 51.56 14; 28; 33; 35

1000 99.02 449.10 666 1822.15 1756 444,031.52 28.45 6.19 65.37 9; 14; 29; 35

5 1 99.53 89.11 58 119.12 756 132,689.72 77.90 21.86 0.24 4; 14; 28; 33; 35
100 99.58 153.72 107 222.71 841 163,460.64 63.55 17.47 18.98 4; 14; 28; 33; 35
500 99.78 292.64 48 369.10 1123 281,644.93 38.61 9.80 51.60 9; 14; 28; 33; 35

1000 99.40 585.33 337 1152.33 1536 426,543.08 26.06 6.48 67.46 9; 14; 28; 33; 35

⌈jV j=2⌉ 3 1 99.74 101.03 14 124.61 919 158,880.67 85.43 14.38 0.20 14; 28; 35
100 99.62 158.50 34 218.20 970 189,643.25 71.57 12.05 16.39 14; 28; 35
500 98.87 289.51 808 1644.84 2022 313,509.45 43.40 7.38 49.22 14; 28; 35

1000 97.96 393.14 2443 t.l. 4435 468,204.82 29.00 5.59 65.41 14; 19; 35

4 1 99.78 99.65 17 126.91 827 143,692.01 82.38 17.40 0.22 14; 28; 33; 35
100 99.74 142.96 22 182.88 917 174,356.01 67.96 14.28 17.76 14; 28; 33; 35
500 99.01 355.12 1045 2060.49 1785 297,364.38 40.01 8.44 51.56 14; 28; 33; 35

1000 98.98 473.82 1230 3966.06 3575 444,031.52 28.45 6.19 65.37 9; 14; 29; 35

5 1 99.57 91.42 74 133.27 788 132,688.63 77.82 21.94 0.24 4; 14; 28; 33; 35
100 99.58 144.35 57 192.27 796 163,460.64 63.55 17.47 18.98 4; 14; 28; 33; 35
500 99.76 322.70 26 409.19 1087 281,644.93 38.61 9.80 51.60 9; 14; 28; 33; 35

1000 99.33 449.22 428 1106.70 1324 426,543.08 26.06 6.48 67.46 9; 14; 28; 33; 35

⌈jV j=p⌉ 3 1 98.98 122.24 483 431.89 1903 162,358.48 84.27 15.53 0.21 14; 28; 35
100 98.76 263.20 1023 1534.43 1851 193,611.51 70.63 13.16 16.22 14; 28; 35
500 98.17 234.24 3412 5173.27 6609 318,506.03 43.65 7.53 48.81 14; 27; 35

1000 95.19 440.67 2315 t.l. 6352 487,540.97 30.17 5.43 64.40 13; 29; 35

4 1 99.69 90.20 77 156.42 729 144,210.66 82.55 17.22 0.22 14; 28; 33; 35
100 99.44 149.71 503 549.79 1374 175,349.65 67.97 14.12 17.91 14; 28; 33; 35
500 98.82 242.71 1599 3343.15 7156 300,103.26 40.02 8.15 51.83 14; 28; 33; 35

1000 96.88 334.48 2090 t.l. 6466 462,471.69 27.37 5.11 67.52 14; 33; 35; 39

5 1 96.88 81.78 6188 2764.23 4354 140,093.97 76.32 23.44 0.24 3; 16; 29; 33; 35
100 96.20 111.65 12369 t.l. 12,712 173,088.85 64.02 17.23 18.76 3; 16; 28; 33; 35
500 92.65 215.80 6200 t.l. 13,972 311,508.49 37.68 8.76 53.56 14; 17; 28; 33; 35

1000 83.97 257.20 3418 t.l. 11,940 524,502.41 24.05 4.86 71.09 14; 17; 28; 34; 36

Fig. 2. Optimal solution for CAB25 with p¼5, q¼13, α¼ 0:8, β¼ 0:01.
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Then, for each pair of nodes i; i0AV let us define a support
graph G0 ¼ ðV 0; E0Þ where V 0 ¼ V and E0 contains all edges ði; jÞAE
such that jAV and xnijþ2zn2i0j 40, all edges ði0; jÞAE such that jAV
and xni0 jþ2zn2ij 40, and all other edges eAE such that xne40. The

capacity of the edges in E0 is set to the positive value considered
for their definition. Let S� V 0 be such that iAS, i0 =2S, and δðSÞ is the
minimum cut between i and i0 in G0. If the capacity of δðSÞ is
smaller than 2ð∑jAVzn2ij þ∑jAVzn2i0 j Þ, S defines the most violated

constraint (17) for i and i0. Therefore, again the separation problem
can be solved by performing a max-flow computation for each pair
of nodes. The overall complexity of the algorithm is OðjEjjV j4Þ.

3.2.4. Separation of inequalities (18)
Inequalities (18) are similar to the rounded capacity inequalities

for the capacitated vehicle routing problem [35]. We propose to
separate them heuristically as follows. We look for the min-cut set S

in each of the connected components of a support graph with node
set equal to V and edge set obtained from E by selecting all edges
eAE with xne40 and giving them those values as capacity. Then we
check whether each S, or its complement within the corresponding
connected component, gives a violated inequality (18). Moreover, we
also check the violation of inequalities (18) for all subsets S� V
associated with violated constraints (8) and (17).

The bottleneck of this separation procedure is the min-cut
computation, which may be applied at most jV j times. Thus, the
complexity of this approach is OðjEjjV j3Þ.

3.2.5. Separation of inequalities (20)
Inequalities (20) are separated exactly with a procedure that is

also based on the classical separation of the subtour elimination
constraints for the TSP. We can rewrite (20) as

ðq�1ÞxðδðSÞÞþ ∑
iA S

2qz2iiþ∑
i=2 S

∑
jAV

2z2ijZ2 ∑
iAV

∑
jAV

z2ij:

Fig. 3. Optimal solution for CAB25 with p¼5, q¼13, α¼ 0:8, β¼ 0:05.

Fig. 4. Optimal solution for CAB25 with p¼5, q¼13, α¼ 0:8, β¼ 0:2.
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Let us consider a support graph G0 ¼ ðV 0; E0Þ with V 0 ¼ V [ fs; tg, s
and t being dummy nodes. The edge set E0 is obtained by
considering

� all edges eAE such that xne40, each one with capacity ðq�1Þxne ,� all edges connecting s with nodes iAV , each one with capacity
2qzn2ii , and� all edges connecting nodes iAV with t, each one with capacity
2∑jAVzn2ij .

Then, a set S� V 0 with tAS and s=2S defines a violated inequality (20)
if the capacity of the cut δðSÞ on G0 is smaller than 2∑iAV∑jAV zn2ij .
Therefore, inequalities (20) can be separated by solving a s�t min-
cut problem on G0. The complexity of the separation method is
OðjEjjV j2Þ.

4. Computational results

We coded the branch-and-cut algorithm in Cþþ and ran it on
a personal computer with an Intel Core i7 CPU at 3.4 GHz and
16 GB of RAM. We used CPLEX 12.5 as a mixed integer linear
programming solver. To solve the min-cut problems we used the
implementation of the path-relabel maximum flow algorithm
provided by the Concorde TSP solver.

The behavior of the algorithm was first tested on two data sets
commonly used in the hub location literature: the US Civil
Aeronautics Board (CAB) and the Australian Post (AP) data sets.
The CAB data set was introduced by O'Kelly [38] and is based on
airline passenger flow among 25 important cities in the US. The
AP data set was introduced by Ernst and Krishnamoorthy [22] and
is based on postal delivery in 200 postal districts in Sidney,

Fig. 5. Optimal solution for CAB25 with p¼5, q¼5, α¼ 0:8, β¼ 0:2.

Fig. 6. Optimal solution for CAB25 with p¼5, q¼25, α¼ 0:8, β¼ 0:2.
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moreover smaller instances can be generated using a code made
available by the authors. We generated instances with 25, 40 and
50 nodes. AP data differ from CAB in that the flow matrix of the AP
data is not symmetric and flows from a node to itself are positive.
Moreover, in AP instances the cost of assigning node i to hub j is
set to 3cijoiþ2cjidi and the inter-hub routing cost is discounted
with α¼ 0:75.

For all instances we defined cij and fij as the Euclidean distance
between nodes i and j, and we made experiments with p¼ f3;4;5g
and q¼ fjV j; ⌈jV j=2⌉; ⌈jV j=p⌉g. In CAB instances we set α¼
f0:2;0:4;0:8g and β¼ f0:01;0:05;0:2g, while in AP instances
β¼ f1;100;500;1000g. The values of parameter α are the ones
commonly used in the literature on hub problems. However, the
values of parameter β were chosen in order to obtain optimal
solutions with increasing percentage of the circular routes’ cost
over the total cost and to measure the impact of this on solution
time and on the locations of hubs.

Tables 2–7 show the branch-and-cut results. For each instance,
columns r-gap, r-time, nodes, time, nCuts and totalCost report the
ratio of the root bound to the optimal value as a percentage, the
time spent at the root node, the number of nodes exploited in
the branch-and-cut tree, the total solution time in seconds, the
total number of cuts added, and the total solution cost, respec-
tively. In the remaining columns we report the assignment, inter-
hub routing, and the cycle costs as a percentage of the total cost, as

well as the locations of hubs in the best solutions. We imposed a
time limit of two hours for each run. When this time limit is
exceeded, we report “t.l.” in column time, we show the cost of the
best solution at the end of the computation in column totalCost
instead of the optimal solution value, and we use that figure to
compute the bound in r-gap.

Our separation routines found violated inequalities of all
families. Inequalities (14)–(16) have simple separation procedures,
while (8), (17), (18) and (20) require solving min-cut problems. We

Table 8
Comparison between the basic and the complete B&C for AP25.

q p β Basic B&C Complete B&C

r-gap r-time nodes time r-gap r-time nodes time

jV j 3 1 99.38 390.74 10 452.92 99.42 3.34 3 3.74
100 98.68 258.23 74 475.48 99.13 4.17 39 6.30
500 98.33 286.70 116 642.44 99.54 7.82 18 10.84

1000 98.44 343.87 202 729.88 99.75 11.14 22 15.91

4 1 98.90 391.06 59 470.72 98.98 3.15 57 5.74
100 98.18 280.68 397 859.88 98.73 4.65 129 11.76
500 98.75 274.90 145 542.06 99.85 6.49 3 8.03

1000 98.82 242.10 122 591.87 100.00 9.94 0 10.72

5 1 99.51 194.39 17 229.15 99.52 2.54 12 3.35
100 99.26 209.21 27 301.19 99.86 4.99 10 6.18
500 98.99 221.90 62 425.41 99.90 4.68 11 6.13

1000 99.36 260.77 362 783.14 100.00 3.42 0 3.60

⌈jV j=2⌉ 3 1 99.36 243.55 5 273.64 99.44 3.09 3 3.68
100 98.63 245.86 77 437.61 99.26 5.76 7 6.52
500 98.12 269.40 147 701.91 99.31 5.96 13 8.13

1000 98.34 342.28 476 1050.46 99.55 8.02 36 11.11

4 1 98.90 383.76 56 482.28 98.94 2.89 35 5.24
100 97.99 214.70 545 610.59 98.65 3.74 87 7.96
500 98.81 282.32 342 1021.26 99.92 5.41 6 6.61

1000 98.86 290.35 80 567.16 100.00 8.13 0 8.28

5 1 99.54 198.09 23 239.65 99.57 2.53 13 3.48
100 99.19 220.69 19 325.06 99.93 3.53 5 4.68
500 98.97 225.22 117 470.19 99.91 4.77 3 5.77

1000 99.36 228.09 59 415.77 100.00 4.12 0 4.26

⌈jV j=p⌉ 3 1 100.00 216.09 0 216.12 100.00 1.84 0 1.86
100 99.53 256.57 4 333.56 100.00 2.82 0 2.95
500 97.48 288.88 131 635.00 99.14 11.20 96 18.27

1000 96.47 287.54 2757 4471.00 98.54 12.29 295 32.76

4 1 98.82 243.31 6 304.23 99.47 3.14 5 4.12
100 98.13 204.16 294 597.36 99.50 4.15 5 5.49
500 96.67 319.01 874 1806.87 98.26 14.15 193 34.71

1000 95.27 277.68 4451 t.l. 97.21 12.07 1335 106.14

5 1 99.46 57.72 25 112.02 99.68 4.82 12 5.63
100 97.85 227.00 109 418.38 98.64 3.92 91 7.05
500 94.71 59.05 6101 t.l. 97.40 6.38 757 29.69

1000 91.31 193.60 5876 t.l. 97.52 16.30 2851 166.38

Table 9
SApHMP results for CAB25.

p α Access cost interHub cost SApHMP Hubs Cycles' cost

3 0.2 631.21 136.14 767.35 4; 12; 17 10,233.68
0.4 637.10 264.60 901.70 4; 12; 18 9813.17
0.8 657.77 501.07 1158.83 2; 4; 12 9519.25

4 0.2 464.38 165.26 629.63 4; 12; 17; 24 9419.79
0.4 484.13 303.38 787.52 1; 4; 12; 17 8878.00
0.8 501.46 586.20 1087.66 1; 4; 12; 18 8878.00

5 0.2 368.18 170.20 538.37 4; 7; 12; 14; 17 8849.93
0.4 369.89 337.80 707.69 4; 7; 12; 14; 17 8792.14
0.8 423.23 610.88 1034.10 1; 4; 7; 12; 18 9207.69
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decided to apply the separation procedure for (17) only when no
other violated cuts are found due to its time consumption. Still, the
violated inequalities (17) found were fundamental to solve some
instances to optimality within the time limit.

We observe that the bounds at the root nodes are strong in
most cases. All instances except one of AP40 and six of AP50 are
solved to optimality within the time limit. The computational
experiments show that, for this data, as q gets smaller, the
problem becomes more difficult, more nodes are enumerated to
reach optimality, and the total cost increases. Also the instances
with large β and p are usually more difficult to solve. Indeed, the
instance of AP40 that is not solved to optimality within the time
limit has tight capacities and large β and p. Out of six unsolved
instances of AP50, four have large β value and five have tight
capacities.

For the uncapacitated CAB instances, when β¼ 0:01 the opti-
mal locations of hubs are very similar to those of the SApHMP. The
only differences are for p¼3 and α¼ 0:2 where the hub at Chicago
is moved to Cincinnati, for p¼3, α¼ 0:4 where the hubs at Chicago
and Philadelphia are moved to Cincinnati and New York, and for
p¼4, α¼ 0:2 where the hub at Tampa is moved to Miami, when
the cycle costs are included in the objective function. These
changes are not over long distances. The empirical test indicates
that, in these instances, increasing β has more impact on the
locations when α is large.

We look closely into an instance and observe the changes in the
location of hubs as β increases. Figs. 2–4 sketch the optimal
solutions of the CAB instances with α¼ 0:8, p¼5, q¼13 and
different values of β. When β¼ 0:01, the solution has five cycles
with at least three nodes. As β increases to 0.05, Seattle becomes a
hub with no other nodes assigned to it. The 13 cities in the interior
are covered by one cycle with a hub located at Chicago. The cities
in the east, west and south are covered with three smaller cycles.
When we further increase β to 0.2, we observe that Denver also
becomes a hub with no other node assigned to it and the
remaining cities are covered with three cycles. Cleveland joins
the cycle in the east and Tampa and Miami join the cycle in the
interior. As in this instance the cycle costs fe satisfy the triangle
inequality, covering all nodes by one cycle is a good solution.
However, this is not possible due to capacity restrictions. Hence,
the solution is covering 13 nodes with one hub leaving further
ones as isolated hubs and covering the remaining nodes with
smaller cycles. We note that as β increases from 0.01 to 0.2, the
contribution of the cycle costs to the total cost increases from
8.18% to 55.26%.

Figs. 4–6 show the effect of the different capacity values on the
CAB instance with α¼ 0:8, β¼ 0:2 and p¼5. The case with the
smallest percentage of cycle cost corresponds to the uncapacitated
instance (q¼25) depicted in Fig. 6. In that solution there is a large
cycle covering 20 cities, a hub with only one node assigned to it,

Table 10
Results for random instances with 25 nodes.

q p β rand25-s1 rand25-s2 rand25-s3

r-gap r-time nodes time nCuts r-gap r-time nodes time nCuts r-gap r-time nodes time nCuts

jV j 3 1 98.72 4.85 31 5.96 325 97.42 5.44 76 12.14 318 98.76 3.95 38 6.57 297
100 99.31 15.90 29 20.95 566 97.98 8.97 327 29.30 461 99.94 13.49 5 13.87 605
500 99.96 11.64 4 12.06 563 99.62 17.36 19 19.53 590 99.84 17.92 0 18.25 785

1000 99.97 18.72 0 18.95 734 99.85 20.73 3 21.31 608 100.00 20.65 0 20.67 885

4 1 99.84 3.62 8 4.54 245 97.64 7.13 203 20.45 389 99.12 4.88 60 8.44 272
100 99.77 14.06 4 15.09 521 98.09 9.00 380 37.61 890 99.92 16.33 0 16.49 656
500 99.97 18.81 2 19.30 609 99.30 14.18 17 17.69 549 100.00 21.76 0 21.84 689

1000 99.99 27.63 0 27.81 788 99.88 14.96 4 15.52 527 99.87 22.98 0 23.20 913

5 1 98.93 3.84 62 7.97 210 98.63 7.39 67 13.62 272 99.56 3.78 19 6.02 211
100 99.40 15.35 11 17.60 516 97.99 10.02 354 26.77 384 99.59 20.84 8 21.90 733
500 99.16 24.38 26 28.78 729 99.30 15.38 19 19.25 509 98.86 36.46 110 68.84 1056

1000 98.91 36.64 62 47.05 977 99.04 22.50 48 29.56 653 98.88 50.75 50 60.17 1171

⌈jV j=2⌉ 3 1 98.82 4.63 24 6.43 321 97.26 4.24 76 10.90 285 98.71 4.34 46 7.32 292
100 99.26 12.34 14 15.02 540 98.26 8.70 149 22.26 460 97.00 23.37 800 152.82 1042
500 96.88 25.19 1279 217.75 1687 97.83 18.38 219 46.13 717 94.64 63.38 3500 2872.74 3556

1000 95.72 51.17 3056 868.07 2481 97.21 29.81 1018 210.13 2163 93.42 103.05 4500 t.l. 5493

4 1 99.80 3.74 20 5.13 248 97.54 7.10 286 23.49 412 99.13 6.41 67 9.97 252
100 99.80 13.68 8 14.82 493 98.18 11.04 394 37.44 661 99.78 24.29 6 25.69 729
500 99.50 33.01 22 39.33 788 99.00 19.69 69 29.76 643 97.69 49.05 1734 1103.10 3405

1000 98.45 40.34 166 81.12 1087 99.43 27.50 20 32.93 765 97.16 76.24 1989 1147.42 5182

5 1 98.82 3.67 100 8.10 207 98.72 7.25 78 13.85 257 99.53 3.57 29 5.57 218
100 99.40 14.31 24 17.25 543 98.00 9.00 582 36.47 498 99.83 23.09 0 23.49 758
500 99.72 24.13 7 25.32 759 98.86 19.02 124 29.72 586 98.70 44.91 54 72.57 1168

1000 99.06 36.02 15 41.54 977 99.34 25.21 46 31.81 674 98.36 73.27 34 113.18 1456

⌈jV j=p⌉ 3 1 97.07 6.66 215 22.45 498 97.28 6.91 81 16.15 370 98.59 5.88 80 14.18 375
100 92.81 19.70 19,002 3704.74 4058 95.89 14.96 2054 205.87 1918 88.02 42.85 9061 t.l. 7688
500 88.34 34.48 12,241 t.l. 10,370 91.86 24.66 23,500 6759.46 5929 76.72 67.72 6787 t.l. 10,043

1000 82.03 42.10 8927 t.l. 9407 86.29 34.02 13,312 t.l. 9502 83.07 54.04 6224 t.l. 9082

4 1 100.00 2.48 0 2.50 221 97.69 6.29 107 15.55 288 99.49 4.90 25 6.29 232
100 94.28 24.13 3648 482.06 1946 96.15 11.43 1485 135.03 1568 90.96 36.79 11,119 t.l. 7277
500 89.25 38.14 13,242 t.l. 8047 93.05 28.97 8700 2248.77 4842 84.43 46.96 7007 t.l. 11,513

1000 88.56 43.49 9032 t.l. 9659 90.81 40.62 11,184 t.l. 7413 86.86 62.67 7034 t.l. 9601

5 1 99.01 6.86 272 14.76 608 96.93 4.71 568 23.79 605 98.86 4.32 70 7.27 257
100 96.13 14.31 2249 183.47 2947 95.37 11.14 1845 76.58 2024 90.27 28.74 14,654 t.l. 12,536
500 89.70 32.04 15,490 t.l. 10,644 92.66 20.03 10,644 1379.58 5161 86.78 35.76 9690 t.l. 13,176

1000 86.56 37.50 9274 t.l. 11,246 90.02 30.05 19,199 t.l. 8978 87.44 41.22 7808 t.l. 14,327
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and three isolated hubs. On the other extreme, when the capacity
is set to the minimum possible value to ensure feasibility (see
Fig. 5), the solution is forced to consist of five cycles with five
nodes each. Observe that the total computing time needed to solve
the instances goes from 9.31 s for q¼25 to 165.03 s for q¼5.

To attest the effectiveness of the cuts used in our branch-and-
cut scheme, we performed an experiment consisting of comparing
a basic version of the algorithm that just solves models (1)–(13),
with the default CPLEX settings, to the complete algorithm version.
Table 8 shows the performance of the algorithms on AP25
instances. It is clear from the results that the separation of the
valid inequalities presented in Section 2 markedly reduces the
computation times. In fact, for larger AP instances the basic
algorithm is unable to find even a feasible solution within the
time limit of two hours.

As mentioned in the introduction, if the costs associated with the
cycles are zero, HLRP reduces to SApHMP. Table 9 reports the assign-
ment cost, inter-hub cost, total solution value, and the hub locations,
for the known optimal SApHMP solutions of some CAB25 instances.
The last column displays the optimal cost of the cycles associated with
those solutions. From these data it is possible to calculate the value of a
heuristic HLRP solution obtained by solving first the SApHMP and then
calculating the optimal cycles. The resulting solution values are worse,
as expected, than the optimal HLRP solution values. For example, for
p¼3, α¼ 0:2, and β¼ 0:01, the optimal HLRP value is 858.76, while
the heuristic solution value is 767:35þ0:01n10;233:68¼ 869:69; the
locations of the hubs also differ in both solutions. This shows the
advantage of jointly tackling the hub and routing parts of the problem.

Finally, we observed that in AP and CAB instances the amount
of flow originating at each node is highly variable. In fact, in each
of the data set CAB25, AP25, AP40 and AP50, there is one node that
generates alone as much flow as approximately 40% of the nodes.
So, in these instances a few nodes may have a great influence in
the hub location decisions.

To see the effect of the flow structure in the problem solution, we
generate three random instances as done in Contreras et al. [19]. All
instances have 25 nodes with random coordinates in ½0;200��
½0;200�, and the costs cij and fij are defined as the Euclidean distance
between nodes i and j. We consider three types of nodes: low-level
(LL) nodes, with total amount of outgoing flow randomly generated
in the interval ½0;10�, medium-level (ML) nodes, with total amount
of outgoing flow randomly generated in the interval ½10;100�, and
high-level (HL) nodes, with total amount of outgoing flow randomly
generated in the interval ½100;1000�. The percentages of nodes of
each type (LL–ML–HL) in the instances rand25-s1, rand25-s2 and
rand25-s3 are 60%–38%–2%, 35%–35%–30%, and 99%–1%–0%, respec-
tively. We made experiments with p¼ f3;4;5g, q¼ fjV j; ⌈jV j=2⌉;
⌈jV j=p⌉g, the same α and β values used for AP instances, and a time
limit of two hours. The results are reported in Table 10. The
comments done for CAB and AP instances are still valid for the
random instances, but we observe that the problem is harder to
solve in rand25-s3. As pointed out in [19], a possible explanation is
that for those instances there is not a small set of nodes that
generates a large amount of flow, and so the decision on the hub
locations gets more difficult.

5. Conclusions

In this study we have introduced a variant of the hub location
and routing problem, and have proposed an exact solution
method. The problem is closely related to the single allocation
hub location problem, the plant-cycle location problem and the
multi-depot vehicle routing problem, all of which are known to be
difficult problems.

We have proposed a branch-and-cut algorithm, which succeeds
in solving instances of up to 50 nodes. The emphasis of our
research was placed on deriving strong valid inequalities to
improve the LP relaxations, and on devising efficient separation
procedures. The development of heuristics to tackle larger
instances could be an interesting future research direction.

Our experiments have shown that, in our test-bed instances,
the problem is more difficult to solve when the number of hubs p
to be selected increases. This is coherent with results found in
other investigations on related problems, like the classical capaci-
tated vehicle routing problem. Indeed, for these instances a
column-generation approach could be a promising alternative to
our branch-and-cut algorithm.
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