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In this paper we’ll deal with three apparently disjoint problems:
(1) The spectrum of a sum of Hermitian operators,
(2) Components of tensor product of irreducible representations of the group

GLn(C),
(3) Structure of the moduli space of stable bundles on the projective plane P2.

We begin with the most familiar subject

1. Hermitian operators

Let A : E → E be a Hermitian operator in a unitary space E of finite dimension n
and let

λ(A) : λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A)

be its spectrum. We have the classical

1.1. Problem. What are the relations between the spectra λ(A), λ(B) and
λ(A+B)?

The author is indebted to The Royal Society, Warwick University and the Mittag-Leffler
Institute for financial support and hospitality.
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Here are some of them. First of all we have
(0) Trace identity∑

i

λi(A+B) =
∑
i

λi(A) +
∑
i

λi(B)

and a number of classical inequalities [M-O], due to
(1) Herman Weyl

λi+j−1(A+B) ≤ λi(A) + λj(B), for i+ j ≤ n+ 1,

λi+j−n(A+B) ≥ λi(A) + λj(B), for i+ j ≥ n+ 1,

(2) Ky Fan ∑
i≤p

λi(A+B) ≤
∑
i≤p

λi(A) +
∑
i≤p

(B),

(3) Lidskii and Wielandt∑
i∈I

λi(A+B) ≤
∑
i∈I

λi(A) +
∑
i≤p

(B),

where I is any subset of {1, 2, . . . , n} of cardinality p,
and more.

The inequalities (1)–(3) give a complete list of restrictions for dimE ≤ 3. But
in higher dimensions there are a lot of others. It turns out (this is one of the results
of this paper) that all of them are of the form∑

k∈K
λk(A+B) ≤

∑
i∈I

λi(A) +
∑
j∈J

(B) (IJK)

for some triple of subsets I, J,K ⊂ {1, 2, . . . , n} of the same cardinality. To describe
these triples precisely, let us fix a decomposition n = p + q. We have a bijection
between subsets I ⊂ {1, 2, . . . , n} of cardinality p = |I| and Young diagrams σ = σI
in a rectangular box of dimension p (North) by q (East) given as follows.

Let Γ = ΓI be a polygonal line with unit edges that runs from the South-West
corner of the box to the East-North corner with the i-th edge running to the North
for i ∈ I and to the East otherwise. The line Γ = ΓI cuts out from the box a
Young diagram σ = σI ⊂ p× q situated in its North-West angle. The diagram σI
in the usual way [G-H] corresponds to a Schubert cycle sI in a Chow ring of the
Grassmannian

Gr(p, q) = {V ⊂ E|dim V = p, codimV = q}.
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1.2. Theorem. Consider a triple of subsets I, J,K ⊂ {1, 2, . . . , n} such that the
Schubert cycle sK is a component of sI · sJ . Then

i) The inequality (IJK) holds.
ii) In union with the trace identity, this inequalities form a complete and in-

dependent set of restrictions on spectra of A,B and A+B.

1.2.1. Remark. The first version of this theorem appears in [Kl6]. See also
paper of Helmke and Rosenthal [H-R], which contains a proof of part i) of Theo-
rem 1.2. Some restrictions on the spectrum of the product of positive Hermitian
matrices was found by Berezin and Gelfand [B-G]. Combining results of this paper
and methods of [B-G], one can prove that the inequalities of the theorem, being
applied to logarithms of singular values σ(A) := λ(AA∗), σ(B) and σ(AB), give a
complete set of restrictions on the singular spectrum of product AB of nondegen-
erate complex matrices. There is a similar description of spectra of the product
of unitary matrices, providing spectra of multipliers are close to 1. These results
need in another technique and will be published separately.

We postpone the proof until section 3 and consider some

1.3. Examples.
(1) Let us take p = 1. Then Gr(p, q) = Pn−1. In this case the Schubert cycle

si corresponding to a one element subset I = {i} is just Hi−1, where H is
the class of a hyperplane. So we have the equation

si · sj = si+j−1 for i+ j ≤ n+ 1,

which implies the Weyl inequality λi+j−1(A+B) ≤ λi(A) +λj(B). Taking
q = 1, we get in a similar way the inequality

λi+j−n(A+B) ≥ λi(A) + λj(B) for i+ j ≥ n+ 1,

also due to Weyl.
(2) Now let p be arbitrary and

I = J = K = {1, 2, . . . , p}.

Then σI = σJ = σK = ∅ and

sI = sJ = sK = (the fundamental class of Gr(p, q)).

Hence sK = sI · sK , and we get the Ky Fan inequality.
(3) We can extend the previous example by taking I = {1, 2, . . . , p} to be the

initial interval and J = K to be arbitrary. Then again sI is the fundamental
cycle and therefore

sK = sI · sJ .
This gives us the Lidskii-Wielandt inequality.
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For a fixed dimension n = dimE, one can easily find all the components sK of
the product sI · sJ by making use of the Littlewood-Richardson rule [Jam], [Mac]
and then write down the corresponding inequalities (IJK). Most of them seem to
be new. Here are some special cases.

1.3.1. Complementary cycles. Let us take a pair of complementary diagrams
σI and σJ , so that the central symmetry of the p× q-box maps σI onto the com-
plement of σJ . In this case

sI · sJ = (class of a point) = s{q+1,q+2,... ,n}.

Complementary diagrams σI , σJ correspond to subsets

I = {i1 < i2 < · · · < ip}
J = {j1 > j2 > · · · > jp}

such that
ik + jk = n+ 1.

Theorem 1.2 gives us in this case the inequality∑
k>q

λk(A+B) ≤
∑
i∈I

λi(A) +
∑
i∈I

λn+1−i(B)

for any subset I ⊂ {1, 2, . . . , n} of cardinality p = n− q.

1.3.2. Pieri’s formula. Let a subset I ⊂ {1, 2, . . . , n} be a union of nonadjacent
intervals in Z,

I =[a1, b1] ∪ [a2, b2] ∪ . . . ∪ [am, bm]
=I1 ∪ I2 ∪ . . . ∪ Im

that is, ai+1 − bi ≥ 2. Let us call a splitting of an interval [a, b] the union of two
intervals

[a, c− 1] ∪ [c+ 1, b+ 1], a ≤ c ≤ b,
(the first interval may be empty). For example, the basic Schubert cycle sk (=char-
acteristic class of the tautological bundle) corresponds to the following splitting of
the initial interval [1, p]

[1, p] = [1, p− k] ∪ [p− k + 2, p+ 1].

In this notation Pierie’s formula [G-H] may be written as

sI · sk =
∑
I′

sI′ ,
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where summation runs over all sets I ′ obtained from I by splitting k intervals.
Theorem 1.2 deduces from this decomposition the following inequality∑

j∈I′
λj(A+B) ≤

∑
i∈I

λi(A) +
∑

1≤i≤p+1
i6=p−k+1

λi(B),

valid for any set I ′ obtained from I, |I| = p by splitting k intervals.

2. Representations of the general linear group

Before proving Theorem 1.2 we discuss briefly its connection with another problem.
Let us consider an integer spectrum

α : a1 ≥ a2 ≥ · · · ≥ an, ai ∈ Z,

and associate with it the following dominant weight of general linear group GLn(C)

ωα : diag(x1.x2, . . . , xn) 7→ xa1
1 xa2

2 · · ·xann .

The weight ωα in the usual way corresponds to an irreducible representation V (ωα)
of the group GLn(C) with highest weight ωα. This gives rise to the following

2.1. Problem. Which irreducible representation V (ωγ) appears as a component
of tensor product V (ωα)⊗ V (ωβ)?

This problem has been studied by many authors; see for example [Ela] and
references therein. Berenstein and Zelevinsky [B-Z] describe admissible triples
ωα, ωβ, ωγ as a projection of integer points in some convex cone in a space of
so called Gelfand-Tzetlin patterns.

Our result is that the inequalities (IJK) of Theorem 1.2 answer this question
too. More precisely,

2.2. Theorem. The irreducible representation V (ωNγ) is a component of tensor
product V (ωNα)⊗V (ωNβ) for some positive N if and only if α, β and γ are spectra
of Hermitian operators A,B and C = A+B.

2.2.1. Remark. It is not clear whether one can always take N=1. This depends
on the very ampleness of some ample sheaves (see section 3 below). Anyway Prob-
lem 1.1 is manifestly homogeneous with respect to spectra, while the homogeneity
of Problem 2.1 with respect to the weights ωα, ωβ , ωγ is not self evident.

Theorems 1.2 and 2.2 both appear as a byproduct of study stable bundles on the
projective plane. We turn to this subject in the next section. Since these theorems
are of independent interest, we’ll try to keep an exposition self-contained and as
elementary as possible.
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3. Stable bundles

Let
P2 = {(xα : xβ : xγ)|x ∈ C}

be homogeneous coordinates on the plane P2 and let

T = {(tα : tβ : tγ)|t ∈ C∗}

be the diagonal torus acting on P2 by the formula

t · x = (tαxα : tβxβ : tγxγ).

The objects of our interest are T -equivariant (or toric for short) vector bundles E
over P2. This means that E is endowed with an action T : E that is linear on the
fibers and makes the following diagram commutative

E t−−−−→ E

π

y yπ
P2 t−−−−→ P2

t ∈ T.

3.1. Why toric bundles?

The answer to this question is not very essential for the rest of the paper. Never-
theless we’ll try to explain here why toric bundles are important (and even crucial)
for understanding structure of all bundles on P2 (and other toric varieties).

First of all we need a notion of stability [Mum 63], [OSS].

3.1.1. Definition. A vector bundle E (or more generally torsion free sheaf) on
P2 is said to be Mumford-Takemoto stable if, for any proper subsheaf F ⊂ E , the
following inequality holds:

c1(F)
rk(F)

<
c1(E)
rk(E)

, (3.1)

and semistable if weak inequalities hold (with sign ≤ instead of <). Here c1(E) =
deg det E is the first Chern class of E . We will refer to the right hand side of this
inequality as slope of E and denote it by µ(E).

There are at least two facts which make the notion of stability of great geometric
meaning:

(1) Existence of moduli space M = M(r, c1, c2) of stable vector bundles E of
given rank r = rk(E) and Chern classes ci = ci(E) [Mar]. This moduli space
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has a natural compactification M by (equivalence classes) of semistable
sheaves.

(2) Donaldson theorem [Don]: A vector bundle E admits an Einstein-Hermitian
metric (⇔ metric of scalar Ricci curvature) if and only if it is a direct sum
of stable bundles of the same slope.

We will see later that Theorem 1.2 essentially is just a toric variant of the
Donaldson theorem.

On the other hand, the structure of the moduli space of vector bundles is of
independent interest. Let us discuss it briefly. The action T : P2 induces a natural
action of T on the moduli spaces M and M. Suppose for simplicity that the last
space is nonsingular. Then we can apply the results of Bialynicki-Birula [B-B] to
reduce the topological and birational structure ofM to the corresponding problems
for the fixed point set MT

.
To be more precise, we are given an action of an algebraic torus T on a smooth

projective variety X . Then we have a decomposition of the fixed point set XT in
disjoint union of connected components

XT =
⊔
i

Yi.

Fix a sufficiently general one parameter subtorus C∗ ⊂ T such that

XC
∗

= XT ,

and consider the Bialynicki-Birula stratification

XT =
⊔
i

Xi

given by
Xi = {x ∈ X | lim

z→0
z · x ∈ Yi, z ∈ C∗}.

This stratification is locally closed and T -invariant (but it depends on the choice
of the one parameter subgroup C∗ ⊂ T ). Here are some of its properties.

i) Yi = XT
i .

ii) The natural projection

πi : Xi → Yi

x 7→ lim
z→0
z∈C∗

z · x

has a structure of affine bundle with fiber Ani . The rank ni may be de-
termined as follows. Consider the representation of C∗ ⊂ T in the normal
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space Ni to Yi ⊂ X in some point yi ∈ Yi. Let ej ∈ Ni be the eigenbasis of
this representation so that

z · ej = zajej , aj ∈ Z, z ∈ C∗,

where on the right hand side zaj is considered as a complex number. Then

ni = #{j|aj > 0}.

iii) The stratification is pure and gives decomposition of the Hodge cohomology
groups [Gin]

Hpq(X) =
⊕
i

Hp−ni,q−ni(Yi).

This implies the equality of the Euler characteristics

χ(X) = χ(XT ).

The last equation is valid for noncompact X and homological Euler char-
acteristic.

Informally we may summarize these properties as follows.

3.1.2. Localization principle. Let T : X be a torus action on a smooth pro-
jective variety X. Then the fixed point components Yi ⊂ XT in combination with
the torus representations in their normal bundles T : Ni form a kind of skeleton of
the variety X. These data allow us to restore the topology and birational geometry
of X.

It seems that the first time this approach has been applied to study moduli
spaces was by Bertin and Ellengzwajg [B-E] (see also [E-S] and [Kl1–Kl4]).

For moduli of stable bundles on toric varieties, the fixed point schemeMT has
a natural interpretation

MT =
(

Moduli space of stable toric bundles E modulo
twisting E 7→ E ⊗ χ with a character χ of T

)
.

Thus the localization principle essentially reduces the study of stable bundles
and sheaves on P2 to the corresponding equivariant objects. Most of the known
results on structure of toric bundles and sheaves are contained in papers [Kl1–Kl4].
We’ll give a brief exposition in the next item.

3.2. Structure of toric bundles

Let E be a toric vector bundle on P2. Let us fix a generic point p0 ∈ P2 not in the
coordinate lines and denote by

E := E(p0)
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the corresponding generic fiber. There is no action of T on E, but nevertheless
the equivariant structure of E gives us some distinguished subspaces in E in the
following way.

Let us choose a coordinate line

Xα : xα = 0

and a generic point pα ∈ Xα in it. Since the T -orbit of p0 is dense in P2, we can
vary t ∈ T so that tp0 tends to pα. Then for any vector e ∈ E = E(p0), we have
te ∈ E(tp0) and can try the limit

lim
tp0→pα

(te)

which may or not exists. Let us denote by Eα(0) the set of vectors e ∈ E for which
this limit exists:

Eα(0) := {e ∈ E| lim
tp0→pα

(te) exists}.

It is easy to see that Eα(0) is a vector subspace in E.
We can slightly extend the previous construction and define, for any i ∈ Z, the

subspace
Eα(i) := {e ∈ E| lim

tp0→pα
f(tp0) · (te) exists},

where f(p) is any rational function on P2 with pole of order i on the coordinate line
Xα : xα = 0. These subspaces form a nonincreasing Z-filtration which we denote
by Eα:

Eα : · · · ⊃ Eα(i− 1) ⊃ Eα(i) ⊃ Eα(i+ 1) ⊃ · · · .
The filtration Eα is exhaustive, i.e.

Eα(i) = 0, for i� 0

Eα(i) = E, for i� 0.

So we can associate with a toric bundle E a triple of filtrations Eα, Eβ , Eγ (one
for each coordinate line) of the generic fiber E = E(p0). Now we have

3.2.1. Theorem [Kl2]. The correspondence

E 7→ (Eα, Eβ , Eγ)

gives an equivalence of the category of toric vector bundles on P2 and a category of
vector spaces E endowed with a triple of nonincreasing Z-filtrations Eα, Eβ , Eγ. �

The theorem tells us that any property or invariant of a vector bundle E has a
counterpart on the level of filtrations. Here we are mainly interested in the property
of stability. In terms of filtrations it may be stated as follows.
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3.2.2. Theorem. Let an equivariant vector bundle E on P2 correspond by Theo-
rem 3.2.1 to a triple of filtrations Eα, Eβ , Eγ . Then E is semistable if and only if
for any nontrivial subspace 0 6= F ⊂ E, the following inequality holds

1
dimF

∑
i∈Z

σ=α,β,γ

i dimF [σ](i) ≤ 1
dimE

∑
i∈Z

σ=α,β,γ

i dimE[α](i) (3.2)

where Fα = F ∩ Eα is the induced filtration and E[α](i) = Eα(i)/Eα(i + 1) are
composition factors of the filtration Eα.

Proof. Let us first of all remark that the sum in the right hand side of the inequality
(3.2) is just the first Chern class [Kl2] of the vector bundle E

c1(E) =
∑
i∈Z

σ=α,β,γ

i dimE[α](i).

Hence the theorem means that for a toric bundle E it suffices to check the semista-
bility inequality

c1(F)
rk(F)

≤ c1(E)
rk(E)

for toric subsheavs F ⊂ E only. This in turn follows from existence of so called
Harder-Narasimhan filtration [H-N]

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E

such that
i) The composition factors E[i] = Ei/Ei−1 are semistable,
ii) Their slopes µ(E) = c1(E)/ rk(E) strictly decrease

µ(E[1]) > µ(E[2]) > · · · > µ(E[m]).

The Harder-Narasimhan filtration is unique and it is trivial only for semistable
bundles. The uniqueness implies that for a toric bundle E , the filtration should be
T -invariant. Hence the destabilizing subsheaf F ⊂ E may be taken as T -stable. �

3.3. Invariant theoretical interpretation

The inequalities (3.2) of Theorem 3.2.2 have an important interpretation in the
framework of geometric invariant theory. To explain it let us denote by

(Fα,Fβ ,Fγ)
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the triple of flags corresponding to a triple of filtrations

(Eα, Eβ, Eγ).

To simplify the notations, we will sometimes tacitly suppose the flags to be com-
plete. This does not affect the final results.

The filtration Eα define a function mα : Z→ N given by

mα : i 7→ dimE[α](i).

This function has finite support and we will treat its values as multiplicities. The
sequence

λα : λ1 ≥ λ2 ≥ · · · ≥ λn (3.3)

consisting of all points in the support ofmα, each taken according to its multiplicity,
said to be the spectrum of the filtration Eα. At last we define the dominant weight
ωα of the general linear group G = GLn(C) by the formula

ωα : diag(x1, x2, . . . , xn) 7→ xλ1
1 xλ2

2 · · ·xλnn . (3.4)

The weight ωα in turn defines a line bundle L(ωα) on the variety of complete flags
Flagn = G/B induced by the character ωα of the Borel subgroup B ⊂ G. If the
flag Fα is complete, then the bundle L(ωα) is ample. Otherwise it induces an
ample bundle on the variety of noncomplete flags of type Fα.

3.3.1. Observation. A triple of filtrations (Eα, Eβ , Eγ) is (semi)stable (i.e. sat-
isfies inequalities (3.2)) if and only if the corresponding triple of flags

(Fα,Fβ ,Fγ) ∈ Flag(E)× Flag(E)× Flag(E)

is stable with respect to the diagonal action of SL(E) and the polarization

L = L(ωα)� L(ωβ)� L(ωγ)

in the sense of geometric invariant theory [Mum 65].

Proof. This is a straightforward generalization of a favorite Mumford example of a
configuration of subspaces V α ⊂ E of the same dimension p = dimV α with respect
to the usual Plücker embedding of the GrassmannianGr(p, q) [Mum 61], [Mum 63],
[Mum 65]. �

Let us recall that the semistability of a point x ∈ X of a G-variety X with
respect to an invertible G-sheaf L means that there exists a G-invariant section

s ∈ Γ(X,L⊗N )G
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which is nonzero at x. For

X = Flag(E)× Flag(E)× Flag(E)

and
L = L(ωα)� L(ωβ)� L(ωγ),

we have by the Borel-Weil theorem [Bot]

Γ(X,L) = V (ωα)⊗ V (ωβ)⊗ V (ωγ),

where V (ω) is an irreducible representation of GL(E) with highest weight ω. As
result we get

3.3.2. Corollary. A triple of filtrations Eα, Eβ, Eγ in general position is semi-
stable if and only if, for some N > 0, the tensor product of irreducible representa-
tions

V (Nωα)⊗ V (Nωβ)⊗ V (Nωγ)

contains a nonzero SL(E) invariant.

Proof. As it was explained above, the stability of general triple of flags (Fα,Fβ,Fγ)
is equivalent to the existence of a nonzero G-invariant section s ∈ Γ(X,L⊗N ) =
V (Nωα)⊗ V (Nωβ)⊗ V (Nωγ). �

Moving a term from left to right, one can readily restate the corollary as an
assertion on irreducible components

V (Nωγ) ⊂ V (Nωα)⊗ V (Nωβ)

of the tensor product. Hence the problem of describing these components is equiv-
alent to the problem of stability for a triple of filtrations in a general position. In
the next theorem we give a criterion for this by applying the Schubert calculus to
the inequalities (3.2).

3.3.3. Theorem. Let Eα, Eβ , Eγ be a triple of filtrations in general position with
spectra (3.3) λα, λβ , λγ . Then the following conditions are equivalent:

i) The triple (Eα, Eβ , Eγ) is semistable;
ii) For any triple of Schubert cycles sI , sJ , sK (see section 1) with nonzero

product in the Chow ring of the Grassmannian, the following inequality
holds:

1
p

∑
i∈I

λαi +
∑
j∈J

λβj +
∑
k∈K

λγk

 ≤ 1
n

 n∑
i=1

λαi +
n∑
j=1

λβj +
n∑
k=1

λγk

 (3.5)

where p = #I = #J = #K.
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Proof. The inequality of (semi)stability (3.2) depends only on dimensions of the
intersections of a test subspace F ⊂ E with the filtrations Eσ, Eβ, Eγ . These
dimensions determine relative positions of F with respect to these filtrations, i.e.
three Young diagrams σI , σJ , σK (in the notation of section 1). The inequality
(3.5) is just the stability inequality (3.2) for a subspace F in positions σI , σJ , σK
with respect to Eσ, Eβ, Eγ .

So to write down all stability inequalities (3.2), we have to decide which relative
positions σI , σJ , σK are possible, i.e. which Schubert cells cI , cJ , cK in general posi-
tion have a nonempty intersection. Because of the generality position, the question
reduces to nontriviality of the intersection of the corresponding Schubert cycles
sI , sJ , sK , which proves the theorem. �

Remark. If the product sI∩sJ∩sK has positive dimension, then it should intersect
the boundary component sI\cI , since the Schubert cell cI is affine. This allows us
to change the cycle sI to one of its degenerations sI′ ⊂ sI which improves the
inequality (3.5). As a result, the inequality (3.5) suffices to check for Schubert
cycles with zero-dimensional intersection.

Combining this remark with Corollary 3.3.2 and moving some terms from left
to right, we get the following result.

3.3.4. Corollary. Let as before λα, λβ , λγ be the spectra (3.3) and let ωα, ωβ, ωγ

be the corresponding dominant weights of the group GL(E). Then the following
conditions are equivalent:

i) For some positive N the irreducible representation V (Nωγ) is a component
of V (Nωα)⊗ V (Nωβ);

ii) The spectra λα, λβ , λγ satisfy the trace identity

n∑
k=1

λγk =
n∑
i=1

λαi +
n∑
j=1

λβj ,

and for any triple of subsets I, J,K such that the Schubert cycle sK is a
component of sI · sJ , the following inequality holds:∑

k∈K
λγk ≤

∑
i∈I

λαi +
∑
j∈J

λβj . (IJK)

Proof. The trace identity appears because we deal with the general linear group
GL(E) rather than SL(E), as in the Corollary 3.3.2. The inequality (IJK) follows
from this trace identity and the corresponding inequality of the theorem. �

3.3.5. Corollary. Theorem 2.2 follows from Theorem 1.2. �
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3.4. Back to Hermitian operators

Now let E be a unitary space and H : E → E a Hermitian operator. Consider the
spectral filtration of H given by

EH(x) =
(

sum of eigenspaces of H
with eigenvalues ≥ x

)
.

It is well known that the Hermitian operator may be reconstructed from its spectral
filtration by means of the spectral decomposition

H =
∫ ∞
−∞

xdPH(x),

where PH(x) is the orthogonal projector with kernel EH(x). So in a unitary space
E we have equivalence

(R-filtrations)⇔ (Hermitian operators) .

Let us define the multiplicity of an R-filtration Eα in a point x ∈ R by the formula

mα
E(x) := dimEα(x)− dimEα(x+ 0).

This is an integer valued function with finite support, which is said to be the
spectrum of the filtration Eα. We use it to extend the notion of stability from Z-
to R-filtrations.

3.4.1. Definition. A family of R-filtrations Eα, α ∈ A, is said to be semistable if
for any proper subspace F ⊂ E with induced filtrations Fα = F ∩Eα, the following
inequality holds:

1
dimF

∑
x∈R
α∈A

mα
F (x) ≤ 1

dimE

∑
x∈R
α∈A

mα
E(x).

If the strict inequalities are valid, the family Eα, α ∈ A, is said to be stable.

On the right hand side, we readily recognize the trace of Hermitian operator
Hα with spectral filtration Eα. So the stability inequality may be rewritten as

1
dimE

∑
α∈A

Tr(Hα) ≥ 1
dimF

∑
x∈R
α∈A

mα
F (x). (3.6)

Let us define the restriction H|F of a Hermitian operator H onto a subspace
F ⊂ E as the the composition

H|F : F ↪→ E
H−→ E −→ F

of the inclusion F ↪→ E, the operator H : E → E and orthogonal projection
E → F . Then we have
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3.4.2. Proposition. In the previous notation the following inequality holds:

Tr(Hα|F ) ≥
∑
x∈R

x ·mα
F (x). (3.7)

The equality take place for H-stable subspace F ⊂ E only.

Proof. Let us consider the spectrum of Hα

λ1 ≤ λ2 ≤ · · · ≤ λn

and the corresponding orthonormal eigenbasis

e1, e2, . . . , en.

Denote by Ei = 〈e1, e2, . . . , ei〉 the subspace spanned by the first i eigenvalues and
put Fi = F ∩Ei. In this notation the inequality (3.7) may be rewritten as

Tr(Hα|F ) ≥
n∑
i=1

λi dimFi/Fi−1 =
∑
j∈J

λj ,

where J is the set of the indices for which Fj 6= Fj−1. Let Fj , j ∈ J be an
orthonormal basis of the space F consistent with the filtration Fi, i.e. fj ∈ Fj∩F⊥j′
where j′ ∈ J is the immediate predecessor of j. From the extremal property of
eigenvalues,

λj = min
x∈Ej

(Hx, x)
(x, x)

and inclusions fj ∈ Fj ⊂ Ej it follows that (Hfj , fj) ≥ λj . Hence

Tr(H|F ) =
∑
j∈J

(Hfj , fj) ≥
∑
j∈J

λj =
n∑
i=1

λi dimFi/Fi−1.

This is equivalent to (3.7).
Looking at the last equation, we see that equality in (3.7) may occur only if

(Hfj , fj) = λj for all j ∈ J . In this case Hfj = λjfj and subspace F ⊂ E is
invariant under the operator H. �

Now we are in position to prove the first result on stable families of filtrations.

3.4.3. Theorem. Let Hα be a family of Hermitian operators with scalar sum∑
α

Hα = λ · I. (3.8)
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Then the corresponding family of spectral filtrations Eα is semistable.

Proof. Let us apply the orthogonal projector π : E → F to both sides of (3.8) and
take the trace. Then making use of (3.7) we get

λ =
1

dimF

∑
α

Tr(Hα|F ) ≥ 1
dimF

∑
α

∑
x∈R

x ·mα
F (x).

On the other hand, taking the trace of (3.8), we get

λ =
1

dimE

∑
α

TrHα.

Combining these two relations, we get the semistability inequality in the form (3.6).
�

3.4.4. Remark. Suppose that under conditions of the theorem in the semista-
bility inequalities (3.6), we have an equality for a subspace F ⊂ E. Then by
Proposition 3.4.2, the subspace F and its orthogonal complement F⊥ should be
invariant with respect to all operators Hα. This means that the configuration of
spectral filtrations Eα splits into direct sum F ⊕ F⊥. Continuing in this way, we
can decompose the configuration of spectral filtrations in a direct sum of stable
configurations of the same slope (= left hand side of (3.6)).

3.4.5. Remark. The simplest example of the operators with scalar sum are
orthogonal projectors Pα : V → Vα of some orthogonal decomposition

V =
⊕
α

Vα.

A less trivial example give the restrictions Hα = Pα|E of these projectors on
a subspace E ⊂ V . The theorem of Naimark [Nai] asserts that up to an affine
transformations Hα 7→ aHα + bI, the last example is universal. More precisely, for
a family of positive operators Hα : E → E such that∑

α∈I
Hα = I,

there exists a unitary extension

E ⊂
⊕
α

Vα

(orthogonal sum) such that Hα = Pα|E. The extension may be taken subdirect
product, i.e. with surjective projections E → Vα, and in this case it is unique.
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3.5. Einstein-Hermitian metric

In this section we will deal with the following question which arises from Theo-
rem 3.4.3.

3.5.1. Problem. Let Eα be a stable family of filtrations. Does there exist a
Hermitian metric on E such that sum of Hermitian operators Hα with spectral
filtrations Eα is a scalar?

It turns out that the answer is positive. This metric should be considered as a
toric analog of the Einstein-Hermitian metric of scalar Ricci curvature on a stable
vector bundle E [Don]. This motivates the following definition.

3.5.2. Definition. Let Eα, α ∈ A be a family of filtrations of a complex vector
space E. A Hermitian metric on E is said to be an Einstein-Hermitian metric for
this family if the sum of Hermitian operators Hα with the spectral filtrations Eα

is a scalar operator, i.e. ∑
α

Hα = λ · I.

A stable configuration of filtrations Eα has only scalar endomorphisms. On the
other hand, a unitary isomorphism between two Einstein-Hermitian metrics gives
such an endomorphism. Hence the Einstein-Hermitian metric, if it exists, is unique
up to proportionality.

We deduce the existence of this metric from the unitary trick of Kemf and Ness
[K-N].

3.5.3. Theorem. For any stable system of filtrations Eα, α ∈ A in a complex
vector space E, there exists an Einstein-Hermitian metric on E.

Proof. Since the stability condition is open, we may restrict ourselves to the filtra-
tions Eα with rational spectra (= spectra of the corresponding Hermitian operators
Hα for any metric on E). An appropriate homothety Eα(x) 7→ Eα(ax) further
reduces the problem to Z-filtrations Eα. This allows us to give a purely algebraic
proof (for irrational spectra one have to use Kählerian methods).

Next, the stability condition is invariant under affine transformations

Eα(x) 7→ Eα(ax+ bα).

Hence we may suppose the spectrum (3.3) of each filtration Eα to be traceless∑
i

λαi = 0.

Then the corresponding dominant weight (3.4)

ωα : diag(x1, x2, . . . , xn) 7→ xλ1
1 xλ2

2 · · ·xλnn
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comes from the group PGLn. It is convenient for us to identify a complete flag F
in E with the Borel subgroup

B = Aut(F) ⊂ GL(E).

Then by the observation 3.3.1, a stable configuration of filtrations Eα of weights
ωα may be identified with a stable configuration of Borel subgroups∏

α

Bα ∈
∏
α

Bα

with respect to the polarization

L =
⊗
α

L(ωα).

Here Bα is just an exemplar of variety of Borel1 subgroups in GL(E).
Now by the theorem of Borel and Weil [Bot], the global sections of the sheaf

L(ωα)
Γ(Bα,L(ωα)) = V (ωα)

form a space of an irreducible representation V (ωα) of the group SL(E) with the
highest weight ωα. So we have a map

ϕ : Bα → P(V (ωα))

which assigns to a Borel subgroup Bα ∈ Bα the highest vector

v(Bα) ∈ V (ωα)

with respect to Bα. In a similar way the sheaf L =
⊗

α L(ωα) defines a morphism

ϕ :
∏
α

Bα → P
(⊗
α

V (ωα)
)

∏
α

Bα 7→
⊗
α

v(Bα).

Let us now choose an arbitrary Hermitian metric on E and a unitary invariant
metric on each irreducible representation V (ωα). Then we may apply the theo-
rem of Kempf and Ness [K-N] which in our settings means that, for a L-stable
configuration of Borel subgroups∏

α

Bα ∈
∏
α

Bα,

1 or rather parabolic conjugate to Aut(Eα).
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the SL(E) orbit of the vector⊗
α

v(Bα) ∈
⊗
α

V (ωα)

contains a vector of minimal length and it is unique up to the action of the unitary
group U(E).

Let us suppose that
⊗

α v(Bα) is just this vector of minimal length

∣∣∣∣⊗
α

v(Bα)
∣∣∣∣2 =

∏
α

(v(Bα), v(Bα)) = min .

Then the extremum condition gives the equation

∑
α

(g · v(Bα), v(Bα)) + (v(Bα), g · v(Bα))
(v(Bα), v(Bα))

= 0, (3.8)

where g ∈ sl(E) is any traceless transformation. Let us denote the summands of
this formula by

`α(g) :=
(g · v(Bα), v(Bα)) + (v(Bα), g · v(Bα))

(v(Bα), v(Bα))
.

These are real linear forms on sl(E) with the following properties:

i) `α(g) = `α(g∗), i.e. `α depends only on the Hermitian part of g. �
Moreover

ii) `α(g) depends only on the diagonal part of g with respect to the Borel sub-
group Bα.

Let Uα ⊂ Bα be the unipotent radical and Uα ⊂ sl(E) the corresponding
nilpotent subalgebra. Since Uα annihilates the highest vector v(Bα), then

`α(Uα) = 0.

By i) the same is true for the opposite unipotent subalgebra Uα− = (Uα)∗. �
iii) `α(g) = Tr((g + g∗) · Hα) where Hα is the Hermitian operator with the

spectral filtration Eα.

Treating Uα and Uα− as upper and lower triangular matrices, we find that Hα

is a diagonal matrix. Hence by ii) both sides of iii) depend only on the diagonal
part of g. Since v(Bα) is an eigenvector of weight ωα for the Cartan (=diagonal)
subalgebra, then for diagonal element g the equation iii) is a tautology. �
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The proof of the theorem is now straightforward. Making use of iii) we can
rewrite the extremum equation (3.8) in the form∑

α

Tr((g + g∗) ·Hα) = 0, ∀g ∈ sl(E).

Since the trace form is nondegenerate, this implies∑
α

Hα = 0.

�
This theorem in combination with Theorem 3.4.3 and Remark 3.4.4 implies

3.5.5. Corollary. A system of filtrations Eα, α ∈ A admits an Einstein-Her-
mitian metric if and only if it is a direct sum of stable systems with the same
slope. �

For a system of filtrations in general position, there are the alternative descrip-
tions of stability in Theorem 3.3.3 and Corollaries 3.3.2, 3.3.4. Combining them
with the previous theorem, we may characterize spectra of Hermitian matrices A,B
and A+B by the inequalities (IJK) of Corollary 3.3.4. As result we find that

3.5.6. Corollary. Theorem 1.2 is valid. �

4. Complex and Kähler structures

Leaving aside a rather popular presentation of Theorems 1.2 and 2.2, one can see
that the genuine problem is in understanding the structure of the moduli space

M =M(λα | α ∈ A)

of semistable families of filtrations Eα, α ∈ A with given spectra λα. This problem
naturally arises from the study of the moduli space of vector bundles on P2 (see
section 3.1). Theorems 1.2 and 2.2 are just criteria for this moduli space to be
nonempty. In [Kl7] we have found its Betti numbers. Here we are interested
mainly in description of its complex and Kähler strucures in terms of Hermitian
operators.

There are two approachs to the moduli spaceM.
1) It may be defined algebraically as an invariant-theoretical factor

M(λα | α ∈ A) =
(∏
α

Bα
)//

GL(E) (4.1)
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with respect to the polarization L =
⊗

α L(ωα) from the proof of Theo-
rem 3.5.3, where we borrow the notations.

2) The other transcendent approach based on the existence and uniqueness of
the Einstein-Hermitian metric and leads to an identification (cf. [Nes])

M(λα | α ∈ A) =
(

solutions of the equation
∑
αH

α = 0
up to a unitary transformation

)
(4.2)

Here and further Hα is a Hermitian operator with spectrum λα.
The first definition makes sense only for integer spectra λα. In this case M

is a manifestly projective algebraic variety, and hence carries a canonical complex
structure and Kähler metric.

The second approach works for irrational spectra as well, but apparently it
defines M only as a smooth variety (may be with singularities).

This section appears from an attempt to recover the complex and Kähler struc-
ture in the framework of the transcendent approach. It turns out to be possible
and the construction looks very natural and elegant. Let me explain it first in the
simplest example.

4.1. Spatial polygons

Let dimE = 2 and Hα be a traceless Hermitian operator with fixed spectrum

spec(Hα) = (mα,−mα), mα > 0.

It is a good idea to represent a Hermitian 2 × 2-matrix by a vector in Euclidean
3-space E3

Hα =
(

a b+ ic
b− ic −a

)
7→ aα = ai+ bj + ck ∈ E3.

Under this identification unitary conjugation Hα 7→ UHαU−1 looks as a rotation
in E3 and the positive eigenvalue mα of Hα is just the length of the corresponding
vector aα. So the equation in the right hand side of (4.2) takes the form

a1 + a2 + . . .+ an = 0, |ai| = mi ai ∈ E3. (4.3)

The moduli space (4.2) in this case has a transparent interpretation

M(mi | i = 1, . . . , n) =
(

spatial n-gons with sides of given
length mi up to a motion in E3

)
.

To define a complex structure on M, let us look at its tangent space. Let
ai = ai(t) be a one parameter deformation of the polygon. A tangent vector to M
may be represented by the derivatives vi = ȧi subject to the following conditions:
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i) (vi, ai) = 0, ∀i;
ii) v1 + v2 + . . .+ vn = 0;
iii) vectors vi and

ui = vi + [ω, ai], ω ∈ E3 (4.4)

represent the same tangent vector to M.

The first two conditions follow from equations (4.3) and transformation (4.4)
corresponds to an infinitesimal rotation of the polygon as a whole. To exclude the
ambiguity (4.4), one may impose on vi an additional calibration equation. We will
use the following one

v2
1

m1
+
v2

2

m2
+ · · · v

2
n

mn
= min,

which implies
[a1, v1]
m1

+
[a2, v2]
m2

+ · · · [an, vn]
mn

= 0, (4.5)

where the brackets mean the vector product in E3. It turns out that if not all the
vectors ai are collinear, then among systems vi ∈ E3 representing the same tangent
vector toM, there is exactly one satisfying (4.5) [Kl5]. Such a system vi is said to
be calibrated.

Now we find out that the tangent space to M has a natural complex structure
J given by the rotation of each component vi of the calibrated tangent vector on
angle π

2 over the side ai

J : vi 7→ ui =
[ai, vi]
mi

.

The calibration condition (4.5) implies that ui is again a tangent vector. The almost
complex structure on M defined by the operator J turns out to be integrable.

Thus if the lengths mi do not allow the polygon to degenerate into a line seg-
ment, then M is a compact smooth complex manifold. It carries a natural sim-
plectic form

ω(u, v) =
∑
i

(ui, vi, ai)
(ai, ai)

invariant under the gauge transformations (4.4) and Kähler metric

g(u, v) = ω(Ju, v).

The moduli space of polygons with sides of integer lengths mi has also an al-
gebraic interpretation (4.1). It turns out to be the moduli space of semistable
configurations of n points in the line pi ∈ P1 with multiplicities mi. Such a con-
figuration is said to be semistable if no more than a half of the points (counted
according to the multiplicities) coincide.
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4.2. General case

In this section we extend the previous constructions to the moduli (4.2) of Hermit-
ian operators Hα in a space of arbitrary dimension. We’ll suppose all the operators
to be traceless

Tr(Hα) =
∑
i

λαi = 0.

Besides the spectra λα are supposed to be generic, so that semistability implies
stability. This is the case for spectra with no linear rational relations between
eigenvalues λαi independent of the trace identities

∑
i λ

α
i = 0. For generic spectra,

the moduli space (4.2) is smooth.
Let H(t) be a one parameter family of Hermitian matrices. It is well known

from the perturbation theory of Hermitian operators that the derivative dλ
dt of

an eigenvalue λ of H is equal to an eigenvalue of the restriction of the operator
A = dH

dt to the eigenspace Eλ (the restriction A|Eλ has been defined before the
proposition (3.4.2)). Thus we get the first representation of the tangent space to
the M(λα | α ∈ I).

4.2.1. Proposition. A tangent vector to the variety M(λα | α ∈ I) at a point
Hα, α ∈ I may be represented by a family of Hermitian matrices Aα satisfying the
following conditions

(1) The restriction Aα|Eλ of Aα on any eigenspace Eλ of Hα is zero;
(2)

∑
α∈I Aα = 0;

(3) Two such systems represent the same tangent vector iff they are connected
by a gauge transformation of the form

Aα 7→ Aα + [Hα, X ] (4.6)

for some skew-Hermitian matrix X.

Proof. The first condition, as explained above, means that the deformation Hα(t)
is isospectral; the second one follows from the equation

∑
α∈I H

α = 0. The transfor-
mation (4.6) is an infinitesimal form of conjugation by a unitary matrix exp tX . �

The first condition is easier to understand in an orthonormal eigenbasis of the
operator Hα. Then

Hα = diag(λα1 , λ
α
2 , . . . , λ

α
n); λα1 ≥ λα2 ≥ . . . ≥ λαn.

Now (1) just means that the the matrix Aα has zero diagonal blocks (which corre-
spond to scalar blocks of the matrix Hα). Let us decompose it in upper and lower
triangular parts

Aα = A+
α +A−α .

In other words, the operator A+
α respects the spectral filtration Eα of Hα and in-

duces zero transformation in its composition factors. The operatorsA−α is conjugate
to A+

α .
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4.2.2. Proposition. There exists a unique representative {Aα, α ∈ I} of a tan-
gent vector to the variety M(λα | α ∈ I) satisfying the calibration equations∑

α∈I
A+
α =

∑
α∈I

A−α = 0.

Proof. Let us consider the linear operator L in the space of traceless skew-Hermi-
tian matrices

L : X 7→
∑
α∈I

[Hα, X ]+. (4.7)

The right hand side of (4.7) is skew-Hermitian because operators [Hα, X ]+ and
[Hα, X ]− are conjugate and∑

α∈I
[Hα, X ]+ +

∑
α∈I

[Hα, X ]− =
∑
α∈I

[Hα, X ] = 0.

We assert that L is invertible. Actually, if L(X) = 0, then

Tr(X · L(X)) =
∑
α∈I

Tr(X · [Hα, X ]+) = 0. (4.8)

Let us evaluate the summand Tr(X · [Hα, X ]+) in the eigenbasis of Hα

Hα = diag(λα1 , λ
α
2 , . . . , λ

α
n),

λα1 ≥ λα2 ≥ . . . ≥ λαn.

Decompose the skew-Hermitian matrix X = |xij | as

X = X+
α +X0

α +X−α ,

where X0
α consists of diagonal blocks of X corresponding to scalar components

of Hα and X±α are the remaining upper and lower triangular parts of X . In this
notation [Hα, X ]+ is an upper triangular matrix with elements xij(λαi −λαj ). Hence

Tr(X · [Hα, X ]+) =
∑
i<j

xij(λαi − λαj )xji = −
∑
i<j

|xij |2(λαi − λαj ) ≤ 0.

Thus the summands in (4.8) are nonpositive and hence they are all zero. It is
possible only if both nondiagonal parts X±α are zero for all α. It follows that
X commutes with all Hα. Since stable systems of filtrations have no nonscalar
endomorphisms, X = 0. Thus kerL = 0 and L is invertible.
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To finish the proof, let us consider a tangent vector to the moduli represented by
matrices Aα, α ∈ I from Proposition 4.2.1. Since

∑
αAα = 0, the sum

∑
α∈I A

+
α

is skew-Hermitian. Writing this sum as L−1(X), we get the equation∑
α∈I

A+
α =

∑
α∈I

[Hα, X ]+

for some skew-Hermitian matrix X . Hence we can satisfy the calibration equation∑
α∈I

A+
α = 0

by the gauge transformation Aα 7→ Aα − [Hα, X ]. �
4.2.3. Corollary. The tangent space to the variety M(λα | α ∈ I) at a point
Hα, α ∈ I is naturally equivalent to the complex space of nilpotent operators
Uα, α ∈ I satisfying the following conditions:

(1) Uα respects the spectral filtration of Hα and induces a zero operator on its
composition factors;

(2)
∑
α∈I U

α = 0.

Proof. The operators Uα are the same as A+
α . �

Remark. Corollary 4.2.3 identifies the tangent space to the moduliM(λα | α ∈ I)
with a complex space and hence defines on M an almost complex structure J .
This structure is in fact integrable. Probably it is not easy to check Newlander-
Nierenberg integrability conditions [N-N] directly. Indirect arguments use iden-
tification of J for rational spectra λα with the complex structure coming from
algebraic construction (4.1). Then J should be integrable for irrational spectra as
well.

Thus M(λα | α ∈ I) is a compact complex variety. It carries a natural sym-
plectic form

ω(A,B) =
1
i

∑
α∈I

([Aα, Bα],Hα)
(Hα,Hα)

=
1
i

∑
α∈I

([A+
α , B

−
α ],Hα) + ([A−α , B+

α ],Hα)
(Hα,Hα)

where parentheses denote the trace form (X,Y ) = Tr(XY ). Here A = {Aα | α ∈ I}
and B = {Bα | α ∈ I} are calibrated tangent vectors, i.e. satisfying the conditions
of Proposition 4.2.2.

4.2.4. Proposition. The form g(A,B) = ω(JA,B) is a Kähler metric onM(λα |
α ∈ I).

Proof. Let us recall that the complex structure J on tangent space acts on the
components A±α as multiplication by ±i. Hence

g(A,B) = ω(JA,B) =
∑
α∈I

([A+
α , B

−
α ],Hα) + ([B+

α , A
−
α ],Hα)

(Hα,Hα)
.
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Let us check the positivity of the summand in the eigenbasis of the operator
Hα

Hα = diag(λα1 , λ
α
2 , . . . , λ

α
n),

λα1 ≥ λα2 ≥ . . . ≥ λαn.

Then A±α is an upper (lower) triangular matrices with elements aij and aji = āij
respectively. In this notation

([A+
α , A

−
α ],Hα) = (A+

α , [A
−
α ,Hα]) =

∑
i<j

(λαi − λαj )|aij |2 ≥ 0.

Hence g(A,A) ≥ 0 and the equality is valid only for A = 0. �
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