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Abstract

A connection is established between the soliton equations and curves moving in a three-dimensional space V3. The signs
of the self-interacting terms of the soliton equations are related to the signature of V3. It is shown that there corresponds a
moving curve to each soliton equation. © 1998 Elsevier Science B.V.

Differential geometry and partial differential equations (PDEs) are two different research areas in mathe-
matics. When we study some local properties of surfaces in Euclidean (E3;) or Minkowskian (M3) 3-spaces
we face some known PDEs. For instance the Liouville and sine-Gordon equations describe surfaces of constant
Gaussian curvature [1]. Gauss-Codazzi-Mainardi equations describe the surfaces embedded in E3 or in Mj.
These equations are used for the construction of the soliton connection [2-4]. Here differential geometrical
tools are utilized to find for example the Bécklund transformations and prolongation structures [5] of the
soliton equations.

During the last two decades another virtue of differential geometry arised in soliton theory. The Serret-Frenet
equations for the family of curves (the motion of curves) give certain coupled partial differential equations for
the curvature (k) and torsion (7) scalars of these curves [6-12]. It was shown that some soliton equations
like the modified Korteweg—de Vries (mKdV), sine-Gordon and nonlinear Schrodinger (NLS) are among
the equations that may arise from the motion of space curves. All these considerations were carried out in
Euclidean 3-space Ej. This is why only one version of the nonlinear couplings of the mKdV and NLSEs could
be obtained.

In this work we take a 3-space V3 with signature 1 4 2€, where €2 = 1. This means that curves in M3 will
also be considered. Self-interacting terms in the evolution equations of the curvature and the torsion of these
curves depend upon the signature of the space V3. The sign difference of the self-interaction terms is due to the
signature change of the 3-space. If for instance a curve C is moving in E3 (or in M3), focusing (or defocusing)
versions of mKdV or NLS equations arise.

The motion of the curve C is described by three functions p, ¢ and w. The function w is determined in terms
of the others but the functions p and g are left arbitrary. Each choice of these functions gives a different class
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of curves in V3. It is in principle possible to convert the differential equations satisfied by the scalars k and 7 to
any system of two coupled nonlinear PDEs. Here we should remark that not all these equations are integrable.
The integrability property of these equations (for each choice of p and q) should be examined. The functions
p and g can be suitably chosen to make the evolution equations satisfied by % and 7 integrable. So far, for this
purpose [6-12] p and g were assumed to be local functions of k and 7. In this way mKdV, NLS, and complex
mKdV equations could be obtained.

On the other hand, one may obtain, by a proper choice of p and g (since they are free), all possible integrable
equations. This can be done by relaxing the locality assumptions on the functions p and g. The sine-Gordon
equation is obtained by assuming that g = 7 = 0 and p is a nonlocal function of the curvature k [8,9]. We show
that any integrable system of two coupled nonlinear PDEs can be obtained by assuming a nonlocal functional

dependence. In this way it is possible to obtain for instance the AKNS [13] hierarchy. Hence, in general there
exists a curve C moving in a V3 corresponding to any integrable nonlinear differential equation (one or two

coupled equations).

Some nonlinear partial differential equations, such as the sine-Gordon and the Liouville equations, arise from
the surfaces of constant Gaussian curvature. Here we show that such equations and many others may also arise
from two-dimensional surfaces with vanishing Gaussian curvature, flat surfaces (see also Ref. [14]).

Let V5 define a three-dimensional flat space with the line element

ds? = n,,,dx*dx”, (1)
where p, v =1,2,3, x* = (¢,y,2) and 5, =diag(1,¢€,€). If € = 1, then V3 = F3 is a Euclidean 3-space and if
€ = —1 then V3 = M3 is a pseudo-Euclidean (Minkowskian) 3-space. Hence, Eq. (1) explicitly takes the form

ds? = dr* + edy® + edz. (2)

13 #1 A oy 2 Y o nrnd Iat 7 o o ssseon s O
Let § be a surface in V3 parametrized by x#(u,v), and let C be a curve on S

A

5
parametrized by its arc length s € /. An orthonormal frame (1#,n*,b*) at each point
(recall that x% = t#)

. PR S SR
.I—-?oaud

is defined by

ﬁ:;

N tht” =1, RuhPn” =€, N b b =€, (3)

all the other products vanish. The Serret-Frenet equations are (x/; = t#)

i = kn*, (4)
nty = —ekt" — 7b*, (5)
b = 1n*, (6)

Z s o rafiire mrsed thha famcl o o aToo mE et

where k and 7 are the curvature and the torsion scalars of the curve C at any pUIm s. The vectors t#, n* and
n# are, respectively, the tangent, normal and bi-normal vectors to the curve at any point 5 [15].
A curve on S is given by a#(s) = x*(u(s),v(s) ). This curve may be considered as 2 member of the family

of curves B = x#(u(s,o),v(s, o)) fora ﬁxed value of . The change (motion) of the curve with respect to
the parameter o (on §) is given by

x# = pn* + wi* + gb*, (7

where the p, g and w are functions of s and . By using the equation xf = t* and (7) we get w = ekp
and 'y (partial derivative of the vector t# with respect to o). Using #/; obtained this way and the first of the
Serret-Frenet equations, Eq. (4), one obtains k, and n’,. Following a similar approach one finds derivatives
of the scalars (k,7) and vectors (##,n#, b*). They are given by

th = (ps+kw +1@)n" + (g5 — Tp)b*, (8)
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1
nk, = —€(ps+kw +1q) 1" + -,;[(q.s ~7p)s —T(ps + kw+ 1q) b, (9)

1
V= =7 1@ =7P)s = 7(ps + kw + 7q) In* — €(qs — Tp)1~. (10
The compatibility conditions give w ; = ekp and
ko=(ps+hkw+79), +7(qs — D), (1h

1
T = — [};[(qs —Tp) s —T(Ps + kW+ﬂ])]} —€k(gs—7p). (12)

¥

These equations may be written in the compact form

kN _ (P
(), ()

where

D>+ ek®> — > + ek D'k (DT +71D)
R = ) (14)
D[(1/k)(Dr+ D) + ekr + erD™'k] —D[(1/k)D* — 7*/k] — €kD

In the special case 7 = g = 0, which means that C is a plane curve, we have

k., =Rp, (15)
where R is the recursion operator of the mKdV equation &, = Rk given by

R = D* + ek® + ek D™ 'k. (16)

Here D denotes the total derivative with respect to s and D~! is its inverse. Choosing, for instance, p = k
reduces Eq. (15) to mKdV. The choices of the geometry € = +1 yield focusing and defocusing versions of
the mKdV equations. Choosing p = R"k ; with n=0,1,2,... we obtain the infinite integrable hierarchy of the
mKdV equations. For other local choices we need to write Egs. (11) and (12) in a complexified form,

¢ o= (D*+inedD ™" 1¢* +|*+¢ D7 ") (pp) +(—inD? —ine|p|* —ep D' r¢* +ined D' ¢7,) (gp) .
(17)

where 92 = 1, p=€e7? D and ¢ = kp and ¢* is the complex conjugate of ¢. When p = 0 and ¢ = k, we
have the nonlinear Schrédinger (NLS) equation of both versions (€ = +1),

. €
ln¢.rr:D2¢+§|¢|2¢' (18)
Another example is obtained by letting p = k; and g = —k7. This is the complex mKdV,

b,=D¢+3¢|’b.; (19)

In all these cases the function p is chosen as a local function of the k. This means that p is a function
of k and its partial derivatives with respect to s and o to all orders. Other local choices of the function p
in terms of k may or may not give integrable nonlinear partial differential equations (equations admitting
infinitely many generalised symmetries). For each choice of p one must check whether the resulting equation
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is integrable [16-18]. The main motivation for choosing integrable equations is their position in mathematics
and physics.

It is also possible to choose the function p as a nonlocal function of k. Choosing for instance p = R™2k
and letting k = @ ; we obtain the sine-Gordon equation 8, = sin(#) [9]. Another choice for instance may
be p = R™1(Rgav)"k;, where Rggv = D? + 4k + 2k ;D! is the recursion operator of the KdV equation
ko = k55 + 6kk 5. This choice will give the hierarchy of the KdV equation k , = (Rkav)"ks, forn=0,1,2,...
It is clear from these examples that since p is an arbitrary function, Eq. (15) may be reduced to any nonlinear
partial differential equation. One can properly choose p so that all scalar integrable nonlinear PDE can be
obtained from Eq. (15).

In the general case, by choosing p and g properly Eq. (14) can be reduced to any system of two coupled
nonlinear PDEs. As an example, let

(7) =R-‘(Rms)"(';)’s, (20)

where Rakns is the recursion operator of the AKNS system of equations given by

-1 -1
D+ 2kD7'r 2kD 'k ) 1)

Raxns = ( —2tD7 7 -D -2tD7 'k

Eq. (13) reduces to the AKNS hierarchy for n =0, 1,2, ... Hence there corresponds a class of moving curves
in W to each system of two coupled soliton equations,

k [k
(T)’a'—'(RAKNS) (T),s (22)

The derivatives of the vectors in the frame ef = (t#,n*,b*) may be written in the more familiar form
dely = 22e/}, where in matrix notation {2 is a matrix-valued 1-form. Here a,b = 1,2,3 and 2= Qds + £,do,
where

0 k£ 0 0 w; Wo
=] —€k0 -7, 2,=| —ew; 0 wy (23)
0 70 —ewg —wy 0
with
Wo=d¢s— TP, Wy = ps+kw+7q, (24)
1
W2=Z[(q,s—Tp),x_T(p,s+kw+T‘I)]- (25)

The 1-form (2 defines a connection with zero curvature. This is due to the flatness of the space V5. Vanishing
of the curvature of (2, i.e. df2 — 202 = 0, is due to the evolution equations given in (13). In order to compare
this connection 1-form with the soliton connection 1-form we write it in the more suitable form [2,3]

0 To T
N=\| —emy 0 m |, (26)
—€TT, —T 0

where the 1-forms 7o, 7r; and 7, are given by

o = kds + wydo, 7 = wodo, 7y = —71ds + wado. 27
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These 1-forms satisfy (from the zero-curvature condition)
dmg + mym =0, dmy — momy =0, dm, + emom; = 0. (28)
An SL(2,R)-valued soliton connection i-form I” may be given in terms of the i-forms 7y, 7| and 75,
F=/90 0 \’ (29)
\ 6> ~60) :
where
1 1
6o = am, Oh=a|m+ =—m |, h=ar|m — —m ). (30)
\ 20 7 . 2a
7/
Here we have 4a® + € = 0, ajan = a®. Let ¥ be a 2 x 2 matrix-valued (0-form) function of s and 7.

Then d¥ = I'w definec tha T av amiati
1imnvil UT - U\/IIII\IO Lll\w ua/\ \/\luul

performing a gauge transformation I’ = SI'S™! + dSS~!. Here S is 2 x 2 matrix-valued function of s, o and
the spectral parameter. In this way we set up a correspondence between a curve C moving in a space V; with
a soliton connection.

The line element (1) on the surface S, using the parameters (s, o) of the moving C, reduces to

ramatar Snch atant mav ha intradiicad he
lalll\(l\«l Uil u VUIIOLU l\. lll(«l_y Uw ulu\)uu\/\«u v

ds® = (ds + wdo)? + e(p* + ¢*)do?. (31)

The Gaussian curvature K of § with the first fundamentai form given in (31) is different from zero in generai.
On the other hand, by the choice 7 = g = 0, the line element becomes

ds? = (ds + wdr)? + ep?dr?. (32)
The Gaussian curvature K becomes
1
K=E(k”-RP) (33)

which vanishes by virtue of Eq. (15). Hence all the curves related to Eq. (15) trace flat 2-surfaces. It

ncna”v bhelieved that mrporahlp pmmhnnq arise from the curved surfaces. For instance the sine-Gordon equa [ign

UuSu Cquauis al L hito ) i wy

arises from the surface w1th the line element ds? = cos?(8)da? + sin*(8)ds?, which describes surfaces of
constant negative Gaussian curvature [ 1]. Here we show that all integrable equations including the sine-Gordon
equation may also arise from flat 2-surfaces (for mKdV see Ref. [14]).

In this work we considered the motion of a curve in a 3-space V3. This condition may be relaxed, but for
an arbitrary V, where n > 3 the evolution equations corresponding to the geometrical scalars (k, 7,...) of
the curves become quite complicated. It is perhaps more physical and significant to consider the case n = 4.

This corresnonds to classical strines moving in four-dimensional Minkowskian space. Hence it will be qui ite

10 LOUNICopUnG assitau HES g AU

interesting to see the correspondence between strings and the soliton equations with four dependent variables.
Let x#(s.o) denote the strings in My4. In a similar manner we define curves x*(s) parametrised with arc
length s and its variations x*(s, o). We have the orthonormal tetrad (%, n#, b}, by) with

MV ] n pHpt = ¢ (34)
ffupt f 1, Tlupre 1 <, N
N b = ¢, Nuby by =€, (35)
where 7, = diag(1, €, €, €), and Greek letters run from 1 to 4. Here € = —1 but we keep it to compare the

results obtained here with previous sections. The Serret-Frenet equations governing the motion of the tetrad are
as follows,

14 = kn*, (36)
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n* = —ekt* — b} — Tabh, (37)
b, = Tn* + 7305, (38)
b =g.n# — b (30)
¥2,5 ol 21 \ws)

where k, 7,72, 73 are the geometrical scalars describing the curvature and torsions in each 3-space direction,
respectively. Here we have r# = x’;. Letting

x# = pnt + wt* + g b + g2b5, (40)

where p,w, q1, g, are functions of s and o. Here it is clear that when 75,73 and ¢, vanish we get the same

T T, L PP Y. PP U ST P
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has a very direct correspondence with the integrable evolution equations. This connection and further progress
on the motion of curves in a four-dimensional space will be communicated elsewhere.

In this work we established a connection between the curves moving in a 3-space with arbitrary signature
(—1 or 3) and soliton equations. We showed that to each soliton (integrable) equation there exists a class of
curves moving either in a Euclidean (E3) or pseudo-Euclidean (M3) 3-space. The signature of V3 and the sign
of the self-interacting terms in the soliton equations are directly related. We also showed that many integrable
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