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Abstract 

A connection is established between the soliton equations and curves moving in a three-dimensional space V;. The signs 
of the self-interacting terms of the soliton equations are related to the signature of V3. It is shown that there corresponds a 
moving curve to each soliton equation. @ 1998 Elsevier Science B.V. 

Differential geometry and partial differential equations (PDEs) are two different research areas in mathe- 

matics. When we study some local properties of surfaces in Euclidean (E3) or Minkowskian (M3) 3-spaces 
we face some known PDEs. For instance the Liouville and sine-Gordon equations describe surfaces of constant 
Gaussian curvature [ 11. Gauss-Codazzi-Mainardi equations describe the surfaces embedded in Es or in Ms. 

These equations are used for the construction of the soliton connection [2-4]. Here differential geometrical 
tools are utilized to find for example the Blcklund transformations and prolongation structures [ 51 of the 
soliton equations. 

During the last two decades another virtue of differential geometry arised in soliton theory. The Serret-Frenet 
equations for the family of curves (the motion of curves) give certain coupled partial differential equations for 
the curvature (k) and torsion (7) scalars of these curves [ 6- 121. It was shown that some soliton equations 
like the modified Korteweg-de Vries (mKdV), sine-Gordon and nonlinear Schrodinger (NLS) are among 

the equations that may arise from the motion of space curves. All these considerations were carried out in 
Euclidean 3-space Es. This is why only one version of the nonlinear couplings of the mKdV and NLSEs could 

be obtained. 
In this work we take a 3-space V3 with signature 1 + 2e, where E * = 1. This means that curves in M3 will 

also be considered. Self-interacting terms in the evolution equations of the curvature and the torsion of these 

curves depend upon the signature of the space Vs. The sign difference of the self-interaction terms is due to the 
signature change of the 3-space. If for instance a curve C is moving in Es (or in MS), focusing (or defocusing) 
versions of mKdV or NLS equations arise. 

The motion of the curve C is described by three functions p, q and w. The function w is determined in terms 
of the others but the functions p and q are left arbitrary. Each choice of these functions gives a different class 
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of curves in V3. It is in principle possible to convert the differential equations satisfied by the scalars k and 7 to 

any system of two coupled nonlinear PDEs. Here we should remark that not all these equations are integrable. 
The integrability property of these equations (for each choice of p and q) should be examined. The functions 
p and q can be suitably chosen to make the evolution equations satisfied by k and r integrable. So far, for this 
purpose [ 6-121 p and q were assumed to be local functions of k and r. In this way mKdV, NLS, and complex 
mKdV equations could be obtained. 

On the other hand, one may obtain, by a proper choice of p and q (since they are free), all possible integrable 

equations. This can be done by relaxing the locality assumptions on the functions p and q. The sine-Gordon 
equation is obtained by assuming that q = r = 0 and p is a nonlocal function of the curvature k [ 8,9]. We show 
that any integrable system of two coupled nonlinear PDEs can be obtained by assuming a nonlocal functional 
dependence. In this way it is possible to obtain for instance the AKNS [ 131 hierarchy. Hence, in general there 

exists a curve C moving in a V’s corresponding to any integrable nonlinear differential equation (one or two 
coupled equations). 

Some nonlinear partial differential equations, such as the sine-Gordon and the Liouville ~uations, arise from 
the surfaces of constant Gaussian curvature. Here we show that such equations and many others may also arise 
from two-Dimensions surfaces with vanishing Gaussian curvature, flat surfaces (see also Ref. [ 141). 

Let V, define a three-dimensional flat space with the line element 

ds2 = +,dxCLdxY, (1) 

where~,~=1,2,3,~fi=(t,y,z)and~~,, = diag( 1, E, E). If E = 1, then Vs = Es is a Euclidean 3-space and if 
E = - 1 then V3 = A43 is a pseudo-Euclidean (Minkowskian) 3-space. Hence, Eq. ( 1) explicitly takes the form 

ds* = dt2 + edy2 + l dz2. (2) 

Let 5’ be a surface in Vs parametrized by xF(u, u), and let C be a curve on S defined by CY : I -+ S and 
parametrized by its arc length s E 1. An orthonormal frame (P, rP, bfi) at each point of C is defined by 

(recall that x5 = P) 

7JpYY = 1, T&n%P = E, rl,J%‘b” = E, (3) 

all the other products vanish. The Serret-Frenet equations are (x’$ = tJ‘) 

ts = kr?“, (4) 

n$ = --EktP - rb@, (5) 

bC”, = ml*, (6) 

where k and r are the curvature and the torsion scalars of the curve C at any point s. The vectors P, nfi and 
np are, respectively, the tangent, normal and bi-normal vectors to the curve at any point s 1151. 

A curve on S is given by GJ‘ (s) = xp (u( s) , u(s) ) . This curve may be considered as a member of the family 
of curves j3: = x’( u(s, g), u( s, CT) ) for a fixed value of CT. The change (motion) of the curve with respect to 
the parameter c (on S) is given by 

xc = pn’ + wtp + qbc”, (7) 

where the p, q and w are functions of s and cr. By using the equation x5 = t* and (7) we get w,~ = Ekp 
and t$, (partial derivative of the vector tfi with respect to (T). Using tf obtained this way and the first of the 
Serret-Frenet equations, Eq. (4), one obtains k,, and n f. Following a similar approach one finds derivatives 
of the scalars (k,T) and vectors (P, n@, b@). They are given by 

tf = tp,s + kw + TqW + (q,s - 7p)bL”t (8) 
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The compatibility conditions give w,, = ekp and 

x-e = (P,, + kw + Tq),, + T(4.T - up), 

TM = - 
[ 
~[(q.~-71)~,,s-r(p,,+kw+rq)] 

I 
- Ek(q,, - ~1. 

‘S 

These equations may be written in the compact for-m 

where 

D2 + ck2 - T’ -i- &,D-‘k (DT+TD) 
I?.= 

. D~(l/k)(D7+7D) +ck7.+crD -‘k] -D[ ( l,‘k)D2 - T2/‘k] - EkD 

In the special case r = 4 = 0, which means that C is a plane curve, we have 

331 

(9) 

(10) 

(11) 

i 12) 

( 13) 

( 14) 

k,,, = Rp, 

where R is the recursion operator of the mKdV equation k,, = Rk,, given by 

(15) 

R = D’ + ck2 + &D-‘k. (16) 

Here D denotes the total derivative with respect to s and D-’ is its inverse. Choosing, for instance, p = k,,, 
reduces Eq. ( 15) to mKdV. The choices of the geometry E = il yield focusing and defocusing versions of 
the mKdV equations. Choosing p = R”k,, with n = 0, 1,2,. . . we obtain the infinite integrable hierarchy of the 
mKdV equations. For other local choices we need to write Eqs. ( 11) and ( 12) in a complexified form, 

where 77 2 = 1 p = eis(Dm’7) and 4 = kp and 4* is the complex conjugate of 4. When p = 0 and q = k, we 
have the nonlmear Schrodinger (NLS) equation of both versions (E = & 1) , 

ivti.,, = D24 + ;i$)26. 

Another example is obtained by letting p = k,,v and q = -kr. This is the complex mKdV, 

( 18) 

&1.,, = D”&, + ;i~~%.~. ( 19) 

In all these cases the function p is chosen as a local function of the k. This means that p is a function 
of k and its partial derivatives with respect to s and u to all orders. Other local choices of the function p 
in terms of k may or may not give integrable nonlinear partial differential equations (equations admitting 
infinitely many generalised symmetries). For each choice of p one must check whether the resulting equation 
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is integrable [ 16-181. The main motivation for choosing integrable equations is their position in mathematics 
and physics. 

It is also possible to choose the function p as a nonlocal function of k. Choosing for instance p = Re2k,, 
and letting k = t9,s we obtain the sine-Gordon equation 8,,,, = sin(e) [9]. Another choice for instance may 
be p = R-’ (RKdV)“k,s, where RKdv = D* + 4k + 2k,,D-’ is the recursion operator of the KdV equation 
k,, = k,,,, + 6kk,,. This choice will give the hierarchy of the KdV equation k,, = (RKdV)“k,, for n = 0, 1,2, . . . 
It is clear from these examples that since p is an arbitrary function, Eq. (15) may be reduced to any nonlinear 
partial differential equation. One can properly choose p so that all scalar integrable nonlinear PDE can be 

obtained from Eq. ( 15 ) . 
In the general case, by choosing p and q properly Eq. ( 14) can be reduced to any system of two coupled 

nonlinear PDEs. As an example, let 

where RAKNS is the recursion operator of the AKNS system of equations given by 

RAKNS = 
D + 2kD-‘r 2kD-‘k 

-2rD-‘7 > -D - 2rD-‘k ’ (21) 

Eq. (13) reduces to the AKNS hierarchy for n = 0, 1,2,. . . Hence there corresponds a class of moving curves 
in V, to each system of two coupled soliton equations, 

k 
= (RAKNS)" r 

,u 0 ,s 
(22) 

The derivatives of the vectors in the frame e$ = ( tp , n@, LIP) may be written in the more familiar form 
de: = @et, where in matrix notation LJ is a matrix-valued 

where 

l-form. Here a, b = 1,2,3 and R = L&ds + &dc, 

(23) 

~0 = qs - vh WI =p,s + kw+rq, (24) 

~2=~[(q,~-7~),~--7(~,~+kw+7q)l. (25) 

The l-form R defines a connection with zero curvature. This is due to the flatness of the space Vs. Vanishing 
of the curvature of fi, i.e. da - 00 = 0, is due to the evolution equations given in ( 13). In order to compare 
this connection l-form with the soliton connection l-form we write it in the more suitable form [2,3] 

where the l-forms n-a, ~1 and 7r2 are given by 

7ro = kds + w,da, 7rl = wada, IQ = -rds + wzda. (27) 
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These 1 -forms satisfy (from the zero-curvature condition) 

d~o+~,~2=0, dr, - 7r07r2 = 0, d7rZ + l rorl = 0. (28) 

An SL( 2, R)-valued soliton connection l-form r may be given in terms of the l-forms ~0, ri and 7r2, 

where 

I30 = a7rcl, *,=a+,+&+ 02=a2(7r,-~T2). 

(29) 

Here we have 4a2 + E = 0, aicy = LY 2. Let P be a 2 x 2 matrix-valued (O-form) function of s and r. 
Then dP = IY defines the Lax equation without a spectral parameter. Such a constant may be introduced by 
performing a gauge transformation r’ = STS-’ + dS S- ’ . Here S is 2 x 2 matrix-valued function of s, u and 
the spectral parameter. In this way we set up a correspondence between a curve C moving in a space V, with 

a soliton connection. 
The line element (1) on the surface S, using the parameters (s, cr) of the moving C, reduces to 

ds’ = (ds + wda)’ + e(p2 + q2)dg2. (31) 

The Gaussian curvature K of S with the first fundamental form given in (3 1) is different from zero in general. 
On the other hand, by the choice r = q = 0, the line element becomes 

ds’ = (ds + wdQ2 + Ep’dt2. (32) 

The Gaussian curvature K becomes 

K = $(k,, - RP) (33) 

which vanishes by virtue of Eq. (1.5). Hence all the curves related to Eq. (15) trace flat 2-surfaces. It was 

usually believed that integrable.equations arise from the curved surfaces. For instance the sine-Gordon equation 
arises from the surface with the line element ds2 = cos2(0)dg2 + sin2(8)ds2, which describes surfaces of 
constant negative Gaussian curvature [ 11. Here we show that all integrable equations including the sine-Gordon 

equation may also arise from flat 2-surfaces (for mKdV see Ref. [ 141) . 
In this work we considered the motion of a curve in a 3-space V,. This condition may be relaxed, but for 

an arbitrary V, where 11 > 3 the evolution equations corresponding to the geometrical scalars (k, 7, . . . ) of 

the curves become quite complicated. It is perhaps more physical and significant to consider the case 12 = 4. 
This corresponds to classical strings moving in four-dimensional Minkowskian space. Hence it will be quite 
interesting to see the correspondence between strings and the soliton equations with four dependent variables. 
Let xp( s, a) denote the strings in M4. In a similar manner we define curves xJ‘( s) parametrised with arc 
length s and its variations xp( s, a). We have the orthonormal tetrad (P, np, by, bl;“) with 

~CL”thz’ = 1) 7jpynpny = E, (34) 

rl/&b’; = 6, @$b;, = E, (35) 

where vP,, = diag( 1, E, E, E), and Greek letters run from 1 to 4. Here E = - 1 but we keep it to compare the 
results obtained here with previous sections. The Serret-Frenet equations governing the motion of the tetrad are 
as follows, 

tp = krP”, ,> (36) 
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(37) 

b& = r2nP + r3%, (38) 

b& = rlnP - r& (39) 

where k, ~1,72, i-3 are the geometrical scalars describing the curvature and torsions in each 3-space direction, 
respectively. Here we have P = x5. Letting 

x$ = pn’ + wt’ + q1 by + qzbl;“, (40) 

where p, w, 41, q2 are functions of s and (+. Here it is clear that when 72, rs and q2 vanish we get the same 
equations obtained in the previous sections for three-dimensional spaces. Hence the strings in four dimensions 
has a very direct correspondence with the integrable evolution equations. This connection and further progress 
on the motion of curves in a four-dimensional space will be communicated elsewhere. 

In this work we established a connection between the curves moving in a 3-space with arbitrary signature 
(- 1 or 3) and soliton equations. We showed that to each soliton (integrable) equation there exists a class of 
curves moving either in a Euclidean (Es) or pseudo-Euclidean (Ma) 3-space. The signature of Vs and the sign 
of the self-interacting terms in the soliton equations are directly related. We also showed that many integrable 
nonlinear PDEs may also arise from flat surfaces contrary to the common belief so far [ 141. 

This work is partially supported by the Scientific and Technical Research Council of Turkey and Turkish 

Academy of Sciences. 

References 

111 

121 
[31 

141 

[51 

[61 

[71 

[81 

[91 

[lOI 

[Ill 

[I21 

[I31 

[I41 

[I51 

1161 

1171 

[I81 

L.P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces (Ginn, Boston, 1909; reprinted Dover, New York, 

1960). 

M. Crampin, F.A.E. Pirani, D.C. Robinson, Lett. Math. Phys. 2 (1977) 15. 

M. Gtirses, Y. Nutku, J. Math. Phys. 22 (1981) 1353. 

B.G. KonopelchenkoSIAM 96 (1996) 9. 

H. Wahlquist, F.B. Estahrook, Phys. Rev. Lett. 31 (1973) 1386. 

H. Hasimoto, J. Fluid Mech. 51 ( 1972) 477. 

G.L. Lamb, Phys. Rev. Lett. 37 (1976) 235; J. Math. Phys. 18 (1977) 1654. 

K. Nakayama, H. Segur, M. Wadati, Phys. Rev. Lea. 69 (1992) 2603. 

M. Lakshmanan, J. Math. Phys. 20 (1978) 1667. 

J. Cieslinski, P.K.H. Gragert, A. Sym, Phys. Rev. Lett. 57 (1986) 1507. 

R.E. Goldstein, D.M. Petrich, Phys. Rev. Lea. 67 ( 1991) 3203. 

J. Langer, R. Perline, J. Nonlinear Sci. 1 (1991) 71. 

M. Ablowitz, H. Segur, Solitons and Inverse Scattering Transform, SIAM, Philadelphia, 1981. 

A. Sym, Lea. Nuovo Cimento 39 ( 1984) 193. 

M. do Carmo, Differential Geometry of Curves and Surfaces (Prentice-Hall, Englewood Cliffs, NJ). 

A. Fokas, SIAM 77 (1987) 253. 

A.V. Mikhailov, V.V. Sokolov. A.B. Shabat, in: What is Integrability?, V.E. Zakharov, Ed. (Springer, Berlin, 1991) p. 115. 

M. Gilrses. A. Karasu, J. Math. Phys. 36 (1995) 3485. 

View publication statsView publication stats

https://www.researchgate.net/publication/265415280

