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An Inequality on Guessing and its 
Application to Sequential Decoding 

Erdal Arikan, Senior Member, IEEE 

Abstract-Let (X, Y) be a pair of discrete random variables 
with X taking one of M possible values. Suppose the value of X is 
to be determined, given the value of Y, by asking questions of the 
form “Is X equal to z?” until the answer is “Yes.” Let G(z 1 y)  
denote the number of guesses in any such guessing scheme when 
X = x, Y = y. We prove that 

r 1 l + P  

I 

for any p _> 0. This provides an operational characterization of 
RCnyi’s entropy. Next we apply this inequality to the estimation 
of the computational complexity of sequential decoding. For this, 
we regard X as the input, Y as the output of a communication 
channel. Given Y, the sequential decoding algorithm works essen- 
tially by guessing X, one value at a time, until the guess is correct. 
Thus the computational complexity of sequential decoding, which 
is a random variable, is given by a guessing function G(X 1 Y) 
that is defined by the order in which nodes in the tree code are 
hypothesized by the decoder. This observation, combined with 
the above lower bound on moments of G(X 1 Y), yields lower 
bounds on moments of computation in sequential decoding. The 
present approach enables the determination of the (previously 
known) cutoff rate of sequential decoding in a simple manner; 
it also yields the (previously unknown) cutoff rate region of 
sequential decoding for multiaccess channels. These results hold 
for memoryless channels with finite input alphabets. 

Index Terms-Guessing, Holder’s inequality, sequential decod- 
ing, RCnyi’s entropy. 

I. INTRODUCTION 

ASSEY [I] considered the problem of guessing the M value of a realization of a random variable X by asking 
questions of the form “Is X equal to z?’ until the answer is 
“Yes.” Let G(z) denote the number of guesses required by a 
particular guessing strategy when X = z. Massey observed 
that E [ G ( X ) ] ,  the average number of guesses, is minimized 
by a guessing strategy that guesses the possible values of X 
in decreasing order of probability. The primary concern in [l] 
was to discover a relationship between the minimum possible 
value of E[G(X)]  and the Shannon entropy of X .  The aim 
in this paper is to give a tight lower bound on E[G(X)p]  
for p 2 0 and apply this bound to the estimation of the 
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computational complexity of sequential decoding. This paper 
extends and improves the results of [2]. 

We begin by giving a formal and generalized statement 
of the above problem. Let ( X , Y )  be a pair of random 
variables with X taking values in a finite set X of size 
M ,  Y taking values in a countable set J’. Call a function 
G ( X )  of the random variable X a guessing function for X if 
G: X 4 { 1,. . , M )  is one-to-one. Call a function G ( X  1 Y )  
a guessing function for X given Y if, for any fixed value Y = y, 
G ( X  1 y) is a guessing function for X .  G ( X  I Y )  will be 
thought of as the number of guesses required to determine X 
when the value of Y is given. The following inequalities on 
the moments of G ( X )  and G ( X  I Y ) ,  proved in Section 11, 
are the main results of this paper. 

Theorem 1: For arbitrary guessing functions G ( X )  and 
G ( X  I Y ) ,  and any p 2 0 

l + P  

E [ G ( X ) P ]  2 (1 + lnM)-P Px(s)- (1) LEX 1 
YEY 1 X E X  

and 

E[G(X 1 Y I P ]  2 (1 + 1nM)-P P~,~(x,Y)’+P ll+P 
(2) 

where P x , ~ ,  Px are the probability distributions of ( X , Y )  
and X ,  respectively. 

In Section I1 we define optimal guessing functions and show 
that Theorem 1 estimates their pth moment correctly to within 
a factor of (1 + In M)P for any p 2 0. There, we also point 
out a connection between RCnyi’s entropy and moments of 
guessing functions. 

For information-theoretic applications of Theorem 1,  we 
think of ( X , Y )  as the input and output of a communication 
system. In this context, X represents the transmitted message, 
Y the observation using which the receiver estimates X .  
G ( X  I Y )  is then the number of guesses that a hypothetical 
decision device would make until determining X given Y .  For 
example, if the decision device is allowed to make only one 
guess, as ordinarily is the case, then the event G ( X  I Y )  > 1 
signifies a decision error. For list4 decoding an error occurs 
if G ( X  1 Y )  > j .  

In this paper we shall be interested only in the type 
of decision devices known as sequential decoders which, 
in effect, keep guessing the value of X ,  one at a time, 
until the guess is correct. The computational complexity of 
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sequential decoding, which is a random variable, is given by 
the guessing function G ( X  I Y )  defimed by the decoding 
process. Thus Theorem 1 yields lower blounds on the moments 
of computation in sequential decoding. In Section III, we 
use this approach and determine the cutoff rate (respectively, 
cutoff rate region) of sequential decoding for single-user 
(respectively, two-user multiaccess) mennoryless channels with 
finite input alphabets. The present derivations simplify proofs 
of some known results on cutoff rates and in certain cases 
establish new results. A full discussion of the contribution of 
the present paper in this regard will be given in Section m. 

11. BOUNDS ON MOMENTS OF THE N T ~ E R  OF GUESSES 

We shall use the notation Px,y(x,y), Px(x), Py(y), 
Pxly(x I y), and Pyix(y I x) to denote, respectively, the 
joint, marginal, and conditional probability distributions for 
the pair ( X , Y ) .  When no confusion can arise, we shall omit 
the subscripts. 

A. Proof of Theorem 1 
Let Q be an arbitrary probability distribution on X .  We have 

E [ G ( X ) P ]  = P ( ~ ) G ( z ) ~  
X 

2 exp -D(Q / I  P )  + PIC Q ( x ) l n G ( ~ )  (3) i X 1 
where 

D(Q II P )  = Q(x)lnQ(x)/P(x) 
X 

is the relative entropy function, and Jensen’s inequality is used 
to obtain ( 3 ) .  Now 

where 

(5)  

X 

is the entropy function, and we have used Jensen’s inequality 
once again to obtain (4). Combining (3) and (5) and noting that 

M 

we get 

Substitution of 

into (6) yields Inequality (l).l 
Inequality (2) follows readily 

W G ( X  I YIP1 = P(Y)E[G(X I y = YIP1 
Y 

r 

Y 

This completes the proof of Theorem 1. It should be clear 
from the above proof that the theorem can be generalized to 
the case where Y is a continuous random variable. 

While the above proof has the merit of showing the 
information-theoretic aspect of the guessing problem, a direct 
proof can be given using the following variant of Holder’s 
inequality. 

Lemma I :  Let a,, p ,  be nonnegative numbers indexed over 
a finite set 1 5 i 5 M .  For any 0 < X < 1 

Pro03 Put A,  = a,’, B, = a:p:, in Holder’s inequality 

An altemative proof of (1) is obtained by taking a, = i p ,  

p ,  = Pr[G(X) = 21, and X = 1/(1 + p )  in the lemma. 
Let us write G(X1, .  . . , X I ,  I Y1, . . . , xz) to denote a func- 

tion for guessing the value of a joint realization of a number of 
random variables X I , .  . . , X ,  when the value,s of Yl , .  . . , Y, 
are known. The above framework covers such cases by taking 
X and Y as random vectors, X = ( X I ,  * . . , X I , ) ,  Y = 
(Y1, . . . , Yn). Theorem 1, stated explicitly, now gives 

E[G(X1, ... , Xk I 35,. . - , Yn)p] 2 [l + In (nil, . . .MI,)]-” 

where we have defined M, as the number of possible values 
of X,, i = l;..,,k, and 

*expEp(X1,. . . ,XI, I Yl, . . . , Y,) 

Ep(Xl , . . . ,XI ,  I Yl,.. . ,Y,) 

P(Z1,. .. ,Xk, Y 1 ,  ’ .  . , Y,)1+P . 
= I n  Y l ,  ’ ,Yn l+p 

The function Ep will be useful in expressing the bound in a 
compact form. As discussed later in this sectioin, E p / p  equals 
RCnyi’s entropy of order 1/( 1 + p ) ;  so, E, has, the properties 
expected of information measures. We shall state only two 
such properties that will be used later in the paper. 

’This choice of Q actually maximizes p H ( Q )  - D(QI(P) but this need 
not be proved here. 
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Proposition 1: If X I ,  . . + , X ,  are independent, identically 
distributed (i.i.d.), then 

E P ( X i , . . . , X , )  = nEP(X1).  

More generally, if ( X I ,  Yl), . . + , (X,, Yn) are i.i.d., then 

E P ( X 1 , . . . , X ,  I Y I , . . . , ~ , )  = nEP(X1 I YI). 
The proof is straightforward and will be omitted. 

Proposition 2: For any k 2 1, n 2 1, p > 0 

EP(X1 , .  . . , XI,-1 I Yl, . * * , Y,) 5 E P ( X 1  . , . , XI, IYI,. . . , Y,) 
5 Ep(X1, . . . , X I ,  1 YI ,  . . . , Yn-i). (8) 

Pro08 For the left inequality in (8), we give the proof 
of only the special case EP(X1)  5 E,(X1, X2).  The general 
proof follows in the same manner. 

r 

J 
r 

(9) 

= Ep(X1) 

where (9) follows by noting that 

C ~ ( x 2  I 2 1, for p 2 0. 
a2 

For the right inequality in (8), we only prove E p ( X  1 
Y )  5 E p ( X ) ;  the general proof is similar. (This inequality 
was proved earlier by Arimoto [3] in his work on Rknyi’s 
entropy.) 

r 1 l+P 

Y L x  J 
r 1 l + P  

Y L X  1 

= EP(X) 

where Q is the distribution in (7), and (10) follows by 
Minkowsky’s inequality (specifically, by [4, p. 524, inequality 
(hll). 

In the remainder of this section we define optimal guess- 
ing functions and give an upper bound which complements 
Theorem 1. We also point out a connection between moments 
of guessing functions and RCnyi’s entropy. Section I11 can be 
read independently of the rest of this section. 

B. Optimal Guessing 

We begin by observing that, for any p 2 0 

H G ( X  I YIP1 = P(Y> P(3  I Y ) G b  I Y I P  
Y X 

is minimized by a guessing function G ( X  1 Y )  for which 
G ( x  I y) < G(x’ I y) implies P ( z  1 y )  2 P(x’ 1 y), for all 
possible z, x’, y. (Otherwise, interchanging the order in which 
x and x‘ are guessed when Y = y would decrease the value of 
E [ G ( X  1 Y)”].) Thus all nonnegative moments of G ( X  1 Y )  
are minimized simultaneously by a guessing function which 
guesses the possible values of X ,  when Y = y, in decreasing 
order of a posteriori probabilities P(x  1 y). Such guessing 
functions will be called optimal. 

It is easy to see that there exists a unique optimal guessing 
function G ( X  1 Y )  if and only if, for any possible value 
Y = y, the probability distribution P,IY(. 1 y) assigns 
distinct probabilities to the possible values of X .  It is also 
easy to see that, even if uniqueness does not hold, all optimal 
G ( X  1 Y )  are equal in distribution. Hence, references to 
statistical properties of optimal guessing functions will be 
unambiguous. 

For arbitrary real-valued random variables U ,  V, let us write 
U + V if the condition Pr [U 2 t] I Pr [V 2 t] holds for all t. 

The following result ranks the difficulty of guessing in 
various situations. 

Proposition 3: For any positive integers k ,  n, and any 
choice of random variables X I ,  . .. , Xk ,  Y1, + . , Y,, optimal 
guessing functions satisfy 

Pro08 For the left part of (ll), we give the proof of 
only the special case G*(X1) 3 G*(X1,X2)  to keep the 
notation simple. The general proof is similar. Given an optimal 
guessing function G* ( X I ,  X2),  let G(X1) be the guessing 
function for X I  defined by the condition that G(z1) < G(x{ )  
if and only if min,, { G* ( X I ,  x2)) < min,, { G* (xi, x~)}. That 
is, G(X1) guesses the possible values of X1 in the order in 
which they are first guessed by G* ( X I ,  X2) ,  disregarding the 
guess about X2. Then, G(z1) 5 G * ( x 1 , ~ 2 )  for all 2 2  and, 
hence, G(X1) + G*(Xl,X2). Since G*(XI )  < G ( X I ) ,  the 
proof is complete. 

The right part of (1 1) follows by observing that any guessing 
function G(X1,  . + . , X I ,  1 Y1, . ‘ . , Y,-l) is a valid guessing 
function for X I ,  . , X I ,  given Yl, . . . , Y, (we may simply 
ignore U,). 

Corollary 1: Optimal guessing functions satisfy, for all 
P > 0  

E[G* ( X i ,  . . * XI , -  1 I YI , . * . , Y,)’] 
I E [ G * ( X i , . . . , X k  I Y I , . . . , ~ , ) ~ ]  
5 E [ G * ( X l , . . . , X k  1 Yl,...,Y,-1)’] . (12) 

This follows from the following formula (see, e.g., [ 5 ] )  for 
the moments of a random variable U taking positive integer 
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values: Proposition 5: Let X1 , . . , X ,  be a sequence of i 
00 dom variables over a finite set. Let G* ( X I ,  . . . , Xn) be an 

optimal guessing function. Then, for any p > 0 

n+w lim -ln(EIG*(X1,...,Xn)p])l’P n = H d ( X 1 ) .  

More generally, let ( X I ,  Y I ) ,  . . . , (X,, Y,) be i.i.d., and 
G* ( X I ,  . . ‘ , X ,  I Y1, . . . , Y,) be an optimal guessing 
function. Then, for any p > 0 

E[Ut]  = x [ k t  - ( k  - l)t]F’r[U 2 I C ] .  
1 k = l  

Next we show that Theorem 1 is tight to within a factor of 

Proposition 4: For any optimal guessing function G“(X 1 
(1 + In Ad)’; for optimal guessing functions. 

Y ) ,  and p 2 0 

The proof follows directly from Theorem 1, Proposition 1, 

In light of the above result, the quantity 
and Proposition 4. 

G*(x I Y) = c 1  
2’ G * ( x ’ I Y ) G * ( ~ Y )  

I 

I 

R.’ I Y>lP(. I dlk 
2’ G* ( 4 u ) < G *  ( 4 ~ )  H 1 ( X )  - H A ( X  1 Y ) ,  

I t P  I + P  [P(Z’ I Y)lP(.  I Y)1 ih. 
all xt which Arimoto [31 called the mutual information of order 

C. Relation to Rhyi’s Entropy 

random variable X is defined as [6] 
RCnyi’s entropy of order Q ( a  > 0, a # 1) for a discrete 

Following Arimoto [3],  we define Rknyi’s conditional entropy 
of order a for X given Y as 

r 

Noting the relations 

E’;(X)  = PH&(X)  
and 

E,(X I Y )  = PH*(X I Y )  

the preceding bounds on moments of guessing functions can 
be written in terms of RCnyi’s entropy functions. Of particular 
interest is the following result which gives an operational 
characterization to R6nyi’s entropy. 

1/( l + p ) ,  can be interpreted as a kind of complexity reduction, 
provided by the knowledge of Y ,  in guessing the value of X .  
Note that, by Proposition 2, this quantity is nonnegative. (In 
fact, it equals zero if and only if X ,  Y are independent.) 

Alternative operational characterizations of RCnyi’s entropy 
were given by Arimoto [3 ]  and CsiszAr [7]. 

m. &PLICATION TO SEQUENTIAL DECODING 

A. Single-User Channels 

Sequential decoding is a search algorithm invented by 
Wozencraft [8] for finding the transmitted path through a tree 
code. Well-known versions of sequential decoding are due to 
Fano [SI, Zigangirov [lo], and Jelinek [ll]. 

The computational effort in sequential decoding is a random 
variable, depending on the transmitted sequence, the received 
sequence, and the exact search algorithm. The following 
connection between guessing and sequential decoding, due to 
Jacobs and Berlekamp [ 5 ] ,  makes it possible to lowerbound the 
moments of computation in sequential decoding by applying 
the lower bound of Theorem 1. 

Consider an arbitrary tree code and let X denote the set of 
nodes at some fixed but arbitrary level, N channel symbols 
into the tree from the origin. Let X be a random variable 
uniformly distributed on X. We think of X as the node in 
X which lies on the transmitted path. Abusing the notation, 
we also let X denote the channel input sequence of length N 
from the origin to node X .  We let Y denote the channel output 
sequence that is received when X is transmitted. 

Any sequential decoder, applied to this code, begins its 
search at the origin and extends it branch by branch eventually 
to examine a node x‘ in X ,  possibly going on to explore nodes 
beyond XI. We assume that if X # d, i.e., if 2’ does not lie 
on the transmitted path, the decoder, with the aid of its metric, 
will eventually retrace its steps back to below level N and 
proceed to examine a second node IC” in X .  If X # x”, 
eventually a third node in X will be examined, and so on. We 
assume that with probability one the sequential decoder sooner 
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or later examines the correct node X .  (Though this is never 
the case in practice, the probability of decoding error can be 
made arbitrarily small by using tree codes with sufficiently 
large constraint lengths.) If X is not among the first M - 1 
nodes examined (not counting multiple visits to a node more 
than once2), the decoder will examine all M nodes at level 
N .  Thus for any given Y = y, we have an ordering of the 
nodes in X, namely, that in which they are examined by the 
decoder. We let G ( x  I y) denote the position of x E X in this 
ordering when Y = y. (By definition of sequential decoding, 
the value G ( z  I y) is well-defined in the sense that, for any 
fixed sequential decoder and fixed tree code, the order in which 
node x E X is examined does not depend on the portion of 
the received sequence beyond level N ;  it depends only on y.) 

Clearly, G( .  1 e )  is a guessing function and G(x I y) equals 
the number of nodes in X examined before and including the 
correct node X = x when Y = y is received. Thus G(X 1 Y )  
is a lower bound to the computation performed by the decoder 
in decoding the first N symbols of the transmitted sequence. 
Lower bounds to moments of G(X I Y )  serve as lower bounds 
to moments of computation in sequential decoding. 

In the remainder of this section, we assume that X and Y 
are connected by a discrete memoryless channel. The channel 
has a finite input alphabet Z, a countable output alphabet J’, 
and transition probability matrix V ( j  1 i), j E J’, i E 2. The 
conditional probability of Y given X is then Pylx(y 1 x) = 
VN(Y 1 x) where VN denotes channel transition probability 
assignment for sequences of length N .  Since the channel is 
memoryless 

N 

n=l  

where yn, xn are the nth coordinates of the sequences x 
and y, respectively. As stated above, we assume that X is 
uniformly distributed over X, the set of possible values of X; 
i.e., P ( x )  = 1/M for x E X where M denotes the size of X. 
Letting R denote the rate, in nats per channel symbol, of the 
underlying tree code, the size of X is given by M = exp N R .  

Now consider an arbitrary sequential decoder with a guess- 
ing function G(X 1 Y )  for the above situation. By Theorem 
1, for p > 0 

E[G(X 1 Y ) f ]  2 (1 f NR)-PexpE,(X I Y ) .  

Since PX is a uniform distribution, we have the relation 

Ep(X I Y )  = PNR - EO(P,PX) 

where 
r 1 l + P  

Y L x  I 

The function Eo(p, .) was introduced by Gallager [12] in his 
work on bounding the probability of error in block coding. 
Gallager examined properties of this function in detail and, in 

‘Fano’s version may examine a node more than once. The stack algorithm 
version, due to Zigangirov and Jelinek, examines a node at most once. 

particular, showed that 112, Theorem 51 for any probability 
distribution QN on ZN 

over all probability distributions Q on Z. Thus 

and we have proved that, for p > 0 

Thus at rates R > EO (p ) /p ,  the pth moment of computation 
performed at level N of the tree code must go to infinity 
exponentially as N is increased. The infimum of all real 
numbers R’ such that, at rates R > R’, E[G(X 1 Y)P] must 
go to infinity as N is increased is called the cutoff rate (for 
the pth moment) and denoted by R,,t,R(p). We have thus 
obtained the following bound. 

Theorem 2: For any discrete memoryless channel with a 
finite input alphabet 

The converse inequality 

has been proved in the works of Falconer 1131, Savage [14], 
Jelinek 1151, and Hashimoto and Arimoto 1161. We conclude 
that Rcuto&) = Eo(p ) /p  for all p > 0. 

Previous upper bounds on Rcu toR(p )  were given by Jacobs 
and Berlekamp [SI, and Arikan [17]-[19]. In [SI, it is shown 
that 

Rcutoff(P) 5 & ( / ? ) / P ,  P > 0 (17) 

where I?&) is the concave hull of Eo(p). Since there are 
channels for which & ( p )  > Eo(p) (see, e.g., the example in 
[18]), in general the bound (17) is loose. Inequality (15) was 
proved in [18] for p = 1, and in [19] for all p > 0. 

The result (15) is not new; however, the present proof 
is much simpler and direct than the previous ones. The 
approaches in [5], [17]-[19] for upperbounding Rcutofi(pJ all 
rely on lower bounds on the probability of error for block 
codes and are considerably more complicated. Moreover, as 
the next section shows, the preceding proof easily extends to 
the case of multiaccess channels, determining their previously 
unknown cutoff rate region. 

Finally, let us note that the restriction in the above dis- 
cussion that the channel output alphabet J’ be countable has 
been made only for notational convenience; the result can be 
extended to channels with continuous output alphabets. 
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B. Multiaccess Channels 
We consider a triple of random variables ( X I ,  X Z ,  Y) where 

Xi, X Z  are the inputs to a two-user multiaccess channel and 
Y the channel output. Here, Xi, X2 stand for the correct 
nodes at level N of the respective tree codes for users 1 and 
2, and Y denotes the received channel output when (XI,  XZ)  
is transmitted. A sequential decoder in this case carries out 
a search on the joint tree code (which is the product of 
the individual tree codes) and is identified by a guessing 
function G(X1 ,Xz  I Y )  for purposes of lowerbounding 
its computational complexity. For a detailed description of 
sequential decoding for multiaccess charmels, we refer to [20]. 

We assume the channel is memoryliess with finite input 
alphabets Z1,&, a countable output alphabet J ,  and transition 
probability matrix V ( j  I z 1 , i ~ ) ,  il E 11, 22 E ZZ, j E J .  We 
assume Xi, X2, Y are sequences of length N over Z1, ZZ, 
3, respectively. We denote the set of possible values of XI  
(respectively, XZ) by XI (respectively, X2), and the size of this 
set by Mi (respectively, Mz). Letting RI, Rz denote the rates, 
in nats per channel symbol, of the tree codes for users 1 and 
2, respectively, we have Mi = exp NR1 and M2 = exp NRz. 

We assume the random variables X I ,  Xz  are independent 
and uniformly distributed over X i ,  X2. (That is, the messages 
by the two users are independent and equiprobable.) The 
conditional probability of Y given X I ,  X 2  is given by P ( y  I 
Z ~ , Z Z )  = VN(Y I ZI,Z~)- where V, is the transition proba- 
bility matrix for sequences of length N .  By the memoryless 
channel assumption 

N 

VN(Y I Q,a?) = n V(Yn I Zln,ZZn) 
n=l 

where yn, xin,  xzn denote the nth coordinates of y,  2 1 ,  22, 
respectively. 

For k 2 1 and Q1, Q2 arbitrary probability distributions on 
T t  , T$, respectively, define 
Eo(P, Q i Q z )  

= -In [ 
EohQi  I Q z )  

Qi(Z1)Qz(m)Vk(Y I a , ~ z ) 1 + P  
Y 2 1 , 2 2  ll+p 

r 

Y 21 L x2 
where the summations are over all possible values of the 
indices. 

Define R o ( p )  as the closure of the set of all pairs ( T I ,  r2) 

such that, for some k 2 1 and some pair of probability 
distributions Q1 on Zt, Q2 on Zk 

0 I 7-1 i k-’Eo(p,Qi I G)/P 
0 I ~z L k-’Eo(p, Qz I <!i)/p 

7-1 + 7-2 I k-’&(p, Q1Qz)Ip. 
(No single-letter characterization of this region is known.) 

Now consider an arbitrary sequential decoder with a guess- 
ing function G(X1,  X2 I Y )  for the above two-user channel. 
By Theorem 1, we have, for any p > 0 

EIG(X1, x2 I Y)P] 2 [ I+  N(R1 + R2)I-P 

. expJqX1,X2 I Y ) .  (18) 

By Proposition 2, we have3 

Ep(X1,XZ I Y )  2 Ep(X1 I X2,Y) 
q J ( X 1 , X Z  I Y )  2 Ep(X2 I X1,Y). 

EP(Xl,X2 I Y )  = pN(R1+ R2) - Eo(P,PxlPxz) 
EP(X1 I X Z , Y )  = PNRl - EO(P,PX, I PX,) 
E,(& I X1,Y) = pNR2 - Eo(p,Pxz I PX,). 

(19) 
(20) 

It is easy to verify that (since Px, and Px, are uniform) 

Thus if (221, R2) does not belong to R o ( p ) ,  then at least one 
of the terms Ep(X1,X2 C Y ) ,  EP(X1 I X Z , ~ ) ,  E,(X2 I 
X 1 , Y )  is greater than N E  where t > 0 is a constant 
that depends on (RI ,  R2) and R o ( p )  but not on N .  This, 
combined with (18)-(20), implies that, at rates (R1,Rz) 
outside the region R o ( p ) ,  E [ G ( X l , X z  I Y)”] must go to 
infinity exponentially as the sequence length N is increased. 
The infimum (i.e., closure of the intersection) of all sets R’ 
of pairs of positive real numbers ( T I ,  T Z )  such that, at rates 
outside R’, E[G(Xl,Xz 1 Y ) p ]  must go to infinity is called 
the cutoff rate region (for the pth moment) and denoted by 
Rcuto~(p).  Summarizing the above discussion, we have 

Theorem 3: For any memoryless two-user multiaccess 
channel with finite input alphabets, R , , t o ~ ( p )  C R o ( p ) ,  
for all p > 0. 

This result is new. Although the proof has been given for a 
two-user channel, it should be clear that it can be generalized 
to multiaccess channels with an arbitrary number of users. 
It should also be clear that the proof can be generalized to 
channels with continuous output alphabets. Such a result was 
previously proved only for p = 1 and only for the restricted 
class of pairwise-reversible channels by Arikan [17], [21]. 

For p = 1, the converse result Rcutoff(l) 2 Ro(1)  was first 
proved by Arikan [171, [20]. Recently, Balakirsky [22] proved 
that Rcutoff(p) 2 R o ( p )  for all P > 0. 

Thus for multiaccess channels with finite input alphabets 
it is established that the cutoff rate region R c u t o ~ ( p )  equals 
R o ( p )  for all p > 0. 
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