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The two-dimensional many-body Holstein-Hubbard model inTke0 normal state is examined within the
framework of the self-consistent coupling of charge fluctuation correlations to the vibrational ones. The pa-
rameters of our model are the adiabaticity, the electron concentration, as well as the electron-phonon and the
Coulomb interaction strengths. A fluctuation-based effective cumulant approach is introduced to examine the
T=0 normal-state fluctuations and an analytic approximation to the true dynamical entangled ground state is
suggested. Our results for the effective charge-transfer amplitude, the ground state energy, the fluctuations in
the phonon population, the phonon softening as well as the coupling constant renormalizations suggest that, the
recent numerical calculations of de Mello and Rannin@af. 5, Berger, Valaek, and von der LindefRef.

2), and Marsiglio(Refs. 4 and Bon systems with finite degrees of freedom can be qualitatively extended to the
systems with large degrees of freeddi80163-18208)03728-X]

[. INTRODUCTION ranges, and one has to self-consistently deal with an en-
tangled dynamical picture by abandoning the simpler quasi-
In this work we focus on the dynamical properties of theparticle one. On the semianalytic side progress has been
polaronic ground state in the Holstein-Hubbard model frommade in the diagrammatic approaches by extending the
the perspective of what we call as the charge-density wavMigdal RPA to the Migdal-EliashbergViE) formalism with
(CDW) fluctuation-basedeffective cumulant approachin  self-consistent handling of the phonon and electron renor-
this many-body model, the qualitative aspects of the transilalizations within the RPA, where compatible results to
tion from large to small polarons as the electron-phonormore reliable QMC simulatiod$ have been obtained. At the

(e-ph) adiabaticity and the Coulomb interaction strengths aréther extreme, the crucial role played by the adiabaticity pa-

varied, with the full assessment of these interactions, is stifameter was cle_arly shown in R?f' > suc_:h th"."t the strong-
oupling Lang-Firsov(LF) approximation is strictly appli-

an unresolved problem since the celebrated work Oﬁable onlv in the stronalv antiadiabatic ranae-1 and
Holsteinl Recently quantum Monte Carlo(QMC) y gly ge-

calculations~* semianalytic direct diagonalizatiofr usin contrary to the common belief, the convergence to LF behav-
- . yu 9 9 jor can be considerably weakened in transition from strongly
finite lattice and electronic degrees of freedom, and varia

. T . antiadiabaticy<1 to weakly nonadiabatic rangess1. In
tional ground-st_a_te techniqués” have revealed evidence of our opinion, although these results do not contradict the con-
a smooth transition of the ground state from the large eXyitions of applicability of the LF approach or strong-

tended to the small localized polaronic one as the interactioeoup“ng 1k expansiort? they confine their validity to the
parameters are varied from the weak-coupling adiabatic t%trongly antiadiabatic ranges.

strong-coupling antiadiabatic ranges. The ground-state dy- The crucial point needed for a global perspective of the
namics of the Holstein-Hubbard model is determined by thgyround-state properties in the Holstein-Hubbard problem for
three dimensionless scales; viz., the adiabatigityt/wo, 3 large range of coupling constants and adiabaticities is in
the e-ph mediated coupling = (g/w,)?, and the repulsive the understanding of the nonlinear, self-consistent coupling
Coulomb interaction strengthig ®/ w, where wg is the fre-  of the charge fluctuations to the fluctuations in the vibra-
quency of Einstein phonons,is the charge transfer ampli- tional degrees of freedom. In this respect, the main motiva-
tude andg is the lineare-ph coupling strength. In the weak- tion for our fluctuation-based approach was provided by the
coupling adiabatic regimei.e., A<0.5, 1<y and V§® numerical direct-diagonalization results in Ref. 5 regarding
sufficiently small, the Migdal random-phase approximation the correlated charge-deformation dynamics, as well as the
(RPA) is quite accurate in describing the quasiparticle renorCDW susceptibility based QMC and self-consistent ME cal-
malization. However, the extension of Migdal RPA beyondculations of Refs. 2, 4, and 7.

A~0.5 encounters superficial instabilities in the phonon It is desirable that these numerical calculations, despite
vacuum. This point has been critically questioned for in-the limitations in the consideration of finite degrees of
stance, in Refs. 2, 5, and 6 when it is no longer possible tdreedom—such as the finite lattice size, truncated Hilbert
assign independent degrees of freedom to phonon and elespace, small number of electrons etc., which are necessary
tron systems beyond the weak-coupling strongly adiabatiffom the feasibility point of view of the numerical
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methods—can be qualitatively extended to reach at concluannihilate phonons at momentuawith g(k), andV,, , de-
sive results on the nature of the polaronic transition for morescribing the lineae-ph and electron-electron Coulomb inter-
generalized systems with large degrees of freedom. In facgctions, respectively. The first two terms in the Hamiltonian
this point has been raised a long time ago by Shore andescribe the electron charge transfer and the harmonic pho-
Sandet and also stressed by the authors of Refs. 5, 7, and ion contributions as
However there has not been conclusive evidence, in particu-
lar at the intermediate ranges=1, A=1, on whether the +
theoretical results obtained using models with finite degree He= 2 tmnCmoCno,  aNd
of freedom could be extended to systems with realistic sizes. (mnye
Moreover, apart from the variational ground state
calculations) ™! direct attempts to tackle the many body dy- Hop= >, Ok ala+aal), ©)
namical fluctuations, in particular in the intermediate ranges, k 2
have not been possible on practical grounds. On the other ) ) ) )
hand, although the self-consistent ME RPA as well as Q,\,@N.heretm,n is the traqslatlor)ally mvanant chargg-transfer am-
calculations provide an improved understanding of the probPlitude between neighboring sites, n and wy is the har-
lem, a clear self-consistent picture of fluctuations in themMonic phonon frequency. _
ground state(and, perhaps an approximate analytic form The. central themg of this work is to calculate the fluctua-
still remains to be established. tions in the vibrational degrees of freedom in a self-
In this work we approach the many-body problem in thec.onsis.tent frame together with the charge-density fluctua-
normal state and at zero temperature by improving the CDWions in the correlated electron subsystem. The charge-
fluctuation-based effective cumulant approach that was redensity fluctuations are defined by the expressions
cently introduced in Ref. 13 and applied to the : : : .
superconducting-state  solution to examine the 10W- CmeCmo={CmsCmo)+A{CmsCms} OF, equivalently,
temperaturd .-dependent phonon anomalies in certain high-
temperature superconductors. o Px=2N+ Spy, 3
In Sec. Il the Holstein-Hubbard model is introduced and
studied in the momentum space. The nature of the interaCtin@herepk:Ek,,gcl,ﬂ( Cir.o With Cl,a ,Cr.» describing the

ground state is examined in Sec. Il A where an approximat@|ectron operators in the momentum representation, and
analytic form is suggested in the direct product form, decom-

posing the entangled nonlinear polaronic wave function ini?kz_"gp IkE> d(e?)s)cgrtilré% tff:(e)zmcave\/ :ridne:jga;a:lrgre;gr. th?nfacéor
the coherent and two-particle correlated subspaces. The pas E 1q ted i tOHszJrH 9 h th yt' 9 =qQ.
rameters of this effective wave function are calculated usin ). Bq. (1) s separated in oty such tha

the CDW fluctuation-based effective cumulant approach, re-

producing the all first and second-order phonon cumulants of Ho=Hq+ 2
the entangled polaronic wave function. The effective wave K
function is an analytic and continuous function)gfy, and

Vg€, which ensures the same properties for the ground-state 1
energy as well as other physical parameters induced from the =2, 9(K)dpi(a+al )+ > > VeKpp—k, (@
model. The solution of the wave-function parameters as well . k
as the calculation of the approximate ground-state energy kﬁ/herev (K) = 1INS ekm=my andH, corresponds to
presented in Sec. Il B. Section Il is devoted to the renormal;, exa(C:tIy soIvabIke part associated w?th the eigen-wave-
ization of the charge-transfer amplitude. In Sec. 1V, thefunction

renormalization of the effective-e interaction is examined. '

The statistics of the fluctuations in the ground state of the _

renormalized phonon subsystem and the renormalization of | o) =[dc) @[ e,

the vibrational frequency are examined in Secs. VA and
V B, respectively.

ﬂ(aTa +a.a)+2g(k)n(a,+al )
2 (BT A g k8T a_y ),

(k) —
|¢c>:uc|0ph>:e)(p[ 2; gw_k nk(ak_atk) |oph>-
Il. MODEL (5

We investigate the Holstein-Hubbard problem via theHere |¢.) describes the pure coherent part of the ground-
Hamiltonian, state wave function in the phonon subsystem, [@pg is the
phonon vacuum state. At the exactly solvable level the prod-
ikt T uct form of the wave function remains to be valid wji)
H="Het Hpnt k;g g(k)€™CmeCmo(aktazy) representing the wave function of the electron subsystem.
o The coherent patip.) describes the coupling of the phonons
to the static charge-density wave described by the CDW or-
der parameten, = 1/22k,0<cl+k,ck,(,). To examine the dy-
namical contributions to the interacting ground-state wave
wherec! ., create and annihilate electrons at sitevith  function we eliminate this part from the Hamiltonian by the
spin o on a two-dimensional2D) lattice, al ,ay create and unitary Lang-Firsov transformatiaii. in Eq. (5) as

1
+ 5 2 Vm,nC:;"IO'C:;g"CnO',CmO' ) (1)

m,n,o,0’
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H' :Z/IZ(HO+ H)U, problem within a Lang-Firsolike approachinamely, by re-
placing o, by (¥slomnlts) where|ys) is, in contrast to
B gy + the LF approach where the coherent part is used, the dynami-
=Het Ek: 7(akak+akak) cal fluctuating part of the polaron wave functjdsy demon-
strating that it is, in principle, possible to construct an effec-
_ _ tive wave function [¢") as an approximation to the
(Nt SpiIn_+Hy., (6)  dynamical party), which adopts a special product form at
the cumulant-generating-operator level in tiigghonon cu-
where the coherent part of the wave function in E8).is  mulant correlation space. Then, in an approximation scheme,
now shifted to| ) =U{| o) = |0p ®| ). Now the inter-  an analytic form ¢S will be constructed by reproducing all
action term’™, in Eq. (4) is given purely in terms of the first- and second-order cumulants of the phonon operators in
coupling of phonons to the fluctuations in the CDW that| ).
contribute to the dynamical part of the interacting ground-

k 2
S l9(k)]
k Wy

state wave function. This interaction term is also convention- A. Nature of the interacting ground state
ally transformed away by another unitary transformatign Our purpose in this subsection is to understand the nature
g(k) of the dynamical strongly entangled wave functiagr). In
u5=exp[2 ~—spe(ag—al i, (7)  the static CDW limit(i.e., n,#0), the fluctuations in the
ke @k charge density are negligible. It is known that the static
for which the transformed Hamiltonian reads CDW limit Corresponds to Strongly antiadiabatic regimes
when thee-ph coupling constant is in the extreme weak- or
H”=Z/IZ;H’Z/I,; strong-coupling limits. This is the limit whergp.) can ac-

curately approximate the exact polaron ground stat# drfi
=3 tonar(M,N)CE oy Eqg. (1). In the yveak-coupling antiadiabatic limk<1, Y
(Mo <1, a perturbative scheme based on charge fluctuations is
adequate where the magnitude of fluctuations in the residual

) k)|?2 . . R S
+> ?k(alak"_akaT)_z l9(k)| 8pdp interactions is Im_n_tec[l.e., a(m,n)—{a(m,n))|<1]; since
K 3 Wk o(m,n) is a positive and bounded operator by unity from
I9(k)[2 1 above ando(m,n))=1. In the strong-coupling antiadiabatic
_ (Ne+ Sp)N_i + 5 2 Vo (K) prp - regime, the small polaron_lc_ bandW|df[h is strongly red_uced
K wg 3 where we also have negligible contribution of the residual

) interactions. Thereg(m,n) is bounded from below by zero
since{a(m,n))<1. It is clear that the corrections {¢.) as
The expense paid by this transformation is the introductiorwell as the importance of the residual interactions arise from
of the multiphonon operator, the nonnegligible presence of the dynamical fluctuations in
. ) the intermediate ranges between these limits.
_ < 9K em ikenyga At We will examine|4) by calculating the characteristic
a(m,n)—ex;{z ; o (e e @—a)|. cumulants of the phonon coordinat€s=1V2(a,+a’,)

(9 andPy=—i/v2(a_c—a}). In order to study the dynamical
fluctuations in the ground state we shift the phonon coordi-
nates in the Hamiltonian(l) to the origin by Q,— Qy
T G ; —(Qy) andP,— P,—(P,) where(Qy) and(P,) are deter-
Ju(gl o) - A-Ithough the rest of the Hamiltonian in E¢) is mi<ned> in the cohere<ntly> shifted< C0>mpon<d|?in) as (Q))

ecoupled in electron and phonon degrees of freedom, - . , !
major difficulty is introduced by the multiphonon-electron = 2[9(K)/@i]n, and(P\)=0. This is equivalent to a unitary
scattering in the first term in Eq8). In the conventional transformation by, of the initial Hamiltonian yielding Eqg.

Lang-Firsov approach this term is replaced by its average iff)- Note that from here on all expressions involving factors
the coherent part¢.) of the wave function byo(m,n) of Qy and P, will be expressed in thehifted coordinates

Combining the transformations in E¢5) and Eq.(7) we
obtain a highly entangled dynamical wave function)

.

—(c|a(m,n)| ée), which completely decouples the Hamil- We start W_ith calculating five distinct types of the phonon
tonian. On the other hand, a refined treatment of the residudioments defined by
interactions induced by (m,n) —( ¢¢|o(m,n)| ¢.) has to in- R. = 5
corporate the highly nonlinear phonon correlatowhich, in 51 (ol QO ),
our opinion, can obscure the physical picture of the dynami- Pe = (| (PO ths)
cal properties of the wave function. %2 '
In fact, the difficulties in the solution of the mapy—boc_iy Ko = (s (PP )% ths),
problem are, at least, twofold. At one end, there is the im- 3
practicality of a formal diagrammatical approach to the re- Fo= S
sidual interactiond? At the other end, even if one can get K (sl QUQ-0 145,
away with neglecting the residual interactions by using a 935:(¢5|(Qk)55(|°k)55|lﬁa)- (10)

Lang-Firsov-like formalism, a full understanding of the dy-
namical wave function,) is still not promised due to its After a tedious but straightforward calculation usihg;)
highly entangled nature. In this work, we will approach the=u§|oph)®|z/;e>, these are explicitly given by
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Rs,=0, procedure defines generalized shifts
(O] (TITZ 1T FQu(TI, L24™) |0,y and  similarly  for
Ps,=0, Pr. In result, it is technically possible to decompose the
wave function in direct product form in the cumulant corre-
1\Ss lation space. Despite the fact that the technical principles of
= —> s3!, such a decomposition prescribed in Efj2) can be exam-
ined, it is not practically possible to go beyond the second-
sl order correlations, because of the fact that a possible general
Fs,= 2_;1;1 2 SFi(—s,+p,0;1;—1) analytic form for the third- and higher-order cumulant gen-
p=0 eratorsiA™, (3<m) have not been studied in the literature
(—Sa)p(—2p)p [ 9(k)| 2P from the mathematical point of view. The first- and the
2 ( ) ({SpkSp—_i))P, second-order cumulant correlations, on the other hand, are
(p! well known in quantum optics as the one-particle cohéfent
i)ss and the two-particle coherent statgs!’ respectively, and
S/,

Wy

— (12) have been extensively applied to the polaron problem in the
2 context of the dynamicit and the variational(see, for in-
where ),=n(n+1)---(n+m—1) and ,F,(a,b;c;z) is Stance, Refs. 18 and )lapprogches. .

the Gauss hypergeometric function and we assumed Gauss- Under these practical limitations arising for<3n, we

ian density fluctuation correlations. In principle, an effectiveconsider a subset of Eq4.0) comprising the entire first- and
wave function| 45" that is expected to be equivalent|ip;) ~ Second-order cumulants, which correspondsios,=1,2,

in the phonon sector should consistently reproduce the entirés-Sa,Ss=1. Hence, it is implied that the polaron ground-
set of an infinite number of cumulants in Eqdl) with 1 State wave function will be approximated in the cumulant
<s<w, (i=1,...,5).Hence, the effective wave function correlation space using only the first- and the second-order
also comprises an infinitely large set of correlation subspacegUmulants. From Eq11) these seven cumulants are explic-

where the correlations in each subspace is produced by tH&Y given by

. _ . n)
unitary n-phononcumulant correlation generatof™ as (sl Qul sy = (sl Pl 5) = (5| QuQul )
1w =TT u™|0) @), =(slP Pl 5)=0,
" g(k)| |2

where <‘/f5|Qka|'//5>=1/2{1+4 w_k) <5Pk5pk>},

H u(n)EH UMy m=1...242741) (12) (s|PP_y|ipsy=1/2,

n=1 n=m
with /@M, . etc. describing the one-particle coher- (ol QP =112 (149

ent, the two-particle coherent correlations, etc., respectivelyin order to reproduce Eqg14), we propose the effective
In fact, in this decomposition in terms of correlation sub-wave function,
spaces{{) corresponds to the coherent slﬂjﬂ in Eq. (5)
and U@, u®), etc. describe the two-particle and three- - fa b o
particle correlated sectors off; in Eq. (7), etc. In this case |5 >:S({§})1;[ {at vl + Bu(a)(al )} Oph)
the projection of the effective wave functidg3™) on the
m-dimensional correlation subspace|igs)n,, which is de- ®|e), (15
termined by the projection operator,
where the phonon coordinates are coherently shifted for the
* T calculation of second-order correlations according to the pro-
Tmz( 11 u<”>) as |s)m=Tmls). (13 cedure outlined above. The wave function is normalized as
n=mt1 ||+ | B2+ | vi|?=1, where we neglect the overall phase
In order for the product form in Eq12) to be a sensible of |4 by consideringa,= ay, and
expansion of the wave function in terms of its independent
sectors in the correlation space, each unitayhononcor-

relation generatat(™ must reproduce theth-order phonon S({g})=exp{ —> (&aa_x—&ajal ),
cumulants obtained from the moments in EQK)) but not :

the moments themselves. This is indeed the reason why we

shifted the phonon coordinates in order to eliminate the in- £=&]€%%, ST=s1 (16)
fluence of the coherent one-particle sector on the second-

order and higher dynamic correlations in the wave functiondescribes the two-particle coherent, translationally invariant
This is equivalent to subtracting the coherent one-particlginitary operatoksqueezing operator in quantum optits.
contributions by  performing  the  shift Q.—Q«  The unitary transformation defined kif{£}) on the phonon
—<oph|uZQkuc|oph>. For those of themth-order ones, this coordinates is given by
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ST{h) QS &N =[x+ Re{ s 1Quc+ IM{ i} P, where = cosh(2¢) and u=e "% sinh(3§]) such that
|ki|?— | ui|?=1 as imposed by the unitarity &f({£}).
STUEN P SUE) =[ kx— Re[ i P+ Im{ i} P Using the wave function in Eq15) and the properties in

(17) Egs.(17) we obtain

(WSl yw§h=0,
WP ysh=o,
(¥QuQul ¥ =0,

(WS |PePlysH =0,
— 1
(W5"1QQ i ¥§™ = Re{ae yic kit i) 2+ 2 Bivie s+ i) 2+ E(“E+3|7k|2+5|,3k|2)|"k+ il
— 1
(WP P "y = — Relan yie ki i) 2+ 2 Bievic k= i) 2} + E(QE‘F 3| vkl 2+ 5| Bl ?) [ kk— il %,

i — — _
(U51QUPKI 5" = 5 {1+ (rcpaic— epnid) (@ + 3 >+ 51 B )} = IM{ (ieanc+ 2Bmid) (g — 1)} (18

The parametersy,,yy,Bx,kk, i are determined by de- Kﬁ_,U«i:l.
manding the equality of Eq918) and Egs.(14). In fact,

independently from specific values af, v, B, and§,,

the effective wave functiofyS") satisfies a larger set of o2+ B+ y2=1,
cumulants than given by the subset in E4S). First of all,

the first two conditions orRs andP;, in Eq. (11) are very

strict, corresponding to the translational invariance af). 1

These are also respected forslls, by |42") independently { (—D'yla+2(—1)"Bi]+ E(OZEﬂL 3ye+ 5,35))
from «an, v, Bx and &.. Furthermore, we also have

(sl (QI (P ¢ra) = (U5I(Q*5(P)*) | 5") =(i/2)ss! X[t (= 1) "pw]?

for all s5 and for allarbitrary but real e, i, Bi, andé. (K| |2

Hence, we are motivated to find a solution where the param- = 1/2[ 1+4 g_) <5Pk5P—k>}

eters are all real. Here, we switch to the polar coordinates Wk

Bx=|Bklexp(bp), and similarly for the other parameters.

From the last equations in Egd8) and (14), we infer that

6 6, =mm with m=0,1 and Imya + 2f=0. For [(—1>r*1yk[ak+2<—1>”ﬁk]+3<a§+375+5/3§)]
real parameters this trivially implies|y|ay|sin 6,= 2

—2| Bl vilsin(@s—6,)=0, hence,6,=ra (r=0,1), andé,
=nw (n=0,1). With these conditions, there are five real
equalities in the simultaneous solution of E@E3) and (14)

and four conditiongincluding two normalization conditions  This set of four equations will be closed by one additional

to be satisfied. We consider the fifth condition as the mini-constraint from the ground_state minimization, which we ad-
mization of the ground-state energy. Since all parameters aigress in the following section.

now real, we drop the absolute value signs, ile|— ay
and similarly for the others. We now have an effective wave

X[k (= 1)"m]?=1/2. (19

function that respects the strict conditions imposed by the B. Solution of the parameters and approximations
translational invariance indicated Wsl and Ps, as well as to the true ground-state energy
the last condition indicated WSS in EqS(lO) at all orders. We now define the ground_state energy of the Hamil-

Consistency between Eg4.8) and (14) now implies tonian in Eq.(8) by
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Eo=(u5|H" 45" P(k.o)=23 Ol —&p—2p]— Ol &p ikt 2piid

P w+§p_§p+k+2p_2p+k+i5,

(26)

= % tm,n<0'm,n><C;1Cn> + ; Vo(k)<5pk5p,k>

where &=te(K) —u, teg=2t(o)(1—cosk,—cosky). Since
ax, Bk, Yk, and &, are not determined at this level, we
consider int.s, the zeroth-order approximation where we
replace (o) by its LF limit (o) =exp{—1/2g(k)|% w?}.

_ o
+§k: Vo(k)nkn—kJFEK: 7[(|Kk|2+ | il ®)

X (1+ 3|yl >+ 8| Bul?) + 4 vl | il [ i The chemical potentiak is fixed self-consistently by the
X Re{€ (%™ 04051 1 8| || Bul | kil | e zero-temperature constraint,
><Re{ei<"'<+0#+"v_ 05)}], (20)

whereVy(k) =3V (k) — {|g(k)|% o}, is the baree-e inter- ”o:; o[ — &—2(K)], (27

action, and, the last sum in Eq20) is the result of

S ol (afa +agal| 4S". The contribution from the

multiphonon operator is more tedious to calculate, for whichwith 2 (k)= —X, (k" —k) 0] — & —=(k")] describing the

we obtain exchange contribution to one particle energy renormaliza-
tion. Since we are confined here to zero-temperature formal-
ism, 2(k) is independent fronk and just renormalizes the

(v5" ‘Tm,nl'/’??ﬁ>:1;[ exp(— AL e+ 7l A(1+A)? chemical potentirfl. Hence the exchajnge contribution is inef-
fective in the denominator of Eq26).

+| Bil214(4— 12A2+ A}) + 2A, Re{ay vy}

2 n 2 )
A RelaBig A2 AYT RevBi We obtain the solution Eq$24—27 numerically in two
(21) dimensions using Einstein phononag= w, andk indepen-
with A= 3[g(K/ @)%~ *é(1— cosk, - a—cosk, - a) where dent dimensionless bageph couplingh = (g/wg)?. All en-
a describes the lattice constant, which we take to be unity®'dies are normalized by,. The dependence ¢Bp\5p k)

1. Density fluctuation correlations

For the lowest possible energy we must satisfy in @) on the dimensionless parametersy, andV(m, )/ w is
shown in Figs. la—g atk= (7, #7) and at half-filling, for the
m=0,+60,—0,, valuesV (m,m)/wy=0, 1, 2, 3, 4, andy=0.05, 0.1, 1 with
0<<\<2. In each curve the solid line, open circles, open
m=0,+60,+60,— 04, triangles, solid circles, and solid triangles represent values of

V.(m,m)/wqy as, respectively, indicated above. A quantita-
1 ) ) tive comparison of the figures for a fixed Coulomb interac-
|Bl= §|7k||"k||r“k| (e *+ [ ), (22 tion strength indicates that, as the adiabatigiig decreased,

_ _ _ o there is an overall suppression in the magnitude of the fluc-
where the last one in Eqe22) is obtained by minimizing the  tyation correlations. This effect is also enhanced further by
phonon part in Eq(20) with respect t3,|. The first two  stronge-ph coupling particularly in the strongly antiadiabatic
yield 65—26,=0, thus 65,=0. Using this as well a®),  (je, y<1) ranges. On the other hand, aincreases towards
=r obtained previously we find two possible solutions  the adiabatic range, correlations gradually increase for stron-

ger e-ph coupling. This picture qualitatively agrees with the
0,=0, 03=0, 6,=0, 6,=m, and results obtained by direct-diagonalization calculations on fi-
nite systems where a cooperation is observed in the antiadia-
0,=m 05=0, 0,=0, 6,=0. @3 patic range between the decreasing adiabaticity and the in-
Since the phases are all fixed, we turn to the calculation ofreasing coupling constant to suppress the quantum
the density fluctuation correlations. The ground-state energffuctuations. The overall effect of the increasing repulsive
in Eq. (20), as well as the parameters of the wave function inCoulomb interaction is to overcome the phonon-induced po-
Egs. (19) and (22) are functions of p,Sp_i), which we laron attraction, which amounts to suppressing the fluctua-

determine using the dielectric functiaitk, ) formalism as ~ tions for small couplings and enhancing them in the strong-
coupling ranges. At this level, we solve Eq49) and (22

* dw 1 for the parameters of the effective wave function before we
Vo(k)<5pk5p—k>:—f0 —Im k)’ (24 calculate the ground-state energy.

ar
In the RPA,e(k,w) is given by 2. Parameters of the effective wave function
Vo(K)P(k, ) Once fluctuation correlations are determined, the phonon
e(k,w)=1— TTVy(KP (Ko’ (25  effective ground-state parameters, vy, Bk, andé, can be

calculated from Eqs19, 22 for two branches as character-
The electron polarizatioR(k,w) is obtained in the standard ized by Eqs(23). The solutions corresponding to these two
formulation by branches are identical fag,, By, and y, and only differ
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02 ' . the strengths of the pure two-particle coherent component
given by, . and the pair excitations on this state given by
Y= IN the intermediate ranges of tieeph coupling(i.e.,
7 A=<1), the pair excitation strength becomes comparable to
| the strength of the underlying two particle coherent compo-
nent. The four particle excitation given 8y, .. is limited in
strength in the whole. range. On the other hand, Figd2
represents the parameters within the two-particle coherent
component. For increasirggph interaction a rapid reduction
is observed in exp{2|¢,. .|). We observe that, because of the
non-negligible strength of/, .., the whole picture here is
quite contrary to the common practice of replacing the effec-
tive phonon ground state by a variational pure two-particle
coherent(squeezed component(in which case we would
have ey =1, y,=B=0 for all k) in the intermediate and
L B strong coupling regimes. In Figs(é8-d the same param-
09 F 7=1 o] eters are calculated for=0.05. As the system is shifted to
08 - Loo0°’ u increasingly antiadiabatic rangdse., y<1), the relative
R 6 e ® ] strengtha ;. of the pure two-particle coherent component is
: . approximately maintained in the entire coupling range with
c) ] respect to the two- and four-particle correlated excitations
e represented by, . and B, ., respectively. Hence, in this
’ range of the interaction parameters, the two-particle coherent
componente,, ., dominates the wave function where the
FIG. 1. The solution of the density fluctuation correlations attwo- and four-particle correlated excitations, . and 8 .
k=(m,7) and at half-filling as a function of the-ph coupling for ~ compete only with each other. Within the two-particle coher-
V./wy=0,1,2,3,4 as represented by solid line, open circles, opent componenfas indicated in Fig. @))] there is a also an
triangles, solid circles, and solid triangles, respectively. increasing tendency to overlap with the conventional phonon
vacuum. Nevertheless, we observe that ex¢, .|) satu-
very slightly for x, and . In this subsection, we only rates around 70%, implying that the overlap with the vacuum
present the results for the first branch, whereas, both solloes not exceed 30%see Fig. &)] even for such a strong
tions will be explicitly used in the calculation of the approxi- antiadiabaticity ag'=0.05. Note that, a strong overlap of the
mate ground-state energy. In Fig§a2d the parameters of dynamical part| ¢S with the vacuum would indicate that
the effective wave function are plotted foe= (7, 7) at half-  the coherent paité.) is dominating the ground-state wave
filling in the same\ range as in Fig. 1. As the-ph interac-  function. These results are in qualitative agreement with the
tion is increased, a strong competition is observed betweedirect diagonalization results of Ref. 5 where the observed

(m,m)
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FIG. 2. The parameters of the effective wave functiok=af(7,7) for y=1 and at half-fillingn,=1 as a function of the-ph coupling
for various Coulomb strengths & /wy=0,1,2,3,4 represented by solid, dotted, dashed, long-dashed, and dotted-dashed lines, respectively.
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FIG. 3. The same as in Fig. 2 far=0.05 at half-fillingny=1.

convergence of the true ground state to the Lang-Firsoyha¢ whenn,=n, is shifted away from half-filling the influ-
small polaron limit(indicated by the pure coherent pa#i))  ance of the Coulomb interaction becomes weaker on all pa-
is weaker than expected and strongly adiabaticity dependentymeters. In addition, the relative strength of the correlated
As the system is driven to even more antiadiabatic rangésyair excitations(i.e., v, ) with respect to the two-particle
the charge fluctuations reduce their overall amplitude as th@oherent componefite " ) becomes weaker as shown in

. f . wlq
fluctuating componenty3") of the polaron wave function Figs 4a by for ny=0.6. The four-particle correlations as
develop§ an ever increasing overlap WIFh the convenyonaéiven byA., .. in Fig. 4c), maintain their negligible strength.
vacuum(i.e., as implied by the saturation i, . at approxi-  \ve also observe in the same result that the parameters of the
mately 90% withy., .8 . saturating at limited strengths tyo-particle coherent component as indicated in Fig) dre

as well as the tendency of explé,, ) to stay closer o not too sensitive to changes in the electron concentration in
unity in Fig. 3d)]. Hence the ground-state polaron wave thjs range.

function gradually becomes more coherent and localized;
nevertheless, we also observe that the convergence to this
limit is weaker than conventionally expected.

As the dependence of this overall picture on the electron In Figs. 5a,b the ground-state energy difference calcu-
concentration is concerned, the first observation we make igted in reference to the noninteracting lirfiie., A =0) and

3. Approximate ground-state energy
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FIG. 4. The same as in Fig. 2 far=1 at electron concentratiom,=0.6.
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FIG. 5. () The ground-state energy differena&,=Ey(\)—E(N=0) as calculated by E¢20) for y=1 at half-filling and for the two
solutions of the wave-function parameters as determined by the values of the phase$28) Bdere, for the second solution the same
symbols are used as in Fig. 1 for the same parameter values. Since the first solution and the second one meet on the vertical scale at a value
corresponding to a particular value \df the second solution for eadl, can be identified easily. For the sake of clarity we thus represent
all second solutions with dotted lineh) Same as in paria) for y=0.05 at half-filling.

corresponding to each phonon branch as a function &  distinct Coulomb interaction strengths become less viable for
plotted for the same parameter values as the previous figurése ground-state energy due to the suppression of the dy-
at half-filling. Note that in this section, we intentionally in- namical fluctuations.

clude the results of both branches in E¢&3). To clearly

demonstrate the influence of the charge fluctuation correla-

tions, the ground-state energy of the background uniform |11 EFFECTIVE CHARGE-TRANSFER AMPLITUDE
distribution [i.e., Vo(k)ngn_,] is subtracted in both Figs.
5(a), and gb). The first solution obtained for the parameters
is identified for each Coulomb strength, by a solid line

%C;woig)’ an Ol%en. c:rcle \gclaﬁ); 1), 3“ op?'r; tr!ang:e (LF) limit is weak particularly in the intermediate coupling
(Ve/wo=2), a soli (_:lrce§/c wo=3), an a solid triangle weakly antiadiabatic regimes. In the conventional LF ap-
(Ve/wo=4), respectively, in accordance with symbols used, - ., the adibaticity does not play a role in the renormal-
in Fig. 1. The second solution is representgd by dotted line vation of thet . The reason behind the independence.pf
fpr. all Co'ullomb strgngt'hs. At weakph cquplmg strength, a from v is that the standard LF polarons are renormalized
finite positive contribution to the energy is present from Cou-OnIy with respect to the lattice site on which the polaron is

lombic charge fluc_tuathns._A common featu_re of all ground'Iocated; whereas, this approximation is only expected to be
state energy solutions in Fig(& is that at a fixed Coulomb - e b avireme antiadiabatic strong-coupling limit.
mtergctlon gtrength, a slightly lower groundfstate ENer9y 1%on the other hand, the response time scale for the phonon
obtained with the second branch for coupling strengths |54 (o follow the charge is expected to be a monotonously
=1 than_W|th the f|rs_t branch. In the approximate range 1increasing function of adiabaticity. This implies that in the
=N\ the first branch yields a lower ground-state energy tharrongly adiabatic ranges the renormalization of the effective
the second one. In the transition from one branch to the othetharge-transfer amplitude by the following phonon cloud is
no discontinuity is present. In addition to the continuous naexpected to be weaker than it is for weakly adiabatic and
ture of the transition, a kinklike feature is also present neanonadiabatic ranges. Hence, the localizing effect of the
A =1, where the transition is observed. The continuity of thestrong e-ph coupling should be a function of adiabaticity.
ground-state energy is widely accepted on grounds of directfhis means that.x/t, as a measure of the kinetic-energy
diagonalization studies on finite systeftisas well as varia- renormalization scale for electrons, is expected to be a mo-
tional calculation$~*! The kinklike feature has also been notonously decreasing function whep decreases, which
reported in one-dimensional calculations but it was attributedvas indeed observed in the numerical calculations of Ref. 5,
to the finite-size effect®.We also observe, in accordance 7, and 8. In another way of saying it, the expected renormal-
with Ref. 8 that, as the system parameters are driven int@ation oft.s with respect toy is itself a strong result against
antiadiabatic range€.e., y<1) the kinklike feature disap- the use of the LF approach in the large and intermediate
pears as shown in Fig(15), and the fluctuations calculated at adiabatic ranges and the generality of the argument requires

It has been shown in the direct-diagonalization calcula-
tions on finite systemisthat the convergence of the intersite
charge-transfer amplitude to the conventional Lang-Firsov
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FIG. 6. (a) The effective charge transfer amplitutig/t as a function ofA for the indicated value of interaction parametdis. The
adiabaticity dependence ofj/t.

that a similar scenario is expected to hold for the many-bodyng monotonously for decreasing Hence, the qualitative

case. features of Figs. & and &b) reasonably agree with those in
We define the effective charge transfer amplitigleus- Refs. 5, 7, and 8.

ing Eq.(21) as

IV. EFFECTIVE ELECTRON-ELECTRON INTERACTION

terr=t( 5 o(m, ) 5. (28)

The effective electron-electron interaction will be calcu-
Note that the coherent CDW sectef.) would have no con- |ated from
tribution in Eq.(28) if it was included in the wave function.
In Eq. (28), or in its explicit form in Eq.(21), the Lang- Vo(k)
Firsov limit would only correspond tey=1, y= Br= & Verr (K, 0) = ko)’ (29
=0, yielding the standard Holstein band reductitg '
=t exp(—\/2). It can be seen that this limit is unphysical in where e(k,w) is given by Eq.(25). At half-filling, the cal-
our dynamical approach here. The reason is that, since atlulations are shown for the Coulomb dominated bare inter-
parameters are definite functions »f the limit ¢,=1, v,  action in Figs. 7a,b for the real and imaginary parts of the
= Bx=§&=0 would only be obtained if n@-ph coupling inverse dielectric function, Since Rée} is even and
was present. Hence, deviations from the standard LF apgm{l/e} is odd inw, we only include the positive excitation
proach is an inherent feature of the dynamical approach itenergies. In the Coulomb dominated region, high-energy ex-
self. Since the parameters ht/‘;“) are known by Eqs(19) citations across the Fermi surfadee., o~2u and k
and (22), we can examine Eqg28) as thee-ph coupling =(,)] are strongly susceptible to a sharp singularity in
constant and the adibaticity are varied. In Fige)6the cou- the electron density of states where a strong enhancement in
pling constant dependence of the renormalized chargehe effectivee-e coupling is observed. In the same limit
transfer amplitude is plotted foy=0.05, 0.1, 1. Given the Im{1/e} has a coherent peak for excitations across the Fermi
general argument discussed above and the previous resuéisergy, which is consistent with the known presence of high-
obtained for finite systems, our results in Figa)jgcould be  energy dynamical CDW fluctuations. In this regime, the qua-
qualitatively anticipated, i.e.t.z decreases monotonously siparticle screening is inactive and the charge fluctuations are
with decreasing adiabaticity. To indicate that the adiabaticityfdominated by high-energy processes. We observe that, for
dependence is a manifestation of charge fluctuation correlaweaker bare Coulomb interaction strength the enhancement
tions, Eq. (28) as well as the Lang-Firsov-normalized is also weakefnot shown in Fig. }. As the baree-ph cou-
charge-transfer amplitudey/(te V%) are plotted in Fig. @) pling is increased, the peak position shifts to lower energies
as a function ofy for A=0.1, 0.5, 1. The connected points due to the quasiparticle band narrowing and the CDW peak
with solid circles, solid triangles, and solid squares represeramplitude is much less pronounced. In contrast, in the low-
the solution of Eq.(28) for A=0.1, 0.5 and\=1 respec- energy excitation rangé.e., =< u), one enters the particle-
tively. The LF-normalized solutions are indicated with the hole continuum where the screening is active. In this regime,
same type of unconnected points for the samalues. The Re{l/e}<1, which suppresses the effectigee coupling be-
difference between the full and LF-normalized solutions islow its bare strength.
weaker for small couplings as expected. More importantly, At the other limit, where the net bare-e coupling is
the difference is also a function of the adiabaticity, decreasphonon dominated, as shown [iRigs. 8a,b], the high en-
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ergy excitations become incoherent and the coherent CDW Figures Ta,b and 8a,b confirm the general wisdotm*?°
instability disappears. Note the presence of a minus sign othat, the electron self-energy as well as vertex corrections are
the vertical scale in Fig.(@) to indicate that the effective-e ~ particularly strong across the Fermi surface both in the high-
coupling is attractive (&Re{l/e}). In this regime, the energy Coulombic and low-energy phonon dominating re-
particle-hole continuum is narrowed from below to interme-gimes. To complete the picture at half-filling, tkedepen-
diate excitation energies where the screening is effectivedence of the dielectric function is plotted in Figga®) for
resulting in a net suppression of the attractive coupling. Thes/wy=8.05, A=0, V (7, 7)/wy=4, and Figs. 1@&,b for
limitation of the particle-hole continuum at the low-energy w/wy=0.05, N\=1.6, V (7, 7)/wy=0. These particulakw

end is dictated by the small polaron formation where a strongalues correspond to the vicinity of excitation energies in
enhancement of the attractive coupling is observed. As th€igs.4a,b and 8a,b where the peak positions are observed.
baree-ph coupling is increased, the effective polaron mass iddence, Figs. @&,b and 1@a,b give representative samplings
strongly enhanced within a low-energy window and the in-of the dielectric function in the extreme high-energy Cou-
teractions are dominated by low-energy exchange processdembic and low-energy phonon dominated regimes and
With increasing bare attractive coupling, the low-energywhere the strongestv,k dependence is expected. In the
window is compressed to even lower energies, apparentliormer [Figs. 9a,b] a relatively smooth and dispersionless
approaching to alike peak atw=0 for 1<\. For an in- CDW gap is present on the Fermi surface. Across the Fermi
creasing bare-ph coupling constant, the divergence in the surface ak= (7, ) there is an enhancement both in{ Re}
behavior of R¢l/e} is also consistent with the gradual de- and Im{1/e} indicating the dynamical CDW peak in Figs.
velopment of the sharp low-energy peak in{lfe} in Fig.  7(a,n. On the other hand, we find in the latter c48égs.
8(b). We believe that this is an indication of the existence ofl0(a,b)] that in the presence of a strong attractive coupling
a very narrow band, itinerant, sméjuasilocalizeglpolarons  the gap fluctuates at very low energi@sg., o/ wy~0.05),

in this low-energy regime. In the ultimate limit of very large and it is strongly anisotropic on the bare Fermi surface. For
e-ph coupling the small polaron band is reduced completelyinstance, ak= (0,7), and at(7,0) the Re1/e} it is rather flat

the effective adiabaticity is strongly decreased and, the effecand narrow with no structure in the imaginary part, whereas
tive e-e coupling is strongly renormalized signaling a across the bare Fermi surface towarks (m,w) it is
gradual transition from the itinerant, fluctuating low-energystronglyk dependent and dynamical with the large dynami-
small polaron picture to self-trapped polarons. Since the coueal small polaron peak &= (7, 7) [see also Figs.(@,b].

pling is strongly attractive, bipolaron bound-state formation An extension of these results to the case away from half
is also likely to happen within this range. filing as well as different values of the bare charge-transfer
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amplitude also indicate that thek dependence of the self- traction can drive the system into superconductivity near the

energy and vertex corrections maintain their full validity at adynamical CDW instabilit/®> We believe that this mecha-

gualitative level. Because of the stromgk dependence of nism might be more likely to happefif it does in the

high-energy excitations in the Coulombic case, the positiorstrongly antiadiabatic ranges in otherwise the same regime

and the amplitude of the dynamic CDW peak is stronglywhere the phonon excitation energies are more compatible

sensitive to slight changes in the electron concentration. Wevith the electronic ones. On the other hand, Coulomb domi-

observed that in the region where low-energy phonon dominated strong coupling antiadiabatic ranges, where the excita-

nated excitations are strong, there is an overall suppressidions are on the order of bare phonon frequency or smaller

in the magnitude of the low-energy excitations on the Fermiwith exchange momenta on the orderkst (7, 7), are also

surface as well as &= (m,7) when the concentration is favored by the small polaron formation. Hence the competi-

shifted away from the half-filling. tion in this regime between the superconductivity and
The density of states on the Fermi surface is stronglyquasilocalized polarons, must be decided by the effective

dependent on the strength of the charge-transfer amplitudediabaticity as well as the coupling constants. This renders

For t=0.7, at half-filling and in the Coulomb dominated the analysis of the competing effects of the vertey and

case, we observed an order of magnitude enhancement on thronon (,) self-energy against the electron self-energy

Fermi surface in the effective-e interaction. The last ex- (tsf) renormalizations to be particularly critical near these

ample is the extreme phonon dominated region=a0.7 at  instabilities.

low energies. There, the previously observed low energy

small polaron peak is enhanced and broadened in the vicinity

of k=(r, ). In addition to that, two dynamical peaks ap- V. RENORMALIZED PHONON SUBSYSTEM

pear in symmetric position &= (0,7) and(,0). In all ex- A. Phonon number distribution

amples we examined, relatively more structure is observed in _ o

the k space in the phonon dominated regions than in the We now examine the distribution of the number of

Coulombic ones. phononsp(n,) in the approximate ground stalt$§“) by
The strong sensitivity of the vertex corrections as func-
tions of w,k on the bare interaction parameters and the elec-
@ b p(n) = [(nen_ | 2. (30)

tron concentration renders the analysis delicate particularly

near the instabilities. It has been argued that, in the presence

of strong short-range Coulombic or magnetic correlationsSincelwgﬁ) is defined in terms of pair excitations we con-
the strong enhancement in the phonon-mediated effective asidern,=n_,, which allows us to use Yuen’s formuta;®
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V(2n! [tanh(2|& )]

(
<nk 1nk|8({§})|0>: nk! [COSK2|§k|)]l/2, (31)

in the calculation of Eq(30). We find that
(i[5 = (i i SHED [0) g+ yieryepun( 2N+ 1)

+ Bikgmig(3ni+3n+ 1)}
+(Ng— L= 1|S{ED]0) yierni
+(it L+ 1 S{ED10) yiuk(1+ni)
(= 2= 2| S{ENI0) k(= 1)
+(ni+ 20 +2| SHED[0) (i + 1)
X (Ne+2). (32)

Re{1/¢( k,w=8.05)}

Using Eq.(32) and(31), the phonon number distribution in
Eq. (30) is plotted for different values ok and y, ny and
V./wqy atk=(7,) in Figs. 1Xa—d. The values of the cou-
pling constants are chosen sufficiently below and sufficiently
above the critical crossover of the two solutions nearl in
Fig. 5@ so thatp(n,) is calculated using the first solution
for A1 and\, and the second one far;. A common feature
of Figs. 1Xa—d is that, for sufficiently smalli.e., A=\1),
the phonon probability distribution is always the largest at
n,=0. As A increases, the maximum value is smoothly
shifted towards finite number of phonons and the overlap
with the vacuum state decreases. As the system is driven intc
antiadiabatic ranges, as shown in Fig(l1there is an over-
all decrease in the dynamical charge fluctuation correlations
where the phonon distribution is narrower and the overlap )
with the vacuum is strongly increased. A comparison be-
tween Figs. 1(a) and 11b) indicates that there is a delicate ~ FIG. 9. (&) The real part of the vertex renormalization for the
competition betweery and \ to determine the shape of the effective e-e coupling in the Coulomb dominated regime at the
probability distribution. The decreasingtends to compress Peak valuew/wo==2ulwy=8 in k space forV;/wy=4, A=0,
the distribution towards,=0 by increasing the vacuum 7Y=1 andny=1.(b) Same aga) for the imaginary partnote the
component. On the other hand, a we@ak., \=X;,\,) but  Negative sign on the vertical scale
increasing\ broadens the distribution and attempts to shift it
away from the vacuum, where it fights against the stabilizingstate wave function does not support any structural changes
effect of the decreasing. Whereas, ifx is strong(i.e., A [i.e.,(¢5Qd v&M=(y2"P | 4&M=0 as also enforced by Egs.
=\3), the increasing\ cooperates with the decreasingo  (18)]. Hence, the decomposition of the wave function in the
stabilize the coherent polaron formation as indicated by theorrelation space also enables one to examine the dynamical
increasingn,=0 component ip(n,). We identify the co- and static parts of the distribution function independently.
operation of increasing. and decreasing as the correct The true probability distribution is obtained by a convolution
route to the Lang-Firsov limit in which the dynamical com- between the dynamical and static coherent sectors of the
ponent of the probability distribution very strongly overlaps wave function. The static coherent sector yields the nonfluc-
with the vacuum where the phonon statistics is driven by theuating Poisson distribution, which is not addressed in this
dominating coherent part. paper.

A similar competition is observed in Figs. (6. and 11c)
between the-ph and the Coulomb interactions, as well as in
Figs. 1Xa) and 11d) for different electron concentrations.
WhenA is weak, increasing. competes with the stabilizing In principle, the phonon frequency renormalization should
effects of Coulomb interaction or reduced electron concenbe calculated by finding the corresponding effective phonon
tration. When is strong, it cooperates with them to stabilize Hamiltonian for which the dynamical polaron wave function
the coherent polaron formation. We observe that the overaih Eq. (15) is thelowest eigenstateThis would be a tedious,
picture here is also consistent with the results of de Melldbut relatively straightforward inverse eigenproblem if we
and Ranninger in Ref. 5. could write the operator in Eq15) in the form of aninvert-

It should be noted that the nonclassical structurg(of,) ible unitary operator acting on the phonon vacuum state. In
is entirely a manifestation of the dynamical fluctuations. Thethe following, we will present our results instead, using the
fluctuating part given bwgff> in Eq. (15) of the true ground- RPA where the phonon self-energii(k, w) is calculated by

~Im{1/¢{ k,0=8.05)}

B. Renormalized frequency of vibrations
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FIG. 10. (a) The real part of the vertex renormalization for the
effectivee-e coupling in the phonon dominated regime at the peak

value w/ wy=0.05 ink space folV./wy=0,A\=1.6, y=1 andn
=1. (b) same aga) for the imaginary part.
IT(k,w)=Vo(k)P(k,w), (33

whereP(k,w) is the electron polarization given by E@6).
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in the electron self-energy and the coupling constaht®
This is reflected in an unbounded negative increase of the
phonon self-energy, which in turn derives the renormalized
phonon frequency into an instability for the intermediate and
strong-coupling ranges<i.

If the vertex corrections are properly included, in the at-
tractive case, the effective-ph coupling constanti o
=\ Re{l/e(k,w)} is suppressed for high frequency excita-
tions due to the charge screening effect and is enhanced in
the low frequency range due to the small polaron formation
[see the coupling constant renormalization in Sec. IV Fig.
8(a,b]. On the other hand the electron self energy is also
reflected upon the renormalization of the charge transfer am-
plitude t of which the band narrowing effect, according to
Fig. 6(a), is to derive the system into an effectively nonadia-
batic range. Hence a physically more relevant calculation
should properly includéoth corrections which is suggested
by replacingIl(k,w,)—II.x(k,Q,) in Eqg. (34) where the
latter is calculated with{ o) r—te Wherete is now given
by Fig. 6a, and, with AN—oXg where g
=\ Re{l/e(k,wy)} is calculated in Fig. &. The self-
consistent solution of

Q= Vol + 2w T4k, Qy), (39
which we term as the corrected RRBRPA), is technically
different from those calculations using finite lattice and elec-
tron degrees of freedom where it is numerically feasible to
maintain the self-consistency from the beginnfrithe solu-

tion of the CRPA is depicted in Fig. 12 with the thick solid
line as a function of the bare coupling constantin the
solution of CRPA, we were not able to beyoke- 1.6 due to

an unstability in the numerical calculations in Eg5). Nev-
ertheless, the agreement with the QMC results for a reason-
ably large range o&-ph coupling clearly indicates the im-
portance of the vertex as well as the self-energy corrections
in the antiadiabatic strong-coupling case. The picture can be
made more transparent if one divides theange in Fig. 12

by imaginary lines into the weak-coupling\=<0.5,
intermediate-coupling 085Xx=<1.2, and strong-coupling 1.2
=<\ sectors and compare the=1 RPA solution where such

We will present our results for the phonon dominated regimgenormalizations are not present with the-1 CRPA solu-

without Coulomb interaction. Hencéy(k) = —\. The RPA

tion where they are included. In the weak sector, the phonon

is known to yield compatible results to the self-consistentsoftening is weak and typical excitation energies are on the
ME calculationd* in the relatively weak-coupling constant order of bare phonon frequency where the charge screening
ranges\ <0.5 whereas it strongly overestimates the dynami-€ffects weakly suppress the coupling constaet, Rg1/e}

cal phonon Softening for 0B\ as Compared to more reli- <1) By the weak screening in this sector, further softening
able QMC simulationé.In the conventional RPA the renor- of phonons is slightly delayed to the larger coupling
malized phonon frequency is given by strengths. In the intermediate range, the charge fluctuations
become important where the electron self-energy and vertex
corrections compete to determine the phonon softening. This
can be qualitatively understood by the following argument.
where bare electron Green’s functions are normally used ir\s \ is increased in the intermediate range, the band narrow-

Q= \/wE-I-Zwkl_[(k,wk), (39

the calculation ofP(k,w). Using Eq.(34), we plot in Fig. 12
the renormalized phonon frequenéy, in the RPA (thin
solid lineg as a function ofx for y=0.3, 0.4, 1 and for no
Coulomb repulsion. The ME calculatioridotted line$ and
QMC results(with error barg of Ref. 2 for y=1 are also

ing effect of the electron self-energy corrections tend to op-
pose further softening, but in the intermediate sector the pho-
non frequency is already sufficiently softened and the low-
energy excitations slowly start dominating as a precursor of
the fluctuating polaronic regime where the large low-energy

included for comparison. It is known that the conventionalvertex corrections enhance the effective coupling constant
RPA overestimates the charge fluctuation correlations due tb<<Re{1/e}. Hence, more softening is observed. On the other
neglected corrections of the self-consistent renormalizationkand, in the third sector at relatively large coupling con-
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FIG. 11. The dynamical phonon distribution in the effective wave function for the indicated values of the parameters.

stants, the outcome of the competition between the electroour previous work in Ref. 13 to the normal state in the two-
self-energy and vertex corrections is decided by the bardimensional Holstein-Hubbard model in the intermediate in-
adiabaticity parametey. At this point, it is necessary to go teraction ranges. In particular, the possibility of representing
back and examine the renormalization of the charge-transfehe effective wave function in the decoupled subspaces of
amplitude in Fig. ) for various values ofy. For interme-  n_phonon cumulant correlations is exploited and applied to
diate and large values af the band reduction is opposed by the first two cumulants of the polaron wavefunction. The
the suppression factor expfé) in Eq.(21) arising from the  gitferences of this approach from the diagrammatic phonon
strong presence of the two-particle coher@re., 0<{..»,  correlator technique of Ref. 12 as well as the standard Lang-
an,<1) and, the two-particle pair excitationé.e., 0  Firsoy approaches are emphasized by showing that the nu-

<Y,z inlthe ground state. The Inet effect ﬂf the coherentyerically observed weak convergence to the LF theory in the
two-particie pair ecitations Is to slow down_t € rapid re(]I'T'C'strong—coupling antiadiabatic limit is inherently built in this
tion of the electron band asincreases. The influence of this model. With the effective cumulant approximation, one is

factor has also been noticed in the variational calculations N le to construct an effective manv-body wave function and
the intermediate and strong couplings as well as intermediaté y y

and low excitation energies in the phonon spectfiitWe (r:norrr1ipalre tthgi resu:s d?rt atq(;jia“tart]'vﬁzli\i/eri wn?/ltche rﬁge\?trinu—
observe in Fig. @) that, this effect is visible fory=1 by the erical studies o ect diagonalization, QMC, a aria-

presence of a bulge nekr=0.6 and the decrease tf/t for tional gpproaches. The e.ffectlve wave function provides a
increasing\ is much slower for the larger values f This clear pl_cture of the dynamical _coupllng of the cc_)rrelated pho-
implies that, a smalley yields a more rapid band reduction, NN Pair fluctuations to those in the CD_W. In this rgspect, we
resulting in a stronger suppression of the charge fluctuation§onsider the current work as a possible dynamical many-
In the strongly antiadiabatic regime, the increasiaph cou- ~ Pody extension of these studies. _

pling cooperates with the strong nonadiabati¢ig also ob- As far as the general polaron problem is concerned, the
served in Fig. 1(b)] and the phonon softening is completely decoupled nature of the effective wave function in the cumu-
destroyed. This is indicated in Fig. 12 by the thin solid lineslant correlation space might be a promising tool to under-
corresponding toy=0.4 and 0.3. On the other hand, for stand the properties of the polaron ground state at a deeper
larger y, the phonon softening can continue in the presencéﬁVGL This procedure also decouples the static coherent sec-
of marginal charge fluctuations. For instance, fe1 and  tor from the dynamical fluctuating part of the wave function.
for the CRPA solution, a& is increased further, the charge In this article we took this as an advantage to study the
fluctuations decrease, leading into a finite saturation regiméynamical sector independently. The authors believe that the

where the phonon softening is relatively unchanged with  possible improvements of this extended LF-like approach
can be done in two directions. At first one can realize that,

the true ground stat@s suggested by the multiphonon scat-

tering operatoior(m,n)] has corrections to the coherent part
In this work, we improved and extended the dynamicaleven at the dynamical level, and, the true ground-state wave

charge fluctuation based effective wave-function scheme diunction includes a dynamically shifted mixture of coherent

VI. CONCLUSIONS
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|5y are more susceptible to deviations from the standard
assumption of Gaussian density fluctuation correlations in
the Landau-Fermi liquid. This assumption was indeed used
in the calculation of Egs(11). In this respect, these two
corrections to phonon as well as fermion statistics should be
attacked simultaneously in a more refined self-consistent
frame. Possible advances made in this direction might reveal
the importance of these deviations and might also shed light
on the likely presence of the not-completely-understood
strongly nonlinear self-trapping regime both in the Coulom-
bic high-energy and phonon dominated low-energy sectors.
Although the revival of the Holstein-Hubbard model in
the past 15—-20 years was heavily stimulated by the progress
in high-temperature superconductivity, we did not enter into
such discussions in this article. Using an oversimplified
model, it was suggested in Ref. 13 that the low-temperature
T.-dependent phonon anomalies observed in certain Cu-O—
based compounds might be connected with the dynamical
vibrational fluctuations self-consistently coupling to the po-
laronic charge fluctuations in the superconducting phase. It
should be noted that a more realistic model for high-
temperature superconductors is suggested by the Holstein—
t-J model in the presence of strong Coulomb correlations
with the electron concentration being slightly shifted away
FIG. 12. The phonon softening comparatively studied for thefrom half-filing where the vibrational fluctuations strongly
(corrected random-phase approximation, Migdal-Eliashberg ascouple in a self-consistent frame to charge but also spin fluc-
well as quantum Monte Carlo calculations of Ref. 2 for the indi- tuations in the Cu-O planes. One then has to incorporate all
cated parameter values lat= (7, ) and at half-filling. self-energy and vertex corrections in the Coulomb dominated
regime, both for the fluctuations in the charge and spin de-

states of the phonon coordina@g and momentunP,. The ~ 9r€es: Hence, one possib_le direction to _take in the supercon-
static contribution is @, coherent state, which is precisely ducting phase is to examine the Holsteind-model within
what we called.) in this article. In|¢.) we have neglected the (charge and spjnfluctuation-based effective cumulant
these pure dynamical corrections, although a more rigorou@PProach presented here.

treatment should also embody those effects self-consistently.
A second means of improvement is in the understanding of
|5y itself. At this point, some formal difficulties arising T.H. is grateful M. Arai, C. H. Booth and, in particular, to
from the formulation of the unitary generators of the N. Bulut for helpful and stimulating discussions. Both au-
m-phonon cumulant correlations ford3m have to be over- thors are indebted to V. A. Ivanov for the exchange of cru-
come. The cumulant correlation corrections foc® also  cial ideas. M.Y.Z. is grateful to TBITAK (Scientific and
depend heavily on the corrections to the Landau-Fermi liquidrechnical Research Council of Turkegnd Bilkent Univer-
picture. The reason behind this is that higher cumulants isity for support and hospitality.
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