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Ground-state correlations in semiconductor double-quantum-wire systems

N. Mutluay and B. Tanatar
Department of Physics, Bilkent University, Bilkent, 06533 Ankara, Turkey

~Received 20 June 1996; revised manuscript received 7 October 1996!

We study the short-range correlations in a double-quantum-wire structure within the self-consistent scheme
of Singwi et al. @Phys. Rev.179, 589 ~1968!#. The local-field factors and static correlation functions are
calculated for electron and electron-hole double-wire systems. The ground-state energy and collective excita-
tions are discussed. It is found that the interwire correlations become quite important for electron-hole systems.
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The advances in fabrication techniques have made it p
sible to study the quasi-one-dimensional~Q1D! electron sys-
tems in semiconducting structures, in which the electrons
confined to move freely only in one dimension. Experimen
and theoretical works continue to be of interest, the m
motivation coming from their technological potential such
high-speed electronic devices. In this paper we study
ground-state correlations of a double-quantum-wire sys
at zero temperature. Such structures, analogous to
double-quantum-well systems recently studied, are impor
in our understanding of the correlation effects in low dime
sions. Collective excitations in quantum-wire systems w
experimentally studied by spectroscopic methods.1 Various
aspects of Q1D structures have been investigated in con
tion with GaAs-based materials.2–6 The success of the
random-phase approximation~RPA! in interpreting the exci-
tation spectra of quantum wires is attributed3,7 to the limited
phase space of Q1D systems. The applicability of the Fer
liquid approach~vis á vis the Tomonaga-Luttinger picture8!
to the semiconducting quantum-wire systems has been
cussed in detail.9 These predictions are in very good agre
ment with the experimental observation1 of collective exci-
tations in GaAs quantum wires. The ground-state correla
effects in single-quantum wires were explored10 going be-
yond the RPA. To include corrections due to exchan
correlation ~xc! effects associated with the charge fluctu
tions, the method of Singwiet al.11 ~STLS! offers a
physically motivated improvement over the RPA.
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Our aim in this paper is to develop the self-consiste
scheme of Singwiet al.11 to calculate xc effects in double
quantum-wire systems. We specialize in equal density e
tron and electron-hole~one wire has electrons as charge c
riers, whereas the other has holes! systems to study the
effects of intra- and interwire correlations. The presence
additional charges in the second quantum wire enhances
correlation effects compared with the case of a single w
Intra- and interwire correlations are different in nature b
cause the charge carriers can move only in their respec
wires ~without tunneling! and exchange interactions becom
important. Interwire correlations increase with decreas
wire separation. The approximation of STLS has proved v
useful in double-layer two-dimensional electron-g
systems.12–14 The RPA has been found to overestimate t
static properties. On the other hand, the method of STLS
believed to give reliable results if the carrier density is n
very low. In this work we concentrate on the fully sel
consistent evaluation of the static structure factors and lo
field corrections in electron and electron-hole double-w
systems.

We assume that the Q1D electrons in each wire are
bedded in a uniform positive background to maintain cha
neutrality. The density-density response function of
double-wire system in its extension to a multicompone
case is given by13,15
@x~q,v!#215S @x11
0 ~q,v!#212V11~q!@12G11~q!# 2V12~q!@12G12~q!#

2V21~q!@12G21~q!# @x22
0 ~q,v!#212V22~q!@12G22~q!#

D , ~1!
n-
cture

ou-
ity
.
g
ct
e

where x i i
0 (q,v) is the zero-temperature 1D free-electr

density-density response function for thei th wire. Actually,
we use the particle-number-conserving expression16

x0~q,v;g!5
~v1 ig!x0~q,v1 ig!

v1 ig@x0~q,v1 ig!/x0~q,0!#
~2!

to account for the disorder effects through the phenome
logical parameterg, in order to justify the use of Fermi
o-

liquid approach in Q1D electron systems. The fluctuatio
dissipation theorem enables us to express the static stru
factorsSi j (q) in terms of the response functions.Gi j (q) are
the static local-field factors arising from the short-range C
lomb correlations and the xc effects for the density-dens
responses. SettingGi j50 in Eq. ~1!, one recovers the RPA
The Gi j (q) in STLS’s approach is obtained by decouplin
the two-particle distribution function to write it as a produ
of two one-particle distribution functions multiplied by th
6697 © 1997 The American Physical Society
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pair-correlation function. They are given by10,11

Gi j ~q!52
1

nE2`

` dk

2p

kVi j ~k!

qVi j ~q!
@Si j ~q2k!2d i j #, ~3!

wheren is the linear electron density assumed to be the sa
for both wires. In terms of the Fermi wave vector we ha
n52kF /p. The electron gas parameter is defined
r s5p/4kFaB* , in which aB*5e0 /e

2m* is the effective Bohr
radius in the semiconducting wire with background dielec
constante0 and electron effective massm* .

The model we use for the Q1D electron system is dev
oped by Gold and Ghazali.5 It consists of two cylindrical
quantum wires of radiusR, each in an infinite potential wel
and separated by a distanced(d.2R). We assume that only
the lowest subband in each given quantum wire is occup
The intra- and interwire Coulomb interactions between
particles are given by Gold and Ghazali5 and Gold,17 respec-
tively. Notable features of this model are such that the
trawire potential behaves as;u ln(qR)u for long wavelengths
and the interwire potential as;u ln(qd)u, characteristic of
various other proposals. The ground-state energy of
double-wire electron system is expressed as the sum
kinetic-energy and xc-energy parts. The kinetic-energy c
tribution is simplyT5p2/24r s

2Ry* , where the energy uni
effective Rydberg is defined as 1 Ry*5e2/2e0aB* We use
the standard manipulations to express the xc energy a
integral over the coupling constant10,11 in which the self-
consistent values of the static structure factorsSi j (q) are
used.

We solve the set of equations that describe the struc
factors and local-field corrections for density-density
sponse in a double-wire system~for both the electron and
electron-hole cases! self-consistently. Material paramete
for GaAs are used so thatm*50.07me (me is the free-
electron mass! and e0512.9. In the electron-hole doubl
wires we take the electron and hole effective mass r
me* /mh*50.134. The phenomenological disorder parame
g we use in the density-density response function does
influence the convergedSi j (q) andGi j (q) significantly for
g&0.1EF . We mention that the particle-number-conservi
expression we use has the same form as in more soph
cated approaches, where it is replaced by the wave-vec
and frequency-dependent memory functiong(q,v). The
phenomenologicalg may be related to the measured mob
ties in quantum wires by the usual relaxation-time expr
sion.

The intrawire static structure factorS11(q) is shown for
variousr s values in Fig. 1~a!. For smallr s ,S11(q) resembles
the noninteracting structure factor given by the Hartree-F
~HF! approximation. As the density is lowered, correlati
effects become more important. The Hubbard approxima
~HA! to the local-field factor is obtained from Eq.~3!, re-
placing the static structure factor by the HF expression. T
yieldsGi j (q)'

1
2@Vii (Aq21kF

2)#/@Vii (q)#d i j . The HA takes
into account only the Pauli hole around the electrons.
find that SSTLS(q) is considerably different fromSRPA(q)
andSHA(q). Similar behavior of the static structure factor
Q1D systems has been obtained in various ot
calculations.10 The interwire structure factorS12(q) is about
an order of magnitude smaller thanS11(q) and negative in
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the range ofq values of interest. The RPA for electron-ho
systems is even less reliable because the attractive inter
interaction has a larger effect than the repulsive interact
The failure of the RPA is revealed in the unphysical pa
correlation functions, which are partially remedied in t
self-consistent approach.12,13 In a multicomponent system
the improvements brought about by STLS’s scheme over
RPA are the result of taking multiple scatterings betwe
electrons and holes into account. Although the carrier de
ties in two wires are kept the same, the differences in
effective masses for electrons and holes render the nonin
acting response functionsx11

0 and x22
0 different. There is a

considerable difference between the self-consistent and R
calculations. In contrast to the electron double-wire syste
the interwire structure factorS12(q) becomes positive. In
Fig. 1~b! the intra- and interwire static structure facto
S11(q) andS12(q) are shown for different densities.

We summarize the behavior of local-field factorG11(q) in
our calculations. Asr s increases, the magnitude ofG11(q)
approaches unity forq→`. In the opposite limit, as
r s→0, G11(q) exhibits a peak aroundq52kF . We find that

FIG. 1. ~a! Intrawire structure factorS11(q) within the method
of STLS for a double-wire electron system withR52aB* and
d55aB* . The solid, dashed, dot-dashed, and dotted lines are
r s51, 2, 3, and 4, respectively.~b! S11(q) ~solid!, S22(q) ~dashed!,
andS12(q) ~dotted! in an electron-hole double wire atr s52. The
thick and thin lines correspond to the method of STLS and
RPA, respectively.
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G11 is not very sensitive to the value of the wire separat
d as in the case of double-layer systems.13 Our results for
G11(q) are in qualitative agreement with the calculations
Wang and Ruden18 and single-wire calculations of Friese
and Bergersen.10 It should be noted that Wang and Ruden18

setG12(q)50, whereas in our calculations both intra- a
interwire components of the local-field factor are determin
self-consistently. Although the simplificationG1250 is jus-
tified in electron double-wire systems, in the electron-h
systems it cannot be neglected because of stronger cor
tions. In an electron-hole double-wire systemG12(q) is pre-
dominantly negative.

The ground-state energy of a double-wire electron sys
in different approximations is displayed in Fig. 2~a!. We use
effective Rydberg as the unit of energy, 1 Ry*5e2/2e0aB* .
All three curves exhibit minima that lie aroundr s'1.5. The

FIG. 2. ~a! Ground-state energy of a double-wire electron s
tem as a function of density at a wire separation ofd55aB* . The
energies in the method of STLS~solid!, the HA ~dotted!, and the
RPA ~dashed! are compared forR52aB* wires. ~b! Same for the
double-wire electron-hole system.
n
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RPA yields an overestimate for the ground-state energy
cause the short-range correlation effects are not incorpora
The Hubbard approximation partially remedies this, b
EHA is still below STLS’s ground-state energy. Since t
interwire interaction decays exponentially~i.e., ;e2qd) for
large wave vectors, the correlation energy contribution g
to zero as the wire separationd increases. The ground-sta
energy then becomes the sum of two independent wi
Similar behavior has also been noted for double-layer e
tron systems.12,13We find that the ground-state energy do
not show a strong dependence on the wire separation fo
equal density system withR52aB* and d.5aB* . This is
mainly because of the weakd dependence of the local-fiel
factor G11(q) discussed above. Nevertheless, for very lo
densities (r s.5) it might be possible to have stronger sep
ration distance dependence of the ground-state energie
double-wire systems. More reliable and elaborate approac
would then be required to study this regime. The groun
state energy in an electron-hole double-wire structure
shown in Fig. 2~b!. We note that the RPA produces a ve
loosely bound system~as in the electron double-wire cas!
since the ground-state energy minimum is less noticea
than those in the other approximations. We observe that
effects of correlations are more important in electron-h
double wires than those in electron systems. The depar
from the RPA and HA results become significant forr s.1.
In general, the ground-state energies are slightly lower~in
magnitude! for the electron-hole double wires. We have al
calculated the separation dependence of the ground-stat
ergy and found no significant dependence ford.8aB* in
R52aB* double-wire systems.

Collective excitations in a double-wire system when c
relation effects are included are obtained from the solution
the screening function

«~q,v!5@12V11~q!@12G11~q!#x11
0 ~q,v!#@12V22~q!

3@12G22~q!#x22
0 ~q,v!#

2$V12~q!@12G12~q!#%2x11
0 ~q,v!x22

0 ~q,v!50 ,

~4!

in which we use the disorder-free response functions. In
case of equal density double-wire electron system the p
mon dispersions are obtained analytically.3 The two modes
refer to in- and out-of-phase oscillations of the charges
the collective excitations are labeled as the optical a
acoustic plasma modes. We show the effects of excha
and correlation described by the local-field factors on
plasmon dispersion of a double-wire electron system in F
3~a!. The number density in each wire is characterized
r s52, and we takeR52aB* and d55aB* . The solid and
dotted lines indicatevpl(q) with and without ~RPA! the
local-field corrections, respectively. The upper and low
~optical and acoustic! plasmon branches merge together a
finite wave vectorqc and approach the upper boundary of t
particle-hole boundary much faster since the local fields t
to soften the plasmon dispersions. As the separationd be-
tween the wires decreases, the interwire correlation effe
become more important andqc decreases. For the electron
hole double quantum wires, theq→0 limit of the dispersion

-
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relations are calculated similarly to the 2D and Q1D, tw
component electron-liquid cases.19 The difference here is
that electron and hole wires are spatially separated. The
tical plasmons exist in the region above the single-part
continuum of electrons. We obtain the optical plasmon mo
dispersion as (q→0)

@vpl
op~q!#25B/21~B2/42C!1/2, ~5!

where

B5
16r s
p2

q2

r
@F11~12G11!/r1F11~12G22!#,

C5
16r s
p2

q4

r3
@F11

2 ~12G11!~12G22!2F12
2 ~12G12!

2#.

In the above expressions, we measure the plasmon ener
terms of the Fermi energy of the hole
(EFh5kF

2/2mh* ),r5me* /mh* , and V11(q)5e2F11/2e0, etc.
Since the mass ratio 1/r@1, Eq.~4! admits another solution
~acoustic plasmon! for energies above the single-partic
continuum of holes and below the single-particle continu
of electrons. We find the long-wavelength dispersion
acoustic plasmons to be

@vpl
ac~q!#25

v1
2 eA8/B82v2

2

eA8/B821
, ~6!

FIG. 3. Plasmon dispersions in~a! a double-wire electron
(r s52) and~b! an electron-hole (r s51) system withR52aB* and
d55aB* The dashed and solid lines stand for the results of the R
and STLS, respectively.
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where

A8512F11~12G11!S 2r sp2 D 2qlnU v2

v1
U,

B85F11~12G22!S 2r sp2 D 1

rq
2@F11

2 ~12G11!~12G22!

2F12
2 ~12G12!

2#S 2r sp2 D 2 2

rq2
lnU v2

v1
U.

Figure 3~b! shows the optical and acoustic plasmon disp
sions calculated using the above long-wavelength exp
sions in an electron-hole double-wire system atr s51 in
which the plasmon energies are scaled with respect to
hole Fermi energyEFh5rEF . The results of the RPA and
STLS are plotted by the dashed and solid lines, respectiv
We note that the acoustic plasmon is affected more by
local-field effects than the optical plasmon.

In this work we have considered equal density doub
wire systems. Our method can be generalized to include
equal densities. In such cases, it is expected that collec
modes will have qualitatively different properties. The sem
conducting quantum wires realized so far and used in
experiments are typically in the ranger s;1. It is conceiv-
able that lower densities can be attained with advance
growth technology. The many-body effects discussed h
would then be more readily applicable to the experimen
realizations. Charge-density wave–type instabilities d
cussed in the context of double-quantum-well structure20

and also in double-quantum wires17,18could be explored. We
have not systematically calculated the static response fu
tions x6(q,0) ~obtained by diagonalizing the response m
trix x i j ) for a wide range of parametersR, d, and r s , but
surmise that interesting features of charge-density wave
stability could be studied using ourGi j (q).
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