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Dynamic correlations in a charged Bose gas
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We evaluate the ground-state properties of a charged Bose gas atT50 within the quantum version of the
self-consistent field approximation of Singwi, Tosi, Land, and Sjo¨lander. The dynamical nature of the local-
field correction is retained to include dynamic correlation effects. The resulting static structure factorS(q) and
the local-field factor G(q) exhibit properties not described by other mean-field theories.
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I. INTRODUCTION

The homogeneous gas of electrons interacting via
Coulomb potential is a useful model1 to understand a vas
range of physical phenomena. The continuing interest in
model stems partly from the realization of physical syste
in the laboratory that lend themselves to such a descript
and partly from theoretical reasons to understand the b
properties of a many-body system. Similarly, a system
charged particles obeying Bose statistics under the influe
of Coulomb interactions is important in determining the
fects of statistics and correlations in comparison with
electron gas. Charged bosons are the subject of renewe
terest because of their possible role in some high-tempera
superconducting systems2 and in astrophysical applications3

In the study of many-body properties of charged particl
the self-consistent field method of Singwiet al.4 ~STLS! pro-
vides a means of going beyond the random-phase app
mation ~RPA! in a simple and physically motivated way.
has been successfully applied to electron gas systems in
ous situations including different dimensions4,5 and also to
the charged Bose gas.6,7 The local-field factor introduced in
the STLS scheme to describe the correlation effects dep
on the wave vector only. This is because classical distri
tion functions were used in its original derivation. A qua
tum version of the STLS approach~qSTLS! was developed
by Hasegawa and Shimizu8 that allows for a frequency
dependent local-field factor. A different formulation~with
similar results! was put forward by Niklasson,9 who also
elucidated the relations among various related approxi
tions. Numerical calculations on the self-consistent equati
for a three-dimensional~3D! electron gas were provided b
Holas and Rahman.10 A detailed corresponding study in a 2
electron liquid has recently appeared.11 Schwenget al..12

have investigated the frequency dependence ofG(q,v)
within a finite-temperature formalism. The main finding
all these efforts has been that the quantum effects embo
in G(q,v) change significantly the short-range correlatio

In this paper, we apply the qSTLS method to the study
570163-1829/98/57~15!/8854~6!/$15.00
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a charged Bose gas in three dimensions. Our main mot
tion, apart from possible applications, is to test for charg
bosons the efficiency of the qSTLS method, which is de
onstrated to yield accurate results for electron systems.
compare our results with more elaborate hypernetted ch
~HNC! calculations13 and with quantum Monte Carlo~QMC!
results.14,15 Both in the HNC calculations and in the QMC
simulations static local-field corrections have been extrac
In this work our aim is to investigate the dynamical nature
G(q,v). The frequency dependence of the dynamicG(q,v)
has recently been emphasized in some theories dealing
superconductivity.16

The paper is organized as follows. In the next section
outline the qSTLS method. In Sec. III we present our se
consistent calculations, compare the results with other wo
and discuss the effects ofG(q,v) on certain physical quan
tities. We conclude with a brief summary in Sec. IV. In th
Appendix, we provide some technical details on the calcu
tion of G(q,v).

II. THEORY

We consider a system of negatively charged bosons
bedded in a uniform positive background, interacting v
the Coulomb potential. The system is characterized
the dimensionless coupling constantr s5r 0 /aB , where
r 05(3/4pn)1/3 is the average interparticle spacin
aB51/me2 is the Bohr radius, andn is the number density
~we use\51). The bare Coulomb interaction is given b
V(q)54pe2/q2, and at the lowest order~in the Bogoliubov
approximation! the static structure factor of the system
S(q)5@112nV(q)/eq#21/2, where eq5q2/2m is the free-
particle energy. Using the Feynman expression for the e
tation spectrum we can determine the collective modes of
system to bevpl5@eq

212neqV(q)#1/2. The lowest-order
theory~also known as the uniform limit! neglects correlation
effects, which become increasingly important at large c
pling strength.

In the STLS approximation the density-density respon
8854 © 1998 The American Physical Society
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57 8855DYNAMIC CORRELATIONS IN A CHARGED BOSE GAS
function is given in the form of a generalized random-pha
approximation~RPA!,

x~q,v!5
x0~q,v!

12Veff~q,v!x0~q,v!
, ~1!

wherex0(q,v) is the zero-temperature dynamic susceptib
ity of a noninteracting Bose gas

x0~q,v!5
2neq

~v1 ih!22eq
2

, ~2!

defined in terms of the densityn and free-particle energyeq
(h is a positive infinitesimal quantity!. The effective interac-
tion Veff(q,v)5V(q)@12G(q,v)# is defined in terms of the
dynamic~frequency-dependent! local-field factor

G~q,v!52
1

nE dq8

~2p!3

x0~q,q8;v!

x0~q,v!

V~q8!

V~q!
@S~q2q8!21#,

~3!

for which we give an explicit formula in the Appendix. I
the above expression forG(q,v), the static structure facto
S(q) is related to the dynamical susceptibility through t
fluctuation-dissipation theorem

S~q!52
1

npE0

`

dvx~q,iv!, ~4!

where we have used the analytic continuation of the respo
function to the complex frequency plane followed by t
Wick rotation of the frequency integral. This procedure
more effective in capturing the plasmon poles dominat
the response of a Bose fluid.

The derivation leading to the expression for t
frequency-dependent local-field factorG(q,v) is similar to
that in the static STLS approximation. Instead of using
classical distribution functions, a set of equations of mot
for the Wigner distribution functions are considered. The
erarchy of coupled equations are terminated by making
assumption that the two-body Wigner distribution functi
may be written as a product of one-body distribution fun
tions and the pair-correlation functiong(r ).8,10 The fre-
quency dependence ofG(q,v) comes from the factors
x0(q,q8;v) andx0(q,v), which are the inhomogeneous an
homogeneous free-particle response functions, respecti
We give the definition ofx0(q,q8;v) and a simple quadra
ture formula forG(q,iv) ~evaluated on the imaginary fre
quency axis! in the Appendix. We iterate betweenG(q,iv)
and S(q), which usesx(q,iv) and in turnG(q,iv), until
self-consistency is achieved.

It is known that the STLS approach fails to fulfill th
compressibility sum rule, namely the compressibility eva
ated directly from the ground-state energy is not equal to
calculated using the long-wavelength limit ofG(q,0). This
deficiency may be overcome within a construction given
Vashishta and Singwi17 and may be applied to the prese
problem of dynamic local-field corrections as shown by H
las and Rahman.10 Since our primary aim is to investigate th
qualitative effects of the frequency dependence ofG(q,v),
we consider only the qSTLS scheme.
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III. RESULTS AND DISCUSSION

Since the dynamic local field factor depends on the st
structure factor within the qSTLS approximation, and t
latter depends on the former through the fluctuatio
dissipation integral, they have to be calculated se
consistently. Although the frequency dependence ofG(q,v)
makes the calculation slightly more demanding than
usual STLS method,6,7 it is still manageable and we per
formed calculations for several densities until converge
was achieved to an accuracy of 0.01%.

We first discuss the static structure factor resulting fro
our self-consistent calculations. The static structure facto
the 3D charged Bose system is shown in Fig. 1, for vario
r s values. The correlation effects~treated here dynamically!
induce a vast difference with increasingr s compared to the
RPA results@whenG(q,v)50] and the static STLS results.6

At high densities~small r s) S(q) is similar to that obtained
within the static STLS approximation.6,7 As r s increases a
peak structure starts to appear with increasing amplitu
Such peaks in the static structure factor were observed in
calculations of Apajaet al.13 in which the hypernetted-chain
approximation was used, and in the Monte Carlo simulatio
of Moroni et al.15 We attribute the peak structure inS(q) to
the inclusion of dynamic correlation effects. The static ST
calculations of Contiet al.7 also show the emergence of
peak inS(q) at larger s , when the self-consistency conditio
on the compressibility sum rule is imposed.

In Fig. 2 the probability of finding a particle at distancer
away from a particle situated at the origin, namely the p
distribution functiong(r ) is shown for severalr s values. We
use the Fourier transform

g~r !511
1

2p2nrE0

`

dk k sin~kr !@S~k!21# ~5!

FIG. 1. ~a! The static structure factorS(q) in a charged Bose
gas atr s51. Solid and dotted lines show the qSTLS and RP
results, respectively. Crosses are the QMC simulation results f
Ref. 15.~b!–~d! S(q) at r s55, 10, and 20, respectively. In~b!–~d!
the dashed lines are the static STLS results from Ref. 6.
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8856 57K. TANKESHWAR, B. TANATAR, AND M. P. TOSI
to find thatg(r ) remains positive forr s&12. This is a large
improvement over the RPA~or Bogoliubov! result. Theg(r )
within the present qSTLS approach starts to become nega
for small values ofr as the coupling strength increases. W
point out, however, that in the present scheme only the
namics of the Pauli correlation hole is taken into account,
not the Coulomb correlation hole, which becomes domin
at low densities.11

From our self-consistent calculations of the correlat
effects we obtain the frequency-dependent local-field fac
Figure 3 showsG(q,iv) as a function of frequency on th
imaginary axis. We note thatG(q,iv) is a smooth function
of v, tending to a constant for fixed values ofq, and most of
the frequency dependence is confined to the low-freque
region. The QMC simulations can only reveal information
the static local field, thus our frequency dependent results
G(q,v) present a different aspect of the correlation effec

The real and imaginary parts ofG(q,v) may be obtained
from G(q,iv) by the analytic continuationiv→v1 ih in
Eq. ~3!. We show in Fig. 4 the real and imaginary parts
G(q,v) as functions of frequency atr s510 andqr052, 4,
and 6. We observe that both the real and imaginary part
G(q,v) oscillate as a function ofv. One can show that fo
fixed q and largev, the local-field factor behaves as

lim
v→`

G~q,v!5GSTLS~q!1O~1/v2!, ~6!

a property also known to exist in electron fluids.10 Thus,
Im@G(q,v)# vanishes and Re@G(q,v)# tends to the value

FIG. 2. ~a! The pair-correlation functiong(r ) as a function ofr .
Curves from top to bottom are forr s51, 5, and 7, respectively
Dotted lines are the RPA results.~b! g(r ) at lower density. Curves
from top to bottom as they appear on the ordinate indicater s510,
20, 30, and 50, respectively.

FIG. 3. ~a! The local-field factor evaluated on the imagina
frequency axis as a function ofv ~in units of 1/2mr0

2) at ~a! r s51
and~b! r s55. Dotted, dashed, and solid lines are forqr052, 4, and
6, respectively.
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given by the static STLS approximation for largev, as illus-
trated in Fig. 4. In the static limit, i.e.,v50, Im@G(q,0)#
vanishes, and the real part satisfies limq→`G(q,0)
512g(0).

The zero-frequency limitG(q,0) is of interest in most
practical applications. Within the dynamical STLS theo
G(q,0) is given by

G~q,0!5
q3

3pE0

`

dk
k

~q22k2!
lnUq2k

q1kU@S~k!21#. ~7!

In Fig. 5 we employ the above expression using our s
consistentS(q) ~solid lines! and that coming from the QMC
simulations15 ~dashed lines!. We observe that both calcula
tions agree quantitatively forqr0&2 and qualitatively for
qr0*2. The differences originate from the respective stru
ture factors.G(q,0) calculated in this manner is very differ
ent from the results of static STLS approximation6 and also
from G(q) of QMC simulations.15 We note that in the QMC
simulationsG(q) is evaluated directly by the response of t
system to an external perturbation, without using the st
structure factorS(q). It remains interesting thatG(q,0) for

FIG. 4. ~a! The real part ofG(q,v) as a function of frequency a
r s510 andqr052 ~dotted line!, qr054 ~dashed line!, andqr056
~solid line!. ~b! Same as~a! for the imaginary part ofG(q,v).

FIG. 5. ~a!–~d! The local-field factorG(q,0) atr s51, 5, 10, and
20, calculated within the dynamical theory with self-consistentS(q)
~solid lines! and QMC-S(q) ~dashed lines!.
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57 8857DYNAMIC CORRELATIONS IN A CHARGED BOSE GAS
charged bosons displays rather different behavior than
QMC results, whereas in the electron gas case10 it provides a
meaningful estimate.

The high-frequency limit of ourG(q,v) also yields a
frequency-independent local-field factorG`(q). Our self-
consistent results forG`(q) are compared with the QMC
and static STLS approximations in Fig. 6. We observe in F
6 that the qSTLS approximates the local field factor at sm
q, but is not able to reproduce the large-q behavior of the
QMC results. This is not surprising since the large-q nature
of G(q) mainly comes from the momentum distribution~or
kinetic energy of the interacting system!, which we have
assumed to be ad function. However, our results captur
part of the essential features seen in the more pre
theories.13,15 For instance, the peak structure inG`(q) can
be identified as in the QMC and HNC calculations arou
qr0'4, where the first star of the reciprocal lattice of t
body-centered cubic crystal would lie. STLS-type mean-fi
theories without the frequency dependence6 tend to display a
monotonic behavior inG(q). Thus, it appears that ou
G`(q) may be useful as a good estimate of the trueG(q,0),
i.e., as extracted from QMC simulations.

In Fig. 7 we plot the plasmon dispersion curvevq scaled
with the long-wavelength plasmon energyvpl5(12r s)

1/2 at
variousr s values.vq is obtained by solving for the pole o
the dynamic susceptibility given in Eq.~1!, which includes
the frequency-dependent local-field factor. We compare
results with the plasmon dispersion in the RP
@vq

RPA5(12r s)
1/2(11q4/12r s)

1/2# and with the static STLS
calculations.6 For smallq, the plasmon dispersion obtaine
from the present dynamical theory is very similar to that
static STLS. The roton minimum appearing at intermedi
q, on the other hand, is more pronounced and shifted tow
the low-q side. At largeq the qSTLS results approach th
RPA faster than the static STLS. The differences between
qSTLS and the static STLS approximations become m
marked with increasingr s . Since our frequency-depende
local-field factor has an imaginary part, we also calculate
dampinggq , of the plasma excitations by solving for th
imaginary part of the equation,

12V~q!@12G~q,vq2 igq!#x0~q,vq2 igq!50. ~8!

Carrying out a standard analysis,18 which assumes thatgq
!vq , we find that the damping is given by

FIG. 6. G(q) in various approximations. Crosses, open circl
and solid circles indicate the QMCG(q) at r s510, 20, and 50,
respectively. Solid lines are the present results ofG(q,v5`) from
bottom to top at the samer s values. Dotted lines are the static STL
results of Ref. 6.
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gq5
~12Re@G# ! Im@x0#2 Im@G#Re@x0#

~12Re@G# !
] Re@x0#

]v
2 Re@x0#

] Re@G#

]v
U

v5vq

.

~9!

gq calculated according to the above expression is of
order of 0.531023vpl for qr0&2.5.

In general, the excitation spectrum of a charged Bose
contains multipair excitations1 in addition to the plasmon
mode. Our approach neglects multiparticle correlation effe
since the lowest-order polarization diagram described
x0(q,v) is included in the calculation ofG(q,v). The role
of multiparticle effects in the excitation spectrum as d
scribed by the dynamic structure factorS(q,v) has been
thoroughly discussed by Apajaet al.13

It has been argued19,10 that when the static local-field fac
tor G(q,0) becomes greater than unity, the system
charged particles may exhibit the formation of a charg
density wave~CDW!. The instability will set in at a critical
r s value when

G~q,0!511
1

V~q!ux0~q,0!u
, ~10!

which may be derived from the condition 1/«(q,0)<1, for
the static dielectric function. Since the accurate QM
results14,15 show no evidence of the violation of the abov
inequality, it may be concluded that the charged bosons
main in a stable fluid phase until crystallization occurs.

We have uncritically assumed that the charged Bose
is in the condensate state and determined the effects of
relations induced by Coulomb interaction, as in previous c
culations of a similar nature.6,7 However, the QMC
simulations15 indicate that even at relatively high densi

,

FIG. 7. The plasmon dispersion relationvq scaled with respect
to the long-wavelength plasmon energy as a function ofq. Solid
curves from top to bottom are forr s55, 10, and 20, respectively
Dashed and dotted lines are the corresponding results of the s
STLS approximation from Ref. 6 and of the RPA, respectively.
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~weak coupling! only about 80% of the particles are in th
condensate. The interactions enormously deplete the con
sate so that byr s5160 ~crystallization density!, most of the
particles occupy nonzero momentum states. Thus, the re
of approximate theories such as STLS or qSTLS should
used with caution at larger s values. It might be possible to
account for the effects of the particles out of the condens
by choosing a suitable model for the distribution functi
~say, a Gaussian! that determines the response of the non
teracting system. These ideas need to be explored within
self-consistent scheme for quantitative assessment.

IV. SUMMARY

We have considered the system of charged boson
T50 and studied the effects of interactions within the qu
tum version of the STLS scheme. The self-consistently c
culated static structure factorS(q) exhibits a peak around
qr0'4 with increasingr s , in agreement with QMC and
HNC calculations. The local-field factorG(q,v) is fre-
quency dependent in the present approximation and rev
information about dynamical correlations. In particular,
clusion of the dynamicG(q,v) improves the static STLS
results in predicting ther s-dependent behavior ofG(q) for
wave vectorsqr0&4.
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APPENDIX A: QUADRATURE FORMULA FOR G„q,iv…

In this appendix we provide some details for obtaining
one-dimensional quadrature expression forG(q,iv). The
local-field factor is evaluated for frequencies on the ima
nary axis, which greatly simplifies the self-consistent cal
lations.
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The response function for the noninteracting inhomo
neous system is defined by

x0~q,q8;v!5E d3p
f ~p1q8/2!2 f ~p2q8/2!

v2p–q/m1 ih
, ~A1!

which reduces to that of the homogeneous system,
x0(q,v), for q5q8. Taking the distribution function as
f (p)5nd(p) for bosons atT50, we obtain

x0~q,q8;v!5
2neqq8

~v1 ih!22eqq8
2 , ~A2!

where eqq85q–q8/2m. Starting from Eq.~3! and using the
above expression forx0, the angular integration forG(q,iv)
is evaluated as

E
21

1

dm
q22qkm

v21~q22qkm!2

1

q21k222kqm
~A3!

52
1

2qk~4v21q422q2k21k4! H 4vF tan21S q~q2k!

v D
2tan21S q~q1k!

v D G
1~k22q2!lnUv21q422q3k1q2k2

v21q412q3k1q2k2U
12~q22k2!lnS q2k

q1kD 2J ,

in which the momentum variablesq andk are scaled withr 0

and the energy variablev is scaled with 1/2mr0
2. Finally, the

one-dimensional quadrature expression forG(q,iv) takes
the form

G~q,iv!52
1

3p
~v21q4!E

0

`

dkk2P~k,q;v!@S~k!21#,

~A4!

whereP(k,q;v) is the result of the angular integral given b
the right-hand side of Eq.~A3!.
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