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Abstract 

The symmetry method of studying boundary value problems is generalized to the multi-dimensional case. In passing from 

1 + 1 dimensions to 2 + 1 dimensions the main obstacle is the existence of nonlocal variables. To overcome this obstacle 

we have derived additional constraints that link the nonlocal variables of different levels. As an illustration, the application 
of the method to the two-dimensional Toda lattice is considered. @ 1997 Elsevier Science B.V. 

1. Introduction 

At present classes of boundary conditions are 
known for integrable nonlinear partial differential 
equations and lattice equations with two independent 

variables, in both classical and quantum versions, 

compatible with the integrability property. In the 

last decade the subject has become rather popular; 
various approaches were worked out and applied suc- 

cessfully (see Refs. [ 1,2] ) . An effective method to 
investigate boundary value problems for integrable 
1 + 1 dimensional nonlinear equations was proposed 

and developed in Refs. [3,4] based on the sym- 
metry approach. The symmetry test established in 
Refs. [3,4] allows one, in principle, to describe the 
complete set of boundary conditions for the given 
equation, compatible with its integrability property. 
For instance, recently the boundary value problem 
for the Korteweg-de Vries equation has successfully 

1 E-mail: gurel@fen.bilkent.edu.tr. By a boundary condition we mean a constraint of 

* E-mail: ihabib@imat.rb.ru. the following form, 

been studied within the framework of the symmetry 

approach [ 5,6], 
However, the initial boundary value problem for 

integrable systems (i.e. systems admitting a symmetry 

algebra having infinitely many elements [7] ) with 
more than two independent variables were not studied 

much. In the present paper we have undertaken an 

attempt to generalize the symmetry test to the multi- 
dimensional case. As a touchstone we take a very well 

studied two-dimensional integrable phenomenon, the 
2D Toda lattice equation, 

4xy(n) = e4(n+t)-q(n) _ eq(n)-W--t) (1) 

Various alternative forms of the Toda lattice and in- 
terrelations between them are discussed in Ref. [ 81. 
Besides the inherent interest in integrable systems, the 
Toda system has a wide number of applications in 
many fields from quantum field theory to differential 
geometry. Here and below the subscripts x, y, t denote 
partial derivatives with respect to these variables. 
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F(q(m),q(m+ l),...q(k),q,(m),... 

qx(k),q,,(m),...qy(k),...) =o, (2) 

depending on a finite number of the dynamical vari- 
ables q(n) and a finite number of their X- and y- 
derivatives, which splits the infinite lattice (1) into 

two semi-infinite ones. Notice that here numbers m 
and k with m 6 k are fixed (but for any m and k 
satisfying m 6 k this can be done). These two semi- 
infinite lattices are 

Eq. (6) below). A complete set of such conditions 

of the form q(1) = g(q(O),q,(O),q,(O),q(-1)) is 
given at the end of Section 3. They all correspond 
to the integrable finite Toda lattices, connected with 
the Cartan matrices of simple Lie algebras of finite 
growth [ 91. Boundary conditions of the other kind 

q?(l) = g(q(l),q(O),q,(O)) are studied in Sec- 
tion 4. In this case one has the only boundary condi- 

tion (34) compatible with Eq. (6), see also Ref. [ lo]. 

It does not belong to the class of finite Toda chains 
mentioned above. 

qxr(n) = e&+t)--q(“) _ e4(‘+4(“-t), n < k _ 1, 

q(k) =Fl(q(m),q(m+l),...,q,(m),..., 

q?(m), . . .> 

and 

(3) 
2. Boundary conditions consistent with 
symmetries 

qxv(n) = eq(n+l)-q(n) _ eq(n)-q(n--l) , n<m-1, 

q(m) =F2(q(m+ l>,q(m+2),..., 

In two dimensions the main obstacle is the existence 
of nonlocal variables on which higher symmetries de- 

pend. For instance, the following two equations, 

qx(m+ l),...,qy(m+l),...), (4) q,,(n) =h(n) fh(n-- 1) +qm2 

where q(k) and q(m) are expressed through Eq. (2). and 
Notice that an equation of the form q,(n) = a, 

where the right hand side a depends on a finite num- 
ber of variables q(n), and their derivatives, and on so- 
called nonlocal variables, is a symmetry of Eq. ( 1) if 

the commutativity condition ( qr (n) ) xy = ( qxy (n) ) t 
is valid. Our further considerations are based on the 
following: 

q,(n) = 62(n - 2) + bz(n - 1) + b2(n> 

Definition. The boundary condition (2) is consid- 

ered to be compatible with the symmetry if the com- 
mutativity condition is still valid subject to the con- 

straint (2). Or, in other words the semi-infinite lat- 
tice (3) and the following semi-infinite lattice 

+ h(n)rQx(n) + qxtn + 111 

+h(fl- 1)[2q,(n) +qxtn- I)1 +qxW3 (6) 

are two symmetries of the Toda lattice ( 1) . They de- 

pend on two nonlocalities bt (n) and b2 (n), which are 
introduced as solutions to the equations [ 81 

sx,(n) = bt (n) - 61 (n - 1)) (7) 

&(n) =c(n)[q,(n+I) -q+(n)], (8) 

b],,(n) = br(n)[q,(n + 1) - q,(n)1 + b2(n) 
qr(n)=a, n<k-1, 

q(k) =Fl(q(m),q(m+l),...,q,(m),..., 

4!(m), . . .) 

commute. A similar commutation condition may be 
given also for the semi-infinite chain (4) but this con- 
dition is automatically satisfied after imposing the con- 
dition for Eq. (3). 

- bz(n - l), (9) 

bz,,(n) = c(n)bt(n + 1) - c(n + l)bl(n), (10) 

where c(n) is described by the equation c(n) = 
eq(n+‘)-q(n). Other nonlocal variables bj, j > 1 sat- 
isfy the similar equations, 

In this paper we consider two classes of bound- 
ary conditions, consistent with the test symmetry (see 

bj,,(n) =bj(n)[q,(n+j) -4x(n)] +bj+t(n) 

- bj+t(n - l), 

bj+t,,(n) = c(n)bi(n + 1) - c(n + j)bj(n) . 

(5) 
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Let us pass from the standard set of local dynamical 3. Differential constraints of the form 
variables u = fk, ux, vy, uxy) 

for all II = 0, *l , f2, . . . 

to the set consisting of variables u, u and all their X- 
and y-derivatives by 

u = eq(t) u = e-4(o). (11) 

For example, q( - 1) may be eliminated by means of 
the Toda equation itself by setting 

e-9(-‘) = eq(l)-Wo) _ qxr(0)e-q(O), 

and so on. In terms of these new variables the sym- 

metries (5) and (6) become (see also Ref. [ 1 l] ) 

Suppose that the constraint ( 17) is consistent with 
the system ( 13). Let us differentiate it with respect to t 
by means of the system ( 13) and then replace the vari- 
ables u,uX,uy,. . . in the resulting equation through 
variables 

s, s,, r, rx, r,,, u, ux, uY, u.~~, . . . 

This will either produce one more differential con- 

straint of the form 

ut, = u,, + 2ru, vt, = -v,, - 2ru, 

24, = uxxx + 3rz4, + 3su, 

(12) 

G(S,s,,r,rx,r,,.v,v,,~~,u~~,...) =O, (19) 

containing a finite number of variables, or is satisfied 

identically. In the former case, Eq. ( 19) can essentially 
be simplified. Actually the following statement takes 

place: 

u, = v,,, + 3rvx - 3sv + 3r,v, (13) 

where nonlocalities r = b,(O) and s = b2 (0) + 
r( log u) x obviously satisfy the equations 

Lemma. Unless Eq. ( 19) is valid identically it is of 
one of the forms: 

r?, = (uu),, (14) 

sy = (W), . (15) 

The boundary condition (2) takes the form 

P(u,v,u,,ux’uY,uY ,...) =o. (16) 

A very useful consequence of the change of variables 

is the following statement: 

s = H(r,r,,u,u,,uxx,u,,,), (20) 

r = H(u, uX, uXX) . (21) 

Proo$ If dG/&, = 0 then Eq. (19) can be written 
as (if aG/ds = 0 then Eq. (24) holds) 

Proposition. The boundary condition (2) is com- 
patible with the symmetry (6) (or (5) ) if and only if 
the constraint ( 16) is consistent with the system ( 13) 

(or (12)). 

~=Hl(r,r,,r,~,v,v,,v~,...) (22) 

and a comparison with Eq. ( 15) immediately gives 

Eq. (20). If aG/as, # 0, then Eq. ( 19) is equivalent 
to an equation of the form 

Below in the next two sections we will consider two 

special cases of the constraint ( 16) 

sX= H2(s,r,r,,r,,,u,u,,uy,...). (23) 

The compatibility condition of Eq. ( 15) with (23) 
gives either an equation of the form (22) or an equa- 
tion like 

u = f(U,&,4y*U+y), (17) 

uy = f(UV u, u,) . (18) 

In either case we will use Eq. (13) as the test sym- 
metry because the other one ( 12) does not admit any 
constraint of the above forms for it is skew-symmetric 
in the highest order derivatives (cf. Ref. [ 121) . 

rxx=H~(r,r~.u,ux,uy,...~. (24) 

Finally, a comparison of Eqs. (24) and ( 14) leads to 

Es. (21). 0 

Thus according to the Lemma the problem of clas- 
sifying the constraint (17) splits into the following 
subcases: 
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(cl) to find the function u = ~(u,u,,u~,u,,), for 
which the equation 

Drf = D:f + 3rD.J + 3sf, 

where D, and D, are total derivative operators with 

respect to t and X, holds identically for all values of 

the variables 

s,~,,r,~,,r,,,~,v,,v~,v~~,.,.; 

(~2) to find pairs of functions 

u = f (UT 4, uy, u,,), 

s = H(r, TX, 0, u,, u,,, u,,,), 

(25) 

(26) 

such that the equations 

Dtf = D:f + 3rD,f + 

D,H = D,tuD,f), 

3sf, (27) 

(28) 

where Dy is the total derivative operator with respect 
to y, are valid identically for all values of variables 

r,rx,rx+.u,u,,u,,u,,,... 

modulo Eqs. (25) and (26) and their t- and y- 
differential consequences, respectively. 

(~3) to find pairs of functions 

u = f (u, ux, uy, u,?), (29) 

r = H(u,o,,u,,), (30) 

such that Eq. (27) and the equation DyH = D,(fu) 
are valid identically for all values of variables 

s, s,, 0, u,, $9 u,x,. . . 

modulo Eqs. (29) and (30), and their t- and y- 
differential consequences, respectively. 

Direct computations lead to the following cases: the 

only choice in the case of (cl) is 

(i) u=o, sy =o; 

in the second case one has three solutions: 

(ii) u = a, s = 0; 

(iii) u = au, I s = zrx; 

(iv) 
UXV u=-+ uuxuy 

(a - 9) (a - u~)~’ 

uxuxx s=rx--- 
vvf 

a - u2 (a - u~)~’ 

Here a is an arbitrary constant. Lastly the third case 

(~3) gives the following solution: 

2 

(v) 
u = VI?. I VXV,, 

u2 u3 
r=-UXX+EL+_tb, 

V V2 

where b is an arbitrary constant. 
Turning back to the original variables, the differ- 

ential constraints (i)-(v) correspond to the boundary 
conditions for the Toda system ( 1) . Below we give 
the boundary conditions together with the equations 
for the associated nonlocalities: 

(1) eq(‘) = 0, b2,!(0) = 0; 

(2) q(1) =const, 62(O) =O; 

(3) 9( 1) = -q(O) + corlst, 

h(0) = ;h,xUN + bl (OMO); 

(4) 
aeq(l) = e-q(-l) + aqx(O)q,(O) 

&l(o) - e-do) ’ 

h(O) = h,,(O) - htO)q,tl) 

+( 
qxm3 

&?(O) _ e-q(O) ) 2 

sxtO>qxx(O>e-q(0) _ 
&t(O) _ e-S(O) ’ 

(5) e -9(-l) = 0, bl(0) = qxx(0) + const, 

respectively. All boundary conditions ( l)-(5) are 
well known. They are nothing but the closure con- 
ditions imposed at two different points n = nt and 
n = n2, which reduce the infinite Toda lattice to the so- 

called generalized (finite) Toda lattices. These finite 
Toda lattices are integrable and described by Cartan 
matrices of simple Lie algebras of finite growth [ 91. 

Remark. In order to examine the compatibility con- 
dition with the next symmetries it is necessary to con- 
sider next nonlocalities. 
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4. Differential constraints of the form 

uy = f@, u, VX) 

In this section we will consider differential con- 

straints ( 18). Supposing that Eq. ( 18) is compatible 
with r-evolution and differentiating it with respect to t 
one has again two choices: either the resulting equation 

holds identically or it gives an additional constraint 

= 0. (31) 

If it does not hold identically then it can be written in 

one of the forms (cf. Lemma in the previous section) : 

s = H(r,rx,u,ux), 

or 

(32) 

r = H(u,u,) . (33) 

Tediously long but direct calculations show that the 
case (33) gives nothing and the case (32) contains 

exactly one differential constraint 

u.\ = au,, s=rx-%. 
a 

In terms of the original lattice variables this constraint 
gives the following boundary condition, 

q?( 1) = -ae-q(‘)-q(ofqx(0), (34) 

which was found earlier in Ref. [lo] by using 
Backlund transform but it is still less studied. For 
nonlocalities one has the following equation, 

the 
the 
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