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Dynamic correlations in a charged Bose gas
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We evaluate the ground-state properties of a charged Bose asGtwithin the quantum version of the
self-consistent field approximation of Singwi, Tosi, Land, andajder. The dynamical nature of the local-
field correction is retained to include dynamic correlation effects. The resulting static structureaptand
the local-field factor G(q) exhibit properties not described by other mean-field theories.
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I. INTRODUCTION a charged Bose gas in three dimensions. Our main motiva-
tion, apart from possible applications, is to test for charged
The homogeneous gas of electrons interacting via th&osons the efficiency of the gSTLS method, which is dem-
Coulomb potential is a useful modeio understand a vast onstrated to yield accurate results for electron systems. We
range of physical phenomena. The continuing interest in thi§ompare our results with more elaborate hypernetted chain
model stems partly from the realization of physical systemgHNC) laallsculatlon§3 and with quantum Monte Carl@MC)
in the laboratory that lend themselves to such a descriptiof€sults. ™™ Both in the HNC calculations and in the QMC
and partly from theoretical reasons to understand the basgiMulations static local-field corrections have been extracted.
properties of a many-body system. Similarly, a system ofin this work our aim is to investigate the dynamical nature of
charged particles obeying Bose statistics under the influendé (0, ®). The frequency dependence of the dyna@i@,»)
of Coulomb interactions is important in determining the ef-has recently been emphasized in some theories dealing with
fects of statistics and correlations in comparison with theSUperCO”dUCt'.V't)}- _ .
electron gas. Charged bosons are the subject of renewed in- The paper is organized as follows. In the next section we
terest because of their possible role in some high-temperatufditine the gSTLS method. In Sec. Ill we present our self-
superconducting systefand in astrophysical applicatiods. consistent calculations, compare the resqlts Wlth_ other works,
In the study of many-body properties of charged particlesand discuss the effects &#(q, ) on certain physical quan-
the self-consistent field method of Singetial? (STLS) pro-  liies. We conclude with a brief summary in Sec. IV. In the
vides a means of going beyond the random-phase approxfPpendix, we provide some technical details on the calcula-
mation (RPA) in a simple and physically motivated way. It tion of G(q,®).
has been successfully applied to electron gas systems in vari-
ous situations including different dimensiérisand also to Il. THEORY
the charged Bose g&<.The local-field factor introduced in
the STLS scheme to describe the correlation effects depends We consider a system of negatively charged bosons em-
on the wave vector only. This is because classical distribubedded in a uniform positive background, interacting via
tion functions were used in its original derivation. A quan-the Coulomb potential. The system is characterized by
tum version of the STLS approa¢qSTLS was developed the dimensionless coupling constant=rq/ag, where
by Hasegawa and Shimiuhat allows for a frequency- fo=(3/4mn)"® is the average interparticle spacing,
dependent local-field factor. A different formulatiqwith ~ ag=1/mé” is the Bohr radius, and is the number density
similar resulty was put forward by Niklassohwho also  (we usef=1). The bare Coulomb interaction is given by
elucidated the relations among various related approximaV(q)=4me?/q?, and at the lowest orddin the Bogoliubov
tions. Numerical calculations on the self-consistent equationgpproximation the static structure factor of the system is
for a three-dimensiongBD) electron gas were provided by S(q)=[1+2nV(q)/eq]’l’2, where eq=q2/2m is the free-
Holas and Rahmatf.A detailed corresponding study in a 2D particle energy. Using the Feynman expression for the exci-
electron liquid has recently appearddSchwenget al.'?  tation spectrum we can determine the collective modes of the
have investigated the frequency dependenceGgf,w) system to bewp|=[e§+ 2nqu(q)]1’2. The lowest-order
within a finite-temperature formalism. The main finding of theory(also known as the uniform limineglects correlation
all these efforts has been that the quantum effects embodiedfects, which become increasingly important at large cou-
in G(q,w) change significantly the short-range correlations.pling strength.
In this paper, we apply the gSTLS method to the study of In the STLS approximation the density-density response
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FIG. 1. (8 The static structure factd®(q) in a charged Bose
gas atrg=1. Solid and dotted lines show the qSTLS and RPA
results, respectively. Crosses are the QMC simulation results from
Ref. 15.(b)—(d) S(q) atr =5, 10, and 20, respectively. li)—(d)
the dashed lines are the static STLS results from Ref. 6.

for which we give an explicit formula in the Appendix. In
the above expression f@(q, ), the static structure factor
S(q) is related to the dynamical susceptibility through the
fluctuation-dissipation theorem

1 (= ,
S(q)=— ﬁjo dox(q,iv), (4) Ill. RESULTS AND DISCUSSION

Since the dynamic local field factor depends on the static
where we have used the analytic continuation of the responsgructure factor within the qSTLS approximation, and the
function to the complex frequency plane followed by thelatter depends on the former through the fluctuation-
Wick rotation of the frequency integral. This procedure isdissipation integral, they have to be calculated self-
more effective in capturing the plasmon poles dominatingconsistently. Although the frequency dependencé(d, »)
the response of a Bose fluid. makes the calculation slightly more demanding than the

The derivation leading to the expression for theusual STLS methofl! it is still manageable and we per-
frequency-dependent local-field facté(q, ) is similar to ~ formed calculations for several densities until convergence
that in the static STLS approximation. Instead of using thewas achieved to an accuracy of 0.01%.
classical distribution functions, a set of equations of motion We first discuss the static structure factor resulting from
for the Wigner distribution functions are considered. The hi-our self-consistent calculations. The static structure factor of
erarchy of coupled equations are terminated by making thée 3D charged Bose system is shown in Fig. 1, for various
assumption that the two-body Wigner distribution functionr's values. The correlation effecttreated here dynamically
may be written as a product of one-body distribution func-induce a vast difference with increasingcompared to the
tions and the pair-correlation functiog(r).81° The fre- RPA result§whenG(q,»)=0] and the static STLS resufs.
quency dependence dB(q,w) comes from the factors At high densities(smallrg) S(q) is similar to that obtained
X0(9,9; ®) andy(q,w), which are the inhomogeneous and within the static STLS approximatidiv. As r increases a
homogeneous free-particle response functions, respectivelpeak structure starts to appear with increasing amplitude.
We give the definition ofyy(q,q’;») and a simple quadra- Such peaks in the static structure factor were observed in the
ture formula forG(q,iw) (evaluated on the imaginary fre- calculations of Apajat al.** in which the hypernetted-chain
guency axisin the Appendix. We iterate betwed®(q,i w) approximation was used, and in the Monte Carlo simulations
and S(q), which usesy(q,i») and in turnG(q,iw), until  of Moroni et al® We attribute the peak structure ${q) to
self-consistency is achieved. the inclusion of dynamic correlation effects. The static STLS

It is known that the STLS approach fails to fulfill the calculations of Contiet al.” also show the emergence of a
compressibility sum rule, namely the compressibility evalu-peak inS(q) at largers, when the self-consistency condition
ated directly from the ground-state energy is not equal to tha@n the compressibility sum rule is imposed.
calculated using the long-wavelength limit 6{q,0). This In Fig. 2 the probability of finding a particle at distance
deficiency may be overcome within a construction given byaway from a particle situated at the origin, namely the pair
Vashishta and Sing# and may be applied to the present distribution functiong(r) is shown for severals values. We
problem of dynamic local-field corrections as shown by Ho-use the Fourier transform
las and Rahmatf. Since our primary aim is to investigate the

qualitati\{e effects of the frequency dependencés¢f, w), g(r)=1+ 12 fxdk k sin(kr)[S(k)—1] (5)
we consider only the qSTLS scheme. 2mNnrJo
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FIG. 2. (a) The pair-correlation functiog(r) as a function of .
Curves from top to bottom are far,=1, 5, and 7, respectively.
Dotted lines are the RPA resulih) g(r) at lower density. Curves

FIG. 4. (a) The real part of5(qg,w) as a function of frequency at
r<=10 andqr,=2 (dotted ling, qro=4 (dashed ling andqr,=6
(solid line). (b) Same aga) for the imaginary part oG(q, ).

from top to bottom as they appear on the ordinate indicatel0,
20, 30, and 50, respectively. given by the static STLS approximation for large as illus-
trated in Fig. 4. In the static limit, i.,ep=0, Im G(q,0)]

to find thatg(r) remains positive forg<12. This is a large vanishes, and the real part satisfies 4limG(q,0)
improvement over the RP£or Bogoliuboy result. Theg(r) =1-g(0).

within the present gSTLS approach starts to become negative The zero-frequency limiG(q,0) is of interest in most
for small values of as the coupling strength increases. Wepractical applications. Within the dynamical STLS theory
point out, however, that in the present scheme only the dy&(q,0) is given by

namics of the Pauli correlation hole is taken into account, but
not the Coulomb correlation hole, which becomes dominant
at low densities?!

From our self-consistent calculations of the correlation
effects we obtain the frequency-dependent local-field factorln Fig. 5 we employ the above expression using our self-
Figure 3 shows5(q,iw) as a function of frequency on the consistenS(q) (solid lineg and that coming from the QMC
imaginary axis. We note thas(q,iw) is a smooth function simulations® (dashed lines We observe that both calcula-
of w, tending to a constant for fixed valuesgqfand most of tions agree quantitatively fogro<2 and qualitatively for
the frequency dependence is confined to the low-frequencyro,=2. The differences originate from the respective struc-
region. The QMC simulations can only reveal information onture factorsG(q,0) calculated in this manner is very differ-
the static local field, thus our frequency dependent results foent from the results of static STLS approximafi@nd also
G(q,w) present a different aspect of the correlation effects from G(q) of QMC simulations=> We note that in the QMC

The real and imaginary parts 6f(gq,») may be obtained simulationsG(q) is evaluated directly by the response of the
from G(q,iw) by the analytic continuationw— w+i7 in system to an external perturbation, without using the static
Eq. (3). We show in Fig. 4 the real and imaginary parts of structure factoiS(q). It remains interesting tha®(q,0) for
G(q,w) as functions of frequency at=10 andqry,=2, 4,

q® k
G(g,0= fdk_2_k23|n [S(ky—1]. (7

q+k

and 6. We observe that both the real and imaginary parts of 2.0 R UL I I
G(q,w) oscillate as a function of. One can show that for F F (b) 1
fixed g and largew, the local-field factor behaves as 15¢ st a =5
St )
lim G(0, ) =Gsns(q) + O(Lw?), ® 3O 5

w—®

0.5 [

a property also known to exist in electron fluidsThus,
IM[G(g,w)] vanishes and R&(q,w)] tends to the value
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FIG. 3. (a) The local-field factor evaluated on the imaginary
frequency axis as a function af (in units of 1/anr3) at (a) rg=1
and(b) rs=5. Dotted, dashed, and solid lines aredop=2, 4, and
6, respectively.

FIG. 5. (a)—(d) The local-field factoG(q,0) atr,=1, 5, 10, and
20, calculated within the dynamical theory with self-consis&of)
(solid lines and QMCS(q) (dashed lines
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FIG. 6. G(q) in various approximations. Crosses, open circles,
and solid circles indicate the QMG(q) at rg=10, 20, and 50,
respectively. Solid lines are the present result&{d, =) from
bottom to top at the sanrg values. Dotted lines are the static STLS
results of Ref. 6.

charged bosons displays rather different behavior than the
QMC results, whereas in the electron gas taierovides a

meaningful estimate. 0 2 . 4 6
The high-frequency limit of ouiG(q,w) also yields a e
frequency-independent local-field fact@..(q). Our self- FIG. 7. The plasmon dispersion relatiary scaled with respect

consistent results foG..(q) are compared with the QMC to the long-wavelength plasmon energy as a functiom.o8olid

and static STLS approximations in Fig. 6. We observe in Figcurves from top to bottom are far,=5, 10, and 20, respectively.

6 that the gSTLS approximates the local field factor at smalbashed and dotted lines are the corresponding results of the static
g, but is not able to reproduce the largebehavior of the STLS approximation from Ref. 6 and of the RPA, respectively.
QMC results. This is not surprising since the laggeature

of G(g) mainly comes from the momentum distributi¢or (1-RgG]) Im[ xo]— IM[G]R{ xo]

kinetic energy of the interacting systgmwhich we have Ya= J Re xol RG]
assumed to be @ function. However, our results capture (1-R4G])————— R xol——

part of the essential features seen in the more precise Jo Jw w=0,
theoriest>!® For instance, the peak structure @.(q) can 9)

be identified as in the QMC and HNC calculations around
gro~4, where the first star of the reciprocal lattice of the
body-centered cubic crystal would lie. STLS-type mean-field’
theories without the frequency dependéhead to display a
monotonic behavior inG(q). Thus, it appears that our
G..(q) may be useful as a good estimate of the 1B(g,0),
i.e., as extracted from QMC simulations.

In Fig. 7 we plot the plasmon dispersion curwg scaled
with the long-wavelength plasmon energy,= (12r ) 12 at
variousr g values.w is obtained by solving for the pole of
the dynamic susceptibility given in E@l), which includes
the frequency-dependent local-field factor. We compare our,,
results with the plasmon dispersion in the RPA
[wfPA=(12r )V4(1+q*12r)*?] and with the static STLS
calculation® For smallq, the plasmon dispersion obtained
from the present dynamical theory is very similar to that of
static STLS. The roton minimum appearing at intermediate 1
g, on the other hand, is more pronounced and shifted towards G(q,00=1+ m
the lowq side. At largeq the gqSTLS results approach the 41x0la;
RPA faster than the static STLS. The differences between th@hich may be derived from the conditione{f,0)<1, for
gSTLS and the static STLS approximations become morghe static dielectric function. Since the accurate QMC
marked with increasings. Since our frequency-dependent resultd**> show no evidence of the violation of the above
local-field factor has an imaginary part, we also calculate thenequality, it may be concluded that the charged bosons re-
damping y,, of the plasma excitations by solving for the main in a stable fluid phase until crystallization occurs.
imaginary part of the equation, We have uncritically assumed that the charged Bose gas

. . is in the condensate state and determined the effects of cor-
1=V(@[1=-G(q.@q=179) Ixo(d0q =17 =0 8 qjations induced by Coulomb interaction, as in previous cal-
Carrying out a standard analysfswhich assumes thay,  culations of a similar natue! However, the QMC
<wq, wWe find that the damping is given by simulations® indicate that even at relatively high density

¥q calculated according to the above expression is of the
rder of 0.5<10 3w, for qry=2.5.

In general, the excitation spectrum of a charged Bose gas
contains multipair excitatiofisin addition to the plasmon
mode. Our approach neglects multiparticle correlation effects
since the lowest-order polarization diagram described by
xo(Q,w) is included in the calculation d&(q,w). The role
of multiparticle effects in the excitation spectrum as de-
scribed by the dynamic structure fact8(q,w) has been
thoroughly discussed by Apagt al*®
It has been arguéd'°that when the static local-field fac-

G(q,0) becomes greater than unity, the system of
charged particles may exhibit the formation of a charge-
density wave(CDW). The instability will set in at a critical
rs value when

(10
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(weak coupling only about 80% of the particles are in the  The response function for the noninteracting inhomoge-
condensate. The interactions enormously deplete the condeneous system is defined by

sate so that by,= 160 (crystallization density most of the

particles occupy nonzero momentum states. Thus, the results oo [ 3 f(pta'12)—f(p—q'/2)

of approximate theories such as STLS or qSTLS should be xo(a,d "")_f d°p w—p-gmtig (A1)
used with caution at large; values. It might be possible to ) )
account for the effects of the particles out of the condensat@hich reduces to that of the homogeneous system, viz.
by choosing a suitable model for the distribution functionXo(d.®), for q=q’. Taking the distribution function as
(say, a Gaussiarthat determines the response of the nonin-f(P) =nd(p) for bosons aff=0, we obtain

teracting system. These ideas need to be explored within the

self-consistent scheme for quantitative assessment. . 2neqq
Xo(Q,0'i0)= —————
(w+ing) — €qq'

: (A2)

IV. SUMMARY

where e, =0-q'/2m. Starting from Eq.(3) and using the

We have considered the system of charged bosons above expression foy,, the angular integration fd&(q,i w)

T=0 and studied the effects of interactions within the quan-
! . is evaluated as
tum version of the STLS scheme. The self-consistently cal-

culated static structure fact@®@(qg) exhibits a peak around /; 92— qku 1
gro~4 with increasingrg, in agreement with QMC and du (A3)
HNC calculations. The local-field factoB(q,w) is fre- -1 @ +(a°=dku)” g*+k*~2kqu
guency dependent in the present approximation and reveals
information about dynamical correlations. In particular, in- _ 1 dol tart q(q—k)
clusion of the dynamids(q, ) improves the static STLS ~ 2qk(4w?+q°—292k2+ k%) |~ w
results in predicting the,-dependent behavior db(q) for
wave vectorgyros4. _tanl( q(a+k)
w
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APPENDIX A: QUADRATURE FORMULA FOR G(q,iw)

l o0
In this appendix we provide some details for obtaining a G(di@)=— E(‘*’Z“ﬁ fo dkk*P(k,g;w)[S(k)—1],
one-dimensional quadrature expression @q,iw). The (A4)
local-field factor is evaluated for frequencies on the imagi-
nary axis, which greatly simplifies the self-consistent calcuwhereP(k,q; w) is the result of the angular integral given by
lations. the right-hand side of EqA3).

*On leave from Scuola Normale Superiore, 1-56126 Pisa, Italy. SCorrelations in Electronic and Atomic Fluidedited by P. Jena,
1D. Pines and P. Nozies, The Theory of Quantum Liquid8en- R. Kalia, P. Vashishta, and M. P. To8Norld Scientific, Sin-
jamin, New York, 1966. gapore, 199D
2R. Mincas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod. Phys8A. A. Caparica and O. Higiio, Phys. Rev. A26, 2832(1982; C.
62, 113(1990; A. S. Alexandrov and J. Ranninger, Solid State |, Um, W. H. Kahng, E. S. Yim, and T. F. George, Phys. Rev. B

Commun.81, 403 (1993; A. S. Alexandrov and N. F. Mott, 41, 259 (1990; A. Gold, Z. Phys. B89, 1 (1992; R. K.

Supercond. Sci. Techndb, 215(1993. Moudgil, P. K. Ahluwalia, K. Tankeshwar, and K. N. Pathak,
3J.-P. Hansen, B. Jancovici, and D. Schiff, Phys. Rev. R2&t991 Phys. Rev. B55, 544 (1997).

(1972; S. Schramm, K. Langange, and S. E. Koonin, Astrophys. ’S. Conti, M. L. Chiofalo, and M. P. Tosi, J. Phys.: Condens.

J. 397, 579(1992. Matter6, 8795(1994; M. L. Chiofalo, S. Conti, and M. P. Tosi,
4K. S. Singwi, M. P. Tosi, R. H. Land, and A. Simder, Phys. Mod. Phys. Lett. B3, 1207(1994).

Rev.179 589(1968; K. S. Singwi and M. P. Tosi, Solid State  T. Hasegawa and M. Shimizu, J. Phys. Soc. B# 965 (1975;
Phys.36, 177(1981)). 39, 569(1975.



57 DYNAMIC CORRELATIONS IN A CHARGED BOSE GAS 8859

9G. Niklasson, inElectron Correlations in Solids, Molecules, and Phys. Rev. B55, 12 925(1997).
Atoms edited by J. T. Devreese and F. Bros¢Renum, New  4G. Sugiyama, C. Bowen, and B. Alder, Phys. Rev4® 13 042

York, 1983, p. 99. (1992.
10A. Holas and S. Rahman, Phys. Rev3R 2720(1987; see also, '°S. Moroni, S. Conti, and M. P. Tosi, Phys. Rev. 33, 9688
K. S. Singwi, inRecent Progress in Many-Body Theoriedited (1996.
by H. Kimmel and M. L. Ristig(Springer-Verlag, Berlin, 1984  °C. F. Richardson and N. W. Ashcroft, Phys. Rev58 8170
p. 219. (19949; Y. M. Malozovsky and J. D. Fan, Phys. Status Solidi B
IR, K. Moudgil, P. K. Ahluwalia, and K. N. Pathak, Phys. Rev. B 201, 167 (1997.
52, 11 945(1995. 17p. vashishta and K. S. Singwi, Phys. Rev6B875 (1972.
12, K. schweng, H. M. Bam, A. Schinner, and W. Macke, Phys. 8A. L. Fetter and J. D. WaleckaQuantum Theory of Many-
Rev. B44, 13 291(1991). Particle SystemgMcGraw-Hill, New York, 1971.

13v. Apaja, J. Halinen, V. Halonen, E. Krotscheck, and M. Saarela,'®S. Ichimaru, Rev. Mod. Phy$4, 1017(1982.



