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Abstract 

Boundary value problems for nonlinear differential equations are considered from the point of view of symmetry. In 
addition to the known ones new families of boundary conditions are found for integrable equations like the Harry-Dym, 
KdV and mKdV. 

It is well known [ 1-3 ] that for some classes of completely integrable nonlinear evolution equations, 

Ut = f ( u ,  u l , u 2  . . . . .  u , ) ,  (1) 

where u = u ( x ,  t ) ,  ui = ~ i u / t g x i  and f is a scalar (or vector) field, there exist boundary conditions of the form 

p ( u ,  u l ,  u2 . . . . .  uk) rx=O = O, (2) 

compatible with the inverse scattering transform method or any other attribute of integrability. For instance, 
Sklyanin [3] has shown that the following boundary value problem on the finite interval x0 ~< x ~< xl for 
the nonlinear Schr6dinger equation iu, = Uxx + 21u12u, with Ux = coulx=xo, and Ux = ClUlx=xl, is a completely 
integrable Hamiltonian system. The main aim of the present paper is to propose a method to obtain boundary 
conditions for the evolution equations of form (1),  which might have applications in the inverse scattering 
technique. In the proposed method we utilize the generalized symmetries of the nonlinear partial differential 
equations. 

It is worthwhile to remark that all the known boundary conditions of form (2) consistent with the inverse 
scattering method are indeed compatible with the infinite series of generalized symmetries. On the other hand, 
stationary solutions of the symmetries compatible with (2) allow one to construct an infinite dimensional set 
of "exact" (finite gap) solutions of the corresponding boundary value problem (1) and (2). However, in this 
Letter we do not discuss the analytical aspects of this problem. 
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In this paper we shall deal with boundary conditions of  form (2).  An effective investigation of  boundary 
conditions involving an explicit t-dependence is essentially more complicated. Such a problem has been studied, 
for instance, in Ref. [ 12]. 

Let the equation 

u~ = g( u, us . . . . .  urn), (3) 

for a fixed value of  m, be a symmetry of  Eq. (1).  Let us introduce some new set of  dynamical variables 
consisting of  v = (u, um, uz . . . . .  u , - i  ), and its t-derivatives vt, vtt . . . . .  One can express the higher x-derivatives 
of  u, i.e., ui for i /> n and their t-derivatives, by using Eq. (1) itself, in terms of  the dynamical variables v and 
their t-derivatives. Here n is the order of  Eq. (1).  In these terms symmetry (3) may be written as 

Vr = G ( V ,  Vt, Vtt . . . . .  Vtt...t). ( 4 )  

We call the boundary value problem, Eqs. ( 1 ) and (2),  compatible with symmetry (3) if the constraint p (v)  = 0 
(or the constraints p a ( v )  = 0, where a = 1,2 . . . . .  N and N is the number of  constraints) is consistent with the 
T-evolution 

0p 
- -  = 0 ( m o d  p = 0 ) .  ( 5 )  
Or 

Eq. (5) ,  by virtue of  the equations in (4) ,  must automatically be satisfied. In fact (5) means that the constraint 
p = 0 defines an invariant surface in the manifold with local coordinates v. This definition of  consistency of  
the boundary value problem with symmetry is closer to the one introduced in Ref. [4] ,  but not identical. 

We call the boundary condition (2) compatible with the equation if it is compatible at least with one of  its 
higher order symmetries. 

Our main result is that if the boundary condition is compatible with one higher symmetry, then it is compatible 
with an infinite number of  symmetries. In the sequel we suppose that Eq. (1) is integrable, meaning that it 
admits a recursion operator of  the form [5-7]  

ij i2 

R= ~-'~ oliDi + Z ~ a D - l ' / a ,  i~,i2 ~ 0, (6) 
i=O a=O 

where oei , /3 a and 3~a are functions of  the dynamical variables, D is the total derivative with respect to x and 
in (6) i2 defines the number of  nonlocal terms. Recursion operators when applied to a symmetry produce new 
symmetries. Passing to the new dynamical variables v one can obtain, from (6),  the recursion operator of  the 
system of  equations (4) ,  

i3 i4 

R = Z a i ( O t ) i + Z b a ( O t - l ) C a ,  i 3 , i 4  > 0 ,  (7) 
i---0 a--0 

where ai, bi and ci depend on v and on a finite number of  its t-derivatives, at is the operator of  the total derivative 
with respect to t. In (7) i4 is the number of  nonlocal terms. If  (1) is a scalar equation, R is a scalar opera- 
tor. Then R is an n × n matrix valued operator. Our further considerations are based on the following proposition. 

Proposition 1. Suppose that the vector field G in (4) may be written as G = Rn°vt, where R is the recursion 
operator (7) ,  no /> 1 is an integer. Let the constraint p ( v )  = 0 (the rank of  the constraint equals n - 1) be 
consistent with Eq. (4) .  Then it is consistent with every equation of  the form v~ = L(Rn°)v t ,  where L = L ( z )  
is an arbitrary scalar polynomial of  z with constant coefficients. 
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As an illustration let us give the Burgers equation as an example. It is given by 

U t = U x x  "~- 2UUx, (8) 

which possesses the recursion operator of the form 

R = D + u + Ux D-1  (9) 

(see for instance Ref. [8] ). 

Proposition 2. I f  the boundary condition p ( u ,  ul )Ix=0 = 0 is compatible with a higher symmetry of the 
Burgers equation, then it is one of the form ul + u  2 + c l u  +c2 = 0 (see Ref. [4] ) or u = c and it is compatible 
with every symmetry of the form u, = P (R 2) ut, where P denotes a polynomial with scalar constant coefficients. 

Sketch o f  proof. The Frechet derivative of (8) gives the symmetry equation of the Burgers equation, 

ato- = (D 2 + 2uD + 2w)o-, (10) 

where o- is the symmetry of (8) and w stands for ul. As the operators acting on symmetries we may take 

D -1 = a t l ( D  -1- 2u) (11) 

in the recursion operator (9).  Consequently the recursion formula u~,+~ = Rut, becomes 

u~i+ l = (u + 2wai-lu)u~i + (1 + wat l )w~, .  (12) 

Differentiating it with respect to x and replacing Wx = u2 = ut - 2uw one obtains 

w,~+~ = [at + 2(ut  - 2 u w ) a t l u ]  u~ + [ - u  + (ut - 2 u w ) O t  1 ] w~ (13)  

for i = 1,2 . . . . .  Thus the matrix form of the recursion operator R is found as 

( u + 2 w O t ' u  l + wO~ -1 ) 
R = Ot + 2(ut  - 2 u w ) a t l u  - u  + (ut - 2uw)at -1 " (14) 

The important step in our proof is to show that if a boundary condition is compatible with at least one symmetry 
then it is compatible with the following one, 

which is exactly the coupled Burgers type integrable system (see Ref. [5], p. 140) 

u~ = u , + 2 ( w + u 2 ) u t ,  w ~ = w , + 2 u 2 + 2 ( w + u 2 ) w t .  (16) 

It is straightforward to show that the above system (16) is compatible with the constraint p ( u ,  w) -- 0 only if 
p = c ( w + u  2) + c l u + c 2 .  

Remark 1. On the invariant surface p(u ,~ , )  = 0 system (16) turns into the Burgers-like equation ur -- 
utt - 2(cu  + c2)ut, which is also integrable [6]. 
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We shall now apply our method to obtain compatible boundary conditions of some other nonlinear partial 
differential equations. Let us start with the following system of equations, 

ut  = u2 q- 2u2v,  --  vt = v2 + 2 u J .  (17) 

Letting v = u* and t* = - t  the above system becomes the well known nonlinear Schr6dinger equation. Suppose 
that it admits a boundary condition of the form 

Uxlx--O=pl(u,v), Vxlx---o = p 2 ( u , v ) ,  (18) 

compatible with the fourth order symmetry. This means that constraint (18) defines an invariant surface for 
this symmetry, presented as a system of four equations with two independent variables, 

ur  = u t t  --  2 u 2 v t  --  4 u v l u l  + 2vu~ - 2u3v 2, 

ur = - v t t  - 2 v 2 u t  + 4 v u l v l  - 2uv~ + 2v3u 2, 

Ul,r = Ul,tt  - 2U2Vl t  - 2U2Vl - 6 u 2 v 2 u l  - 4UVlUt  q- 4 v u l u t  q- 4 v u 3 v l ,  

rio" = - -Ul , t t  - -  2V2Ul , t  "q- 2V2Ul "}- 6VlU2U 2 --  4VUlUt  -'~ 4UVlV t  - -  4V3UUl • (19) 

One can check that system (19) is compatible with the constraint ul = pl (u, v), vl = p 2 ( u ,  v)  only if pl = cu 
and p2 = cv.  Therefore system (19) is of the form 

(u, ul,v, vl)~ = R2(u,.1,v,v~)7, 

where T denotes transposition. Hence it follows from Proposition 1 that the constraints u 1 ----- CU, U 1 = CU 

are compatible with every symmetry of even order. So the boundary conditions Uxlx=O = cu,  Vxlx--O = cv are 
compatible with such symmetries. Analytical properties of this boundary value problem were studied previously 
(see Refs. [9,10] ) by means of the inverse scattering method. 

R e m a r k  2. On the invariant surface ul = cu,  vl = cv system (19) is reduced to a system of two equations 

ur = utt - 2u2vt - 2c2u2v - 2u3u 2, or = - u t t  - 2v2ut -q- 2c2ul) 2 q- 2u2t ;3. (20) 

Under a suitable change of variables this system of two equations becomes the famous derivative nonlinear 
Schr6dinger equation (see Ref. [5], p. 175). 

Among the nonlinear integrable equations the Harry-Dym equation, 

Ut + U3U3 = 0,  (21) 

is of special interest. It is not quasilinear, and because of this its analytical properties are not typical. Using the 
symmetry approach we find a boundary condition of the form 

p ( u ,  u l ,  U 2 )  = O, (22) 

compatible with the Harry-Dym equation. One has to notice that because of the non-quasilinearity of (21) the 
transformation from the standard set of variables (u, Ul, u2, u3 . . . .  ) to (u ,  Ul, u2, ut ,  ul , t ,  u2,t . . . .  ) is not regular. 
For instance u3 = --Ut/U 3. It has a singular surface given by the equation u = 0. So one should examine this 
surface separately. Since the Harry-Dym equation (21) as well as its higher order symmetries possess the 
reflection symmetry x --~ - x ,  u ~ - u ,  t ~ t the trivial boundary condition u ( t , O )  = 0 is consistent with 
integrability. 



B. Giirel et al. / Physics Letters A 190 (1994) 231-237 235 

Suppose that the boundary value problem (21) and (22) is compatible with the ninth order symmetry 
u~. = U9U9 ÷ . . . .  This means that the constraint p ( u ,  v, w) is consistent with the following system of equations, 
equivalent to the ninth symmetry, 

u~ = f l ,  v~ = f2, w~ = f3, (23) 

where v = Ux, w =  Uxx and ( f l , f 2 , f 3 )  T = R3(ut,  vt, wt)  T. Here R is given by 

( uw+u,a;-lw -uv-u,aT'v u2+uta;-'u) 
R =  ( 1 / u ) O t ÷ o w - u t / u 2  ÷ u t O t l w  - u  2 - v t t g t l v  u o ÷ v t t g t l u  . 

w 2 ÷ wta t - lw  ( 1 /u)a t  -- vw -- u t / u  2 - -  Wttgtlu UW ÷ W t a t l u  

The explicit expressions for f2 and f3 are very long. Here we give only the function f l ,  

f l  = --Uttt ÷ 3UttUt/U -- 3u t tu lh  -~" t /3"  3 / u 2  ÷ 3UUl,tt h ÷ 3UUl,th t _ 15,16 . . . . .  1,21,, - 5 h3u, - 3UlUtht, (24) 

where h = 2u2u - u21 . Here one has two choices for the rank of Eq. (22). It is either one or two. The first 
choice does not lead to any regular invariant surface. The second gives 

Uxlx--o = cu, uxxlx--o = ½c2u. (25) 

Remark 3. On the invariant surface v = cu, w = lc2u system (23) takes the form 

3ututt 3u 3 
u~ = -u t t t  + - -  (26) u 2 u  2 ' 

which is equivalent to the MKdV equation. 

Since the symmetry under consideration is of the form u~ = R3ux where R = u3D3uD-1 ( 1/u 2) is the recur- 
sion operator for the Harry-Dym equation (see Ref. [ 11 ] ), Propositon 1 implies the following proposition. 

Proposition 3. The boundary value problem (21) and (22) is compatible with every symmetry of the form 
u~- = L(R 3) Ux, where L is a polynomial with scalar constant coefficients. 

The Korteweg-de Vries equation ut = Uxxx + 6UlU admits a recursion operator R -- D 2 + 4u + 2u lD  - l  which 
may be represented in the form 

[ 4u + 12vat- 1 u 0 1 + 2vat-- 1 ,~ 
R = | at + 12wa~-lu - 2 u  2w0~ "l ) . 

\ 2 w + 1 2 ( u t - 6 u v ) a i - l u  O t - 2 v  - 2 u + 2 ( u t - 6 u v ) a t  1 

It is not difficult to show that the system of equations ( u , v ,  w)~ = R3(u,  v, w) t  admits an invariant surface 
u = 0, w = 0 on which the system turns into the mKdV equation. This means that the boundary conditions 
u ( t , x  = O) = O, Uxx( t , x  -- 0) = 0 are compatible with all symmetries of  the form u~ = R3nu x. Similarly, the 
mKdV equation ut = Uxxx + 6U2Ux is compatible with the boundary condition u( t , x  = O) = O, Ux( t , x  = O) = O. 

It is easy to see that any symmetry of Eq. (1) rewritten in terms of the nonstandard set of the dynamical 
variables turns into the equation containing n - 1 extra variables Ul, u2 . . . . .  Un-l. For instance, the fourth order 
symmetry of the Burgers equation, 

u r = u 4 + 4 u 3 u + l O u 2 u l + 6 u 2 u 2 + 1 2 u ~ u + 4 u l u  3, 

takes the following form, 

Ur ---- Utt ÷ 2(ul + u2)ut ,  (27) 
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where w = Ul. 
In the method proposed so far the aim was to find a compatible  constraint p ( u ,  w) = 0 for the system (u, w = 

ul ) given in (16) .  There is however a shorter algorithm to examine the existence of  compat ible  boundary 
conditions.  This way we find a much larger class of  boundary conditions than in the previous case. We call 
such boundary condit ions weakly compatible  with the symmetries. In general (27)  is a ( 2 + l ) - d i m e n s i o n a l  
equation. The next step in our algori thm is to reduce (27) to a ( l + l ) - d i m e n s i o n a l  equation. This is done by 
writ ing (27)  on the surface x = 0 in (T, t , x )  space. I f  u = q and ul = s on this surface, then we have 

qr = qtt -k- 2 ( s  + q2)q  t. (28)  

The last step is to require (28)  to be integrable. In the general case this is the most difficult part of  the 
algorithm. To find an integrable subclass of  equations there are several equivalent methods. For the above 
equation the whole classification is known [5] .  The function s must be of  the form s = _ q 2 +  clq-q--k-c2, where 
c~ and c2 are arbitrary constants. This is exactly the same result as we obtained earlier. 

As stated in our remarks above, the compatibi l i ty  o f  a boundary condit ion with a symmetry implies weak 
compatibil i ty,  but not vice versa. As an example we give the Har ry -Dym equation. Let us consider  its fifth 
order symmetry, 

Ur5 = - - l  u3 ( 2U5U2 q- IOU4UlU q- IOu3u2u "}-5U3U~), 

which may be written in the form u¢ 5 = ht, where h = 2u2u - u 2. We also give the next two symmetries in the 
similar  form, 

blr7 = U t l U  | - -  3UtUlUh q- 3ut[  3(  h + u~) 2 - 4 u 2 (  h + u 2) + u 4 ] - - U b l l t  t q- 3u2tuh 

and u~ 9 = f l  (where  f l  is given in ( 2 4 ) ) .  It is evident that for an arbitrary function F = F ( u )  the constraint 
h = O, ul = F ( u )  is weakly consistent with the fifth and ninth symmetries,  because the former takes the trivial 
form ur~ = 0 and the latter turns into the integrable equation (26) .  The seventh order symmetry becomes 
U.r7 m ( S u t ) t ,  where S = F - u U .  Thus, if  S = 1 / ( y u  + f l )2 ,  then the equation u~ 7 = (Su t ) t  will have to be 
integrable (see Ref. [6] ). Supposing S(  u ) = a one can easily find that Ul = cu + a, u2 = ½c2u + ac  + a2 / 2u .  

This leads to the fol lowing boundary condition, Ux = cu + a, Uxx = u2/2u ,  at x = 0 for the Ha r ry -Dym equation, 
which coincides with our previous result (25)  i f  a = 0. To find F in the case S = 1 / ( y u  + f l )2  one has to 
integrate the ordinary differential equation F (  u) - uF~( u) = S. 
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