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Operational approach in the weak-field measurement of polarization fluctuations
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The operational approach to the measurement of phase studied by Noh, Boager&lande[Phys. Rev.
A 45, 424(1992; 46, 2840(1992; Phys. Rev. Lett71, 2579(1993; Phys. Rev. A47, 4535(1993] is applied
to the measurement of the state of polarization of fully polarized light. Operational counterparts of the quantum
Stokes parameters are introduced and their fluctuations are examined. It is shown that if the polarized field is
weak, the measured fluctuations are influenced not only by the quantum properties of the source field but also
that of the measurement. This character is reflected on the measured probability distributions of the parameters
of polarization, which are also investigated independently for the fully polarized coherent states and the Fock
states as the initial field strength is varied. Finally, connection between the operational approach to the
measurement of polarization and th€Zuinterferometry is examinedS1050-2947®9)01402-X]

PACS numbds): 42.50.Dv, 85.60.Gz

[. INTRODUCTION detectors becomes crucial when the homodyne detectors
have a relatively high probability of registering a few or null
The idea of the operational approach as an experimentglhotocounts within the measurement time intervalThis
technique based on photon counting in the measurement dking the case for a single set of measurements, one consid-
guantum-phase fluctuations was suggested in 1986 by Baers an ensemble of repeated measurements under the same
nett and Pegl] in the context of a measured phase operatoinitial conditions. There, each repeated measurement would
using certain homodyne experiments and more recently wasave generally different but equally acceptable configura-
formulated in detail by Noh, Fouges, and Mande{NFM) tions of detected photons and one has to make a distinction
[2]. The operational phase measurement is based on usifgtween the outcome of a single measurement from the av-
N-port quantum homodyne detectors of which the analogyerage outcome of a collection of such repeated measurements
with classical homodyne approach is based on the purpose ofder otherwise the same conditions. Despite the fact that
extracting information about the phase between two initiathe experimental verification of NFM’s operational approach
fields by performing a complete set of photocount measurewas successfully made by the same grfipthe appearance
ments between the components of the field. This proceduref the discrete outcomes in the phase measurements in their
of obtaining the phase information between two fields de-scheme was subject to long and heavy discusdionsqQ. In
pends on the particular experimental scheme through its claghis work we suggest another application of their approach to
sical analogy of relating the relative photocount measurethe operational measurement of the state of polarization of a
ments to certain cosine and sine functions of the relativdully polarized source. In an earlier publicatiphl] we in-
phase. Since, through this suggested analogy, different quasestigated a particular extension of NFM’s operational ap-
tum measurement schemes would correspond to differemtroach to the measurement of the Stokes parameters of a
classical ones, the information extracted for the relativefully polarized weak coherent light. In this work we will
phase is expected to be different for different experimentaéxtend this formalism introduced i11] to a more general
schemes. Indeed, this point has been demonstrated in tfimework by including the calculations for the measured
formulation of the operational phase measurement by NFMrobability distributions of the polarization fluctuations and
by starting with two different classical and quantum mea-also examine the case thoroughly when the initial field is a
surement schemes where one measurement used two-péutly polarized Fock state.
homodyne detection whereas the second one used four-port We start with a brief outline of the operational approach
homodyne detectiof2,3]. The two-port measurement yields to the measurement of polarization fluctuations when the po-
either the cosine or the sine information about the phaséarized field is given in a classical as well as a quantum state.
failing to give the full phase information. In the four-port In Sec. Il we present the general formalism of calculating the
scheme the simultaneous measurements were made possiptgarization fluctuations and their corresponding probability
by well-defined trigonometric operators of the relative phasedistributions. Sections Il A and Il B are devoted to the spe-
where the full information on the phase and its fluctuationscific calculations corresponding to two different fully polar-
can be extracted. On the other hand, a comparison of NFM'&ed initial quantum states of the field as coherent and Fock
operational approach with the operational approach introstates, respectively. Section Il C is devoted to the connec-
duced by Vogel and Schleich4] has been compared by tions between the operational approach and th{g)doter-
Lynch [5], who found agreement between the two operaferometry.
tional schemes. Classically, the state of polarization of a fully polarized
Another particularly important part of this scheme depen-monochromatic fieldE; = €;,cost+ &), wherei =1,2 are the
dence manifests itself in the weak-field measurements ipolarization indices of two preselected orthogonal polariza
which the quantized nature of light as well as that of thetion eigenmodes, can be manifestly described by four Stokes
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FIG. 2. Ellipsometry for the fully polarized transverse electric
field E in the tangent plane. Angular parameters are shown as de-

FIG. 1. Experimental setup to measure the classical and quarfined in Eqs.(4).
tum Stokes parameters. Note that this setup is also able to measure

a total of six Stokes parameters for partially polarized light. aligned in parallel to PBS A simple calculation shows that
the classical intensities measured at all detectdrgi
parameters,,(m=0,1,2,3) a§12-15 =1,...,6) aregiven by
l,=3(E3),
So= 3 (ED) +(ED), 1R
1= %<E§>-

s1=3((ED—(E3)),

1
- D 3= 5[(ED) +(E3) +2\(ED)(ES)cos ¢],
s;=((ET)(E3))"’cos ¢, @

4= 3[(ED)+(E3)— 2\(ET)(E3)cos ¢],
ss=((E(E3))*sin ¢,

1 2 2 [TE2\/E2\ i
where ¢=8,—8; is the optical (temporal phase andl; ls=2[(E)+(E5) + 2V(E))(E5)sin 4],
=(E?) is the intensity of the correspondirith component
(i=1,2). We now describe an experimental setup based on a le=3[(ED)+(E3)— 2\(ED)(E3)sin ¢].
set of photocount measurements for the purpose of investi-
gating the fluctuations in the measurement of the classicdtquations(1) and(2) imply that the classical Stokes param-
Stokes parameters in Eq4) and their corresponding quan- eters can be extracted operationally by measuring all field
tum counterparts. intensitiesl; (i=1, . ..,6). Interms of these intensities, the

Stokes parameters are simply given by

A. Classical measurement scheme

Within the operational approach, it is possible to measure So=(l1+12), s1=(I1=12),
all classical Stokes parameters in terms of the various com- (3
ponents of the intensity. The experimental scheme is shown s,=(l3—1,), S3=(l5—Ig).

in Fig. 1. The initial field enters the setup through the 50%-

50% beam splitter BS One of the output beams of B&  In [11] we parametrized the polarized field in terms of the
sent to a polarizing beam splitter PBSvhich defines a ref-  functions
erence frame 1,2 for the relative angular orientation of all

other polarizing beam splitters. The other arm of the beam _ o 22
leaving BS is sent to B$ as an input, leading to the second C0S 0=5,/50, sin 6=So—S1/%,

part of the experiment where the simultaneous measurements 4)

of cos¢ and sing are realized independently from the first cos d>=52/~/$22+537, sin ¢:53/‘/522+ 537_

part. PBS is aligned at a 45° angle with respect to the ref-

erence frame selected by PBShe intensities measured at This particular choice of parameters proves to be very con-
the detector®; andD, yield the measured values of c@s venient in the quantum operational measurements on fully
and its moments. For the sif measurement, the phase of polarized light. They also lead us naturally to Pointare
the remaining arm of the field is shifted by2 via a quarter geometric interpretation of polarizatiofi2—15. Here 6
wave platen/4. The field is then sent to PBSwhich is and ¢ are physical parameters as shown in Fig. 2. Their
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values are directly connected with the ellipsometry of the & =3-1% S,=(1—(2)12
polarized field. From now on we will adopt this parametri- =20 21 S=( s

zation and study the polarization fluctuations in terms of the ®
fluctuations of these observables. C¢:gz(2§+g§)*l/2, 5¢:§3(§§+§§)*1/2.
B. Quantum measurement scheme Cy.SyandC,,S, are well-defined and compatible quantum

The classical description above is adequate when the fiel@Pservables. They commute with each other and satisfy the
intensity is sufficiently high. The vacuum fields, which are operator relation€5+S;=1 andC’+S=1 and, as a re-

not present in the classical approach, are necessary for tisilt, can be measured simultaneously.
correct quantum description of the apparatus as well as the One of the benefits of adopting Eq3) and(8) is that all

field observables. measurements are now based on pure photon counting de-
In Fig. 1 the field operatord;,d, at the output of PBS  Pending on the measured photocounts at the deteBrofs
are related to the input field componedts a, as[11] =1,...,6) anchence they do not involve any temporal in-

terference effects. This is an advantage of the operational

measurement, which will be transparent later in our discus-
(5) sion of the weak-field limit.

Equations(8), hereinafter referred to as thaperational

quantum Stokes paramete(®@QSB, are the most conve-
wherer =i/v2 andt=1#2 are the field reflection and trans- pjent choice fors, (i=0, . .. ,3)befitting the purpose of the
mission coefficients andb{" (j=1,2) are the polarized photocount measurement scheme of Fig. 1. All operators in
vacuum fields entering through the vacuum port of B  Egs. (8) are now compatible with the classical variables of
the measurement.s_cheme in Fig. 1 is extended to include trl?qs.(4) as long as the measurements of ﬁ}gandi3 op-
photodetector®; (i = 3,4,5,6), thenp measurements can be o aiors do not yield zero simultaneously.
made compatible with a proper quantum treatment of all

g?édsi'vgebo”tpm fields of PB&nd PBS atD3,D4.05.D6 | \1eASUREMENT OF POLARIZATION FLUCTUATIONS
9 y IN WEAK FIELDS

R NPT AL
dl—E(ralthvl ), dz—E(raantv2 ),

1 The operational approach as applied to the polarization
dy=—[(tra;+r20 P+t + (tra,+r2oP +t542)7, measurement of a fully polarized and weak initial field is
V2 based on individual detections of single photons where the
quantum nature of the field as well as that of the detection
1 mechanisms is dominant. The influence of the direct quan-
dy=—[—(tra;+r2P+t6@) + (tra,+r2o P +t52) ] tum homodyne detection on the statistics of a quantum mea-
1 1 2 2 2 ’ .
surement has been examined by Mandi8], Kelley and
(6) Kleiner[17], and Glaubef18] and expressed in the form of
a combined quantum probability distribution

L1
ds=—[i(t?a,+tro P +158) + (P +tros +ro )],

V2 N
79({nj}):j1:]l :(dfd;)mexp(—dld;)/n;!:, 9)

6|,5=i [—i(t2a+trof+roP) + (t2a+tros) +ro )]
V2 where : : accounts for the normal ordering of the operators
o . . . df,d; inside andd/d; corresponds to the photon number
glré:cr)]rgr\:\(/e;ttlc;‘npvg:m ttges'L;E‘;’:t'ctﬁL?Sg;?&?géﬂiqgggnetecg erator. Throughout the calculations the measurement time
] N AR ] “~interval will be assumed to be much smaller than the coher-
for the field operatorsl; within this operational approach in ence time(which is naturally satisfied for a monochromatic
terms of the observable photon number operaiprsd’d; as  field) and much larger than the inverse of the oscillation

frequency of the field. Under these conditions it is possible to

io=ﬁ1+ R, ilzﬁl—ﬁz, consider the simplest case when the photocount measure-
(7) ment at the detectors is time translationally invariant and
S,=Ms—,, Sa=Ns—N. linearly dependent on the measurement time intefval

Including the quantum effects of the homodyne detection
In Egs.(6) all field operators commute as a manifestation ofin Eq. (9), an individual measurement of an arbitrary field

the vacuum fields. Hence, in Eq§) we have[3;,%;]=0 operatorf({f;}) yields the measured value

(i#j) and all photon number operators can be simulta-

neously measured at the detect@s(i=1,...,6). As a . ~

result, Eqs.(7) are compatible with their classical counter- <f({ni})>:/\/{;} f{nHT{pP({n;H}, (10

parts in Egs.(3). This property of the2; (i=0,...,3) op- :

erators allows us to further suggest an extengidrio their ~ where the trace is considered over the complete set of states
operator counterparts as in the density matrix of the initial fielgp=|¢)nin{|. With
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Egs.(9) and(10) representing a general scheme of measureand
ment in the operational approach, we now consider for
f({A;}) the operators off;} (j=1,2 or 3,4,5,5
. .. . . . N, =1-2, (P(nz=n,=n,ng=ng=m 15
Ef0)=(Cyti8p)%,  E40)=(Cy+iS,)* for xeR. ¢ 2, (Png=na=nng=ns=m) (19
11
in Egs.(12) and (13). The observed unitarity conditions of

In the construction OC"’S(’Aang C4.S, pairs in Eqs.(8), £,(x) and é¢(x) suggest that one can associate a classical
the compatibility condition§.; ,%]=0 of the OQSP ensure  random variable'*? ande'*? respecting the probability dis-
that[|£,(x)[|=1 and||£4(x)[|=1; hencefy(x) andEy(x) are  tributions P(#) andP(¢) such thaf6]

unitary operators for alke R. According to the procedure

outlined in the context of Eq49) and (10), the measure-

ments of these operators yield (E4(x))= f;da eX?p(g), (2’([,(x)): J'jr de¢ eX?P(g).

, X (16)
n,{—nNs+2iyn{n,
o (Pn}h) (12)

<89(X)>:N02 - o .
{n;} The probability distributions can then be obtained by the
inverse Fourier transformations of Ed.6) by

and
: (N3~ 1) +ilns—ng) | po)- | o e, 00) + )
(Es0)=Ny 2, 5 5| (PUN 1), .27 9 6 ’
i} [ V(n3—ng)?+(ns—ng)
(13 17)
Where<P({n'})>:Tr{|w>inin<¢|p({n'})}- In EQ- (12) {n} — ” % —ix¢/ &
=(nq,Nny) arj1d in Eq. (13 {nj}=(nj3,n4,n5,n6). Clearljy, P(4) f_m 27re (€402,

Eq. (12) is well defined ifn,,n, are not simultaneously zero

and similarly Eq.(13) is well defined ifng—n, andns—ng  with JZdOP(0)=/" _d¢ P(¢)=1.

are not simultaneously zero in the respective summations Defining two auxiliary functions ofn}; by
above. The idea of the elimination of the configurations J
=n,=0, andng=n, andns=ng from the statistical weight

has been introduced as a crucial element of the operational _4[2Vngn; _,[Ns—Ng
approach[2,3,6,9 in the implementation of the statistical O =tan n=n, )’ pmy=tan a2’ (18)

averages. The effective weight of such configurations be-
comes non-negligible particularly in the case when the initial _ _
field strength is sufficiently weak when the, probability of \r,g;?)fc{tir:/}ely(,r:alr;(rj]lesiérlgng{g(é.2)(2;;jrziér)]?t’rr]]g)r;ghzggdfoqrﬁa
receiving zero photons within the detector’s measurementeneralizeol initial statBy),, read
time intervalT is finite. For instance, the weight of observing g in

zero photons simultaneously at the detec{sD, is given

by (P(0,0)). The result of such a null measurement is incon- . .

clusive in the calculation of the averages in Etp). Simi- (EfX))=N,p 2" €Xi(P({n;}))
larly, ng=n, and ns=ng yield additional inconclusive re- i1

sults in the measurement o@d,(x)) in Eg. (13). The here

measured averages are then normalized by excluding the to-

tal statistical weight of these inconclusive configurations

from the integrated probability. For strong fields, the weight , [(ng—ny)+i2ynin, X
of such ambiguous outcomes is smaller and in the classical (P({N})=N, >
field limit there is no contribution from such terms, viz., n1:M2
Ny=N4=1. In the measurement of the temporal phase the ta s
individual fluctuations of these weak components as well as Xm (¥l (8181)"(828,)"
the fluctuations in the relative number of photons can be

strong due to the absence of a classical reference s@uece xexd — 1/2(3’{al+ a;az)]; [¥)in, (19
a strong local oscillatgr Hence the normalization technique

introduced by NFM proves to be essential for any opera;.q

tional measurement based on phase and thus also for our

approach here.

More explicitly, this normalization procedure amounts to - , X
2] (Esx:00))=Ny 2" e P({n;},))

N3,N4,N5,Ng

n{+n,

Ny =1-(P(0,0) (14 where
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P} %0 P(o)= [ r e (E0)+EL ), 0=

N, S (N3—ny) +i(Ns—ng) (22)

ng.nansng | \(N3—Ng)°+(Ns—Ng)? -
On the other hand, the momer{,(x)) depend on the tem-
% 1 poral phased, and before the\ average, theéS, dependence
8MN3Na*NsHNepy I, nglng! must be replaced b§,+ A. This produces, at each measure-
ment, the conditioned moments(&,(x; dp+A)) and, fol-
lowing Ref. [6], their conditional probability distribution
X (—a,+a,)"(—ial+ahns(ia; +a,)"s P(¢,60;4) is given by

X in(]: (A1 +a))"e(a, +a,)"s(—al+ah)m

X (ial+ah)e(—ia,+a,)"

]

d ~ .
P(¢,60,4)= f % (E4(X; 8o+ A))e X(9=8),

—o0

X exil — L/2(aa1 +838,) 1:[¥)in, (20
(22)
—T<=¢$=m.

with 8y= 8,— &; implicitly described in Eq(20) as the rela-
tive temporal phase between the components of the initi
field. The primes on the summations in E¢§9) and (20)
now indicate that th_e summatiqns are performe(_j py exclud- p(¢,50):f % P(¢;85;A). (23
ing those configurations for which the outcome is inconclu- 2m
sive.

All moments are now determined once the initial compo-
nents(f,),(N,) and the relative temporal phagy of the
inclusive fieldsa, ,a, are known. In our calculations the ini-
tial field parameters are chosen as the ratio of the photon
nurpbers7=<ﬁ1)/<ﬁ2>, the-total number of photon&,) P(O)=N, >, 5(6— ) (P({N;1) (24)
=(f;)+(h,), and the relative temporal phasg. {n;}

The credibility of the results obtained from the quantum

. . .an
operational approach crucially depends on the understanding
of the influence of the quantum detectors on the final statis-
tics. As pointed out in Refd.2, 3, 6, g, another essgntlal P(,80)=N, 2 (PUNY, 80— biny + 8)), (25)
element of the operational approach is the construction of an {n}
ensemble from a long series of such single operational mea-
surements. The final physical results are then obtained byhere the last term in E¢25) is obtained by using Eq$20)
averaging the outcomes of single measurements over the cré- Eq. (22). .
ated ensemble. Based on this prescription, we must now con- On the other hand, the detectors’ influence on the mea-
struct a physical ensemble of measured configurations in theHred statistics can only be understood if the measured mo-
calculations of the moments as well as the probability distri-M€nts and probability distributions are compared with those
butions in Eqs(19) and (20). The response of the quantum wnhout the detectors’ mfluence. For thls purpose and, fol-
detectors to the incoming photons in the creation of the pholoWing Refs.[2,3], we define the theoretically inferred values
tocurrent is a random process that obeys the Poisson statist the # and ¢ moments ag&,(x)) and(é’i,,(x)), where
tics in Eq. (9) [19]. As the photoelectrons are emitted at
random times respecting this statistics, the information re- < ’

n

a‘,’herefore, the ensemble-averaged probability distribution is

After a short calculation using Egq$19) and (20) in Egs.

(21)—(23), the probability distributiond?(6) and P(¢,5p)
can be expressed by

- A, — A, +i2+/A;
garding the initial temporal phas&, of the incoming pho- (& Ie(X)>:' R M n;lisz NN

X

_ ! _ , 2‘ ¢> (26)
tons is modified and each repeated measurement is equiva- in

lent to superposing a random phase shiftn §,. Hence the
process of repeated measurements creates an ensemble@Bf
temporal phase configuration§,+ A, with A being uni-
formly distributed over the available range. Since we con- | (Az—Ny) +i(As—ng) |

sider in our calculations that the measurement time intéfrval (& I¢(X)>:in b —————— | | Y]
is considerably larger than the coherence time, the available V(A3 —fg)*+ (As— fe) in
range forA is the entire zr range. Hence the average over 27
the created ensemble corresponds to an averaging over a uni:

form distribution of A. It is clear from Eq.(19) that the whee : : stands f(_)r t_he normal ordering of the field and
vacuum operators inside.

moments(&y(x)) are independent fromy; hence they will We calculate the probability distributiori®(6), where 0
also be independent d&. This implies that a uniform aver- <<z andP(¢,d,), where— < ¢<, numerically us-
age overA does not influence the measured momentqng Egs.(24) and(25). Since cod is single valued in the

<£’0(x)) and the probability distribution folP(6) is given by  range considered, we will only need to examine the fluctua-
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tions in theég operator. On the other hand, in tlgerange

considered bothf:¢ and §¢ operators will be necessary. In

OPERATIONAL APPROACH IN THE WEAK-FIEID . ..

our calculations, the summations over an infinite range of

{n};’s are truncated afn}"*=20 for allj that naturally re-

strict the accuracy of the results to sufficiently weak initial

1591

’ |al|2nl|ga2|2n2

P(0)=N, n%z (60— 0ny) U
xexp{— 3 (|ay|*+]azl?)} (32

fields. The measured moments and the probability distribunered;y is defined by the first expression in E§$8). For
tions are then compared with the theoretically inferred one§ufficiently weak fields, i.e.(3,)<1, each detector mea-

by using Eqs(26) and (27).

A. Calculations for a fully polarized quantum coherent field

sures null or a very few number of photons. This implies that
in Eq. (32 it is sufficient to restrict the summation over
{ny,n,} to a few terms. For instance, let us consider
{ny,n,}=0,1. Then including only the first-order terms in the

Let us now assume that the initial field is in a fully polar- average total photon number, E§2) can be approximately

ized quantum coherent std);,=|a; ,a,), with the param-
eters given byu;=|e;|€'%, where|a;|? and §; (j=1,2) are

the average number of photons and the coherent temporal
phase of thgth component, respectively. The relative tem-

poral phase is given, as before, By= §,— ;. From Egs.

(19 and(20), the measured moments in this state are given

by

, [(np—ny)+i2ynin, |

n{+n,

<<2:9(X)>=Ne 2

ng.np

X | ag|?"|arp| 22
Xexp{— 3 (|ag|?+]ay®) 2" "2n I ny! (28)

and

i , (ng—ny)+i(ns—ng) §
(E4(X;60)) N¢% {\/(n3—n4)2+(n5_n6)2]

X |ay+ ap]?™| — g+ ap|?™|
—iag+ a2|2n5| i+ a2|2n6
Xexp{— 3 (| ag|?+]ay|?)}/8N3 T Nat N5 T e

X n3ln,!ns!ng!, (29)

where{n}=(nz,n,,ns,ng). For the specific initial polarized
coherent state considered, using Ed<l) and(15), the nor-
malizations are given by

N gt=1—exp{—5(|as|>+|ay/?)} (30)

and defining8= 2| ay||ay|/ (| a1|?+]|y|?), wherep=<1,

|a1|2+|a2|2)2(n+m)

lel‘%( 8

exp{— 3 (|ai|+|ayl?)}
(nH)(m!)?

X[1—B? cog 8,]"[1— B2 sir? 5,]™.

(31

We will first examine theP(6) distribution. Using Eq(24),
the calculation ofP(6) yields

expressed in the weak-field limit by,,(6) in the form

1 1
Pu(0)=Ny(Z0) 5,1 5(6)+ Ty 86—,
(33

where (30)=(|a1|?+]|a,|?)/2 is the total average photon
number deduced from the measurements at the detectors

D11D21 7]=|a1|2/|a2|2, and NW:<EO>_1 SO that
J5de P(6)=1. From Eq.(33) we find that
(cos 6y, = J; 6(cos H)P(6)= P (cos 6),,=1.
(34)

Clearly, {cosé),, in Eq. (34) is consistent with the theoreti-
cally inferred values calculated from E6) [i.e., (cosé),,

=(C)]. In the initial polarized coherent state the theoreti-
cally inferred moments are given by

n—1+i27y

— eix tan~ 2y7/(5—1)
n+1 ’

1/21x
} (35

<2"a<x>>={

which respect a nonfluctuating distribution. Equati@b) is
also consistent with the classical calculations using (Bj.
However, for the second moments we obtain

_1\2
(2= Tg) #(eog 0. @0

The @ distribution in Eq.(32) is plotted in Fig. 3 fory

=1.0,0.5 andX,)=0.1,1.0,5.0,10.0. The first observation in
Fig. 3(a) is that aty= 1.0 the probability distribution is sym-
metrically centered around= 7/2. In the weak-field limit
P(0) is peaked at9=0,7w. As the field strength is suffi-
ciently increased, the central peak &t /2 gradually de-
velops as all other peaks are suppressed. The average of
cosd within the full range G< §< is zero, as it would also
be expected from the theoretically inferred moments in Eq.
(35). For »#1, the measure®®(6) is plotted in Fig. 3b).
The & functions in Eq.(32) are numerically simulated by
sharp Lorentzians, hence they acquire a finite width in Figs.
3(a) and 3b). On the other hand, using E®1), the inferred
probability distributionP'(6#) can be found a®'(#)= (0
—cos Yp—1)/(5+1)).
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FIG. 3. Measured probability distributio®(8) versusé for the
fully polarized coherent state arid) »=1.0 and(b) »=0.5 for the

indicated average total photon numbers.

FIG. 4. Measured probability distributidd(¢) versuse for the
fully polarized coherent state artd) »=1.0 and(b) »=0.5 for the
indicated average total photon numbers.

A similar calculation can also be done for tR€ ¢) dis-

tribution by making use of Eqg29), (22), and (23). After
some calculation using the normalization procedure leading

to Eq. (23) we find that

o~ (eil+lazl?jo

P($,80)=N,

(|ai|+|a2|2)n3+n4+n5+n6
8

X[1+ B cog So— p— pyny) ]
X[1—B cog Sy~ ¢~ biny)]™
X[1+ B sin(dg— d— pymy) 1™

X[1=p sin(do— b= P,

which is, not surprisingly, the same distribution obtained by

¢{nj}(j=3,4,5,6 ns!ng!ng!ng!

(€ ,(x))=el %X, (38)

Hence the theoretically inferreg distribution is also non-
fluctuating given byP(¢,8y)= 8(¢— Jp). The operational
averages forg as well as the probability distributions are
strongly peaked in the strong-field limit and they have the
tendency to approach to the theoretically inferred moments
and thes-function-like probability distributions respectively.
On the other hand, the operational approach predicts large
deviations of the measurement from the theoretical values in
the weak-field limit. In order to understand the influence of
the photo-detection particularly in the weak-field limit, we
now examine the second-order fluctuations in the measured
moments of thed and ¢ related operators.

37)

Measured fluctuations in polarization

NFM in Ref. [6] in a slightly different context. The weak-

field limit of Eq. (37) has also been studied in Rg$)], which

Once the moments in Eq&28) and (29) are defined, the

we refer the reader to for additional details. The numericallymeasured moments of the cosine and sine operatofsnd

calculated equatiof37) is plotted in Fig. 4 forp=1.0,0.5;

¢ can be found. The same moments can also be found by the

3,=0.1,1.0,5.0,10.0, and,=0. The first observation we Use of the probability distributions in Eqs32) and (37).

make here is thaP(20.0,5,) is almost independent from

Here the weak-field limit is particularly interesting and can

but strongly dependent on the strength of the initial field. Asalso be examined analytically. We start our analysis of the
the field strength increases, the fluctuations decrease and tectuations by reminding that, sincesy<, we will be
distribution becomes gradually narrower. On the otherconfined to the measured fluctuations in g operator. In
hand, using Eq(27), the theoretically inferred moments are the weak-field limit(keeping only the leading term in the

calculated as

total field strength
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FIG. 5. Second-order fluctuations in tifeelated measurement FIG. 6. Second-order fluctuations in tiferelated measurement

for the fully polarized coherent state and the indicated valueg of for the fully polarized coherent state and the indicated values of

. n—1 . herent statéi.e., D'(8) =D'(¢)=0]. The measured fluctua-
(Co=—17 (CH=1, (39 tions differ significantly from the theoretically inferred ones
7 as the strength of the initial field becomes weak. These de-
where we find the dispersiob(6) as viations in Figs. 5 and 6 from the theoretically inferred val-

ues arise from the nature of the photodetection of weak fields
and the normalization of the probability weight after discard-
KE & 29? ing the inconclusive data. We find that the results for the
D(6)=V((Cy—=(Cp)))=—7 <1 (40 fully polarized coherent field and the differences between the
n . . . . L
measured and inferred fluctuations in the weak-field limit

The dependence @ (6) for =1.0,0.5,0.1 on the total field closely relate to the results obtained by NFR|6].

; N s . The » dependence of the fluctuations in Figs. 5 and 6
strength is shown n F'g.' 5. We how Sh.'ft our.attentlon o theimplies thatn can be used as a parameter in the measurement
measured fluctuations in thg distribution. Since—7<¢

. to search for an optimum orientation of the setup in Fig. 1 by

igmv;ﬁtgeggr:giggr?:édﬁrrs??rzg \?vztgk'fgglgcl)isrrlnteaigdkteheepisnln'%tating the refere.nce axes 1,2 around theT initial field direc-
only Iineér terms in the total field strength we have gtloq. Note thqt this corresponds. to a_solld rotation of't_he
entire setup since the relative orientation of each polarizing
beam splitter with respect to PBS fixed. By this operation
12 the angle between the polarization axes of the setup and the
A 7" COS &g e < . o
<C¢>:T, mean principle axes of the polarization ellipse of the initial
Y field can be changed. Let us suppose thaj and a,y are
initial coherent state parameters defined with respect to some
, (41 fixed orientation 3,2, of PBS and given by «jo
=|ajo|€' 0. If the principle axes 1,2 are rotated by an angle
v with respect to 3,2, the initial coherent field parameters
<éz>:<§z>: l aq,a, are effectively rotated by the same angle with respect
¢ 2 to aypandasg. In particular, the average number of photons
(A;) and(fh,) measured ab, andD, are given by

Y2 sin &,

<é¢>: n+1

In this case we define the dispersibri¢) as
(M) =z| 19608 y— apesin v?,

D()=V{(Cys—(C))D+((5s= (5,02 (Rp)= 1| apec0S ¥+ argesin 2. 43)
=/1- Lzzﬁ (42)  Sincey is_arbitrary, we can use it to t'une=.<ﬁl)/<ﬁ2> in
(p+1)* 2 order to find whether an optimum orientation of the setup

exists such that both and ¢ related measurementsr what-
The dependence & (¢) on the total field strength is plotted ever other observables are examineah bemprovedsimul-
for =1.0,0.5,0.1 in Fig. 6. taneously. The measuregl at the detector®, , is then a
On the other hand, for both th#and the¢ related mo-  function of y and is represented in terms of the initially fixed
ments the theoretically inferred fluctuations vanish in the co-,=|a¢%/|a»d? and the relative phaseSg,— 6,0 as

(\mo—tan )2+ \netan y sirf( Sy~ 810)/2
(Vro+1tan y)2— mtan y SirP( 80— 819)/2

n(y)= (44)
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The second-order fluctuations represented ) and |m,M—m)=|m)®|M —m) describes the relative number of
D(¢) are plotted in the weak-field limit as a function gf  photons in each component in reference to a particular
for O<y<a/2 and for(Zy)=1 in Fig. 7 and fo{=,)=9 in  choice of predefined axes of polarization. It is possible to see
Fig. 8. The figures imply that such an optimum orientation tothat the field operators for the Fock state
simultaneously minimize the fluctuatiori3(#) and D(¢)
for a fixed value ofy, &,y— 38, and(Z,) does not exist. . 1 Cidon " At 4 idoat
Hence, depending on the measured observable, one has to 34,= — (a;+e '"a,), 89, 4 (a;+e'%a;)
engineer such optimum configurations for each measurement (46)
independently.
B. Calculations for a fully polarized Fock state satisfy

Now let us assume that the initial field is given by the &, [M), = MIM—1), . &} M), =M+1M+1), .

fully polarized photon number stat&)in=|M>¢0 as 47

The temporal phase factap, determines the ellipticity of
the polarization. If¢o=0,7, Eq. (45) provides the basis for
linear polarization. Forg=*+ /2 left and right circularly
where ¢, is a temporal phase between the polarization compolarized states are obtained. For arbitragyleft and right
ponents, Ny=2"M?2, (M) is the binomial coefficient, and elliptically polarized Fock states can be produced. Restrict-

M

|M>¢>0:NM E (l\r:

m=0

1/2 )
g PoM=Mm M—m), (45

LA L L L L I B

D)
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ing ¢¢ within the range & ¢o<, the left and right ellip- and
tically polarized states are realized respectively|[w>¢0

. X
and|M),, . with the respective field operatoégo,éz,o and <é¢(X,¢o)>=N¢Z’ { (ng—n4):-|(n5—ne) 21
é%—w'é;o—w- The second pair of field operators is then M [ V(ng=ng)?+(ns—ne)
found by making the chang#,— ¢o— 7 in Eqgs.(46). The 1
field angular momentum operator is given ﬁy=(éﬂ;oa¢o X8n3+n4+ns+nen3! Na!ns!ng!
- éLO_Wé%_W) andﬁZ is diagonal in| M>¢o with eigenvalue (—1) ~
M X2, S0 | M|:(a]a,+aja,)"
. 2r! ’
Using Eqgs.(46) and(47), Eq. (45 can be written as '
ata ata \n
aja,+a,8,\™
i M 192 291
1 [al+e'%a) 1 X\ 1+ 50—
IM) 4= N % |0,O>=—\/W(a2,0)""|0), ala,+aja,
(48) o1 ala,+aja, |\
, R R R a:8,+a5a,
where|0) is the vacuum state fcad,o as well as foida; anda,
(i.e., |0Yy=]0,0)). In what follows, the full range- 7<= ¢, ala,—ala,\™
=< will be considered. In fact, Eq45) is an example in a x| 1= é-lfé-l—’_ ézféz

class of fully polarized Fock states corresponding 70

=(A)/(h,)=1, where(f,) and(f,) describe the average

number of photons in individual polarization modes. For Eq.

(45) we have(h,)=(h,)=M/2. If a rotation parametey is

introducedfor instance, as in Eq43) for the coherent state  where in Eq.(51)
in the field space by

: M>, (52)

(N2+P) _ /nal-ratsa ata .
g rolin=(M[:(a]a))"""(a]a)"2 " P: M)
84,,,=(COSya;+e '?osin va,),

at At aidocin at (49) = g} M
a,.,= (cos yaj+e'%sin yay) “ & (m—n;—n)I(M—m—n,—p)!
in terms of the new field operato, .4} .. the field X (cos y)2M(sin y)2M-m), (53

operators of the initial Fock state in EGl5) would be ob-
tained wheny= #/4 in Eq. (49). This implies that the Fock ) - )
state|M),, , created by Eq(49) is realized effectively by a +Ns+ng in Eq. (52). In Eq. (52), (£4(X, ¢0)) is understood

y— /4 degree rotation of the Fock state in H¢5) with  in the same sense &§,(x,d)) in Eq. (20). The normaliza-
M), being tions are determined as before by satisfying the condition
0’

<59(0)>:<5¢(0,¢0)> =1
1 The simplest analytic results can be obtained for the case
|M>¢o’7=\/ﬁ (éLw)M|O> M=1 with y and ¢, being free parameters. This corre-
: sponds for the initial state to

with n;+n,<M in Eq. (51) andfi<M, wherefi=nz+n,

M .
1) 4,.y=C0s /1,0 +€'%sin 4]0,1), (54)

1/2
m) (cos y)M(e'%osin y)M~Mm,M —m).
m=0

which is a fully polarized version of the split photon state in

(50) Refs.[2, 6]. Using Egs.(51)—(53), we find for the moments

Equation(50) for a fixed ¢y now describes a fully polarized . N,

generalized Fock state with an arbitrary ratio of photon num- (Eg(x))= = [cogy+ (—)*sirty], (55)

bers 5(y) = coty between the polarization components. 2
In comparison to the coherent initial field, considerably here A’ ~1=1/2. and

more tedious work is involved in the numerical calculations™ ¢ c*V 6 » an

of both measured moments. In the general fully polarized

Fock state given by Eq50), Egs.(12) and(13) become <<§¢(X,¢o)>= % {1+ (=) +i*+(=)X]
(ég(x)>=N9 > (N1 —ng) +i2ynun; | +[1—(—)*]sin 2y cos ¢,

n{+n,

1 { (_1)r+p (n2+p)]

XM ngt | & 27 Pripl Mo

nq,Nyp

+[iI*=(—i)X]sin 2y sin ¢o}, (56

Where./\/;1=1/2. For the probability distributionB(#) and
P(,d) we use Eqs(2D)—(25) in the same spirit as we
(51)  applied to the coherent initial state in Sec. Il A.
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A simple calculation yields that P(¢,do)=1/27 for y=m/2, which correctly describe the
statistics of the single-mode Fock state consistently with the
P(8)=coSy5(0)+sirtys(0— ) (57)  theoretical expectations of a uniform distribution for
P(¢,¢o). For all othery, Egs.(57) and (58) correctly de-
and scribe the theoretical distributions for a geneflsl) .

This behavior of the probability distributions can also be
observed in Eq(37) in the limits 1< and »<<1. The ana-
lytic calculations become exponentially harder fo=®I.
Nevertheless, explicit forms of the(6) and P(¢, ¢g) can
where the probability distributions are positive definite andbe given for a generdll as

properly normalized, i.e.fid8 P(8)=[7_d¢ P(¢,do)

1
P(¢,d0)= 5 {1+sin2y codbo— )}, (59

=1. At this point, a crucial limiting case in Eq$57) and _ / B 1
(58) needs to be mentioned. Fgr= /4, Eqs.(57) and(58) P(¢9)—N0n§12 (0= btny) 2M7N2n In,!
describe the probability distributions of a fully polarized -
symmetric Fock state. Fop=0 and #/2 we have single- % 2 (=P (ny+p) (59)
mode photon Fock staték,0) and|0,1). The measured prob- = 2" Prip! Hng+n [
ability distributions in these states afe(6)=46(6) and
P(¢,po)=1/2r for y=0 and P(#)=86(6—m) and where Eq.(53) is used, and
|
e 52w SZ S
P y :N — —
(. 0) d’% 83t N4t N5 Men,in,Ing!ng! r20< 2 ) r! pgo (p |32:o I3 |42:0 l4 |52:o Is
Ng ng ng ng ng
x3 nﬁ) S 23 (S (n5> S| 2 tarhaglers- st
16=0 \ lg )/ kK3=0 \ K3/ Kz=0 \ kg /ks=0 \ K5/ Kkg=0 \ Kg
v - - M! - - - -
X e*'((ﬁo*d’*(ﬁ{n})(l*k) — -~ (COSy)Zm*Hk(Sin ,y)Z(Mfm)+|7k, (60)
m=0 (m=T-r+p)!{(M—m—p-TH+)!
|
with 9{n_} and ¢, as given by Eqs(l&). The numeri_cal <§¢):% sin 2y sin &g, (63)
calculations of Eqgs(59) and (60) for linear polarization
(e.g., $o=0), and »=1.0,0.5 [i.e., corresponding toy G2y (&2y=1
< (/5>_< ¢>_21

= 1r/4,tan }(v2)] are presented in Figs. 9 and 10 for various

values ofm. Like in the coherent case, the temporal phasenence

factor ¢ in Eq. (60) only shifts the distribution and does not

play any role in the fluctuations. We now shift our attention D(d)= \/ C.—(E NS, —(5,))2
to the second-order fluctuations in tiée and ¢-dependent (@)= VHCy=(Can DTS, = (S

moments. V3
—1-1sir2y=/1- (nTnl)f;? (64)

Measured fluctuations in polarization
Similar to the coherent state example in Sec. Il A, we cart iS not an accident that the weak-field limit for the coherent

examine thed and ¢ dispersions in the weak-field limit in the State described in E¢42) coincides with the Fock state cal-

range O< <= and — m< < using the same observables culation in Eq.(64) for M=1 for all 5. The results of the
asin Sec. 1A 1. FoM=1 we have forg numerical calculations dD(6) andD(¢) as the initial num-

ber of photons is varied are shown fg#=1.0,0.1,0.01 in Fig.
11 for D(6), and for =1.0,0.5,0.1 in Fig. 12 foD(¢)
corresponding to linear polarizatiofe.g., ¢o=0). Due to
the large number of summations in E§0), calculations are
considered within the rangesiM <10.
2 /2 The fully polarized Fock state is a typical example where
D(6)= \/<(c“;0_<f;0>)2>zsm 2y= U , (62  the correlations are present between the relative occupations
1+7p of the polarization components. As pointed out in Héf,

this renders the physical interpretation of the theoretically
and for ¢ inferred moments for theb related operators impossible. It

A appears that the operational approach here provides a scheme

(C¢>=% sin 2y cos ¢y, where the temporal phase distribution can be measured even

(Cpp=cos2y, (CH=1, (61)

hence
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FIG. 11. Second-order fluctuations in therelated measure-
ments for the fully polarized Fock state as a function of the average
total number of photons and the indicated values;of

if such correlations are present. We believe that the results
obtained in Figs. 9 and 10 should be checked experimentally
with the particular emphasis on the weak-field regimes,
which we expect to provide further confirmation of NFM's
operational scheme. The split-photon state discussed by
NFM in Refs.[2, 6] can also be interpreted as the weak-field
limit of the polarized Fock state in E€45) corresponding to
M=1, where strong intensity correlations are present. For

this state the inferred moments of the correspondlggand

§¢ are unphysical because of the fact that in E2j) the
denominator vanishes. To examine the theoretically inferred
moments for a generdl we use Eqs(26) and (27) in the
Fock state(45) (we considery= /4 for simplicity) to cal-
culate

(M]:(Ay—fy)*: M)
| (

o= M Ay 7 P MY (65)

where we find that
(ChH=((Cp*=0 (66)
and
(M[:[(Ag—Ag) +i(Rs—A)]X: M)
(M:[V(A3— a2+ (As— )21 M)
_ (:[(afap+ajay) +i(ala,—ajan]")

(:[Valaja;a,1%)

(€ 4x))=

(67)

LI L L N L B I L L I B B
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FIG. 12. Second-order fluctuations in tlfe related measure-
ments for the fully polarized Fock state as a function of the total
number of photons and the indicated valuesydhere we consid-
ered¢y=0).



1598 T. HAKIOGLU PRA 59

The vacuum fields do not contribute to the normal ordering I §>:e(§:]+7§*:]_)|j “io)

and we also omitted the state labélin the second step of 0 0- 10

the expression. In order to calculate E@7) we need 1 lo 2jo \ V2

(:[VA1h,1%). In the presence of correlatiorise., (fi;f,) R n_EJ_ Jo+n) go*Mjon), (70
Y

#(f1)(Ay)) we have
which becomes clear if one makes a correspondence between

<ﬁlﬁ2> 1

V=1 =<1 68 Eqgs.(70) and(45) as

NI ©9

io—M/2, jo—n—m, jo+rnNn—M—m, —>ei¢0

Hence the correlation effects cannot be ignored if the initial lo Jo Jo ¢
_Focl_< state contains a few phot_ons. F_urthermor_e, B8 o (71)
implies that, forM =1, the denominator in Eq67) diverges
at x=2. It might therefore be suggested to consider that the joth—m, jo,—n—M-m, ¢&—e %,

comparison with the theoretically inferred moments with the
measured operational ones is limited to the strong-field reghere in Eq.(70) |jon)=|jo—N,jo+N). Hered.=J,+iJ,
gime (1<M), where also consistency with the classical re-are the standard raising and lowering operators of 1) su

sults are expected to hold. On the other hand, the denoming- - s
tor in Eq.(67) is not well defined for values of not equal to acingular :rgn)omentum algebra defined by the generalp(s

an even integer. Now let us assume for the moment that we

are able to replace the denominator of E@®7) by

((alala,a,))*?. One expects that if this replacement can be

done, it can only be valid in the sufficiently strong-field limit At At

where the correlations as well as fluctuations are expected to 1= (8181~ 8,8,)/2,

be negligible. With this replacement, E@7) would yield (72
J,=(ala,+ala,)/2,

Jo=(ala,+ala,)/2,

(&)

<é' - COS ¢g <é' - sin ¢
o i—umt Y J1—um’ J,=(ala,—alay)/2i,
((CAy=coSepy, ((S))?)=sirte,. (69)  Where, considering thag{,4,), (4] ,4,) represent two inde-

pendent boson pairs, we have the standar@)salgebra
The inferred dispersio®'(¢) calculated from Eqs(69) is  [J;,3;]1=i€;; Ji (i,j,k=1,2,3). Here the central invariant of
purely imaginaryfor all M, which is an u_nphysical result. e algebra is32=Jy(Jo+1)=jo(jo+1), wherej,=M/2
Hence the replacement we made above, in order to make thi, \ describing the total number of particles in the Fock

denominator of Eq(67) calculable, is unphysical for aM; . . A )
thus it cannot beqdone. Unlike the cthreynt state, the comsitate(45)' The uncertainty relations for thi's are given by

parison with the theoretically inferred moments is made im- leiie]

possible by the presence of strong correlations. Therefore, AJVAT )= Sk
. ) (Ad(Ad)=—;

we are unable to examine the photodetector effects in the

weak-field limit in the operational measurement of the fully ) _ _

polarized Fock state using the standard formalism of theot€nce, the fully polarized Fock state is nothing but the gen-

retically inferred moments. The unphysical results we ob-£ralized coherent state of the free field3angular momen-

tained for the inferred moments are not inherent to the quarfdM @lgebra. Under certain conditions Eg0) also coincides

tum scheme. Even in the classical measurement schem@ith the su2) minimum uncertainty statg@1-23 minimiz-

there is no unique way of extracting the theoretically inferredd EQ. (73) which has been explored recently in the current

moments when the relative phase or the relative intensitjterature in the context of ¢@) interferometry[22-24.

fluctuations are correlated. We refer the reader to Réfor The idea of s(P) interferometry is to create interference

a detailed discussion on this topic in the context of operaP&tween two arbitrary input fields by using passive and ac-

tional phase formalism. Nevertheless, we will suggest in thdive lossless optical o_lewces to measure the relative temporal

following subsection that for the Fock state in E§0), or phase between th_e fields. For this purpose the _measured op-

specifically for Eq.(45), it is possible to find another mea- erators of the §2) interferometry are de_flned_as in Eqg2)

sure to examine the photodetector effects in the weak-fiel@" they are related to Eq¢72) by certain unitary transfor-

limit by making use of the properties of the uncertainty re-mations induced b_y the passive and ac'give optical devices.
lations. These transformations of Eq&2) (or the inverse transfor-

mations on the initial fieldscan be engineered in such a way
that the relative phase shift between the input fields can be
measured by pure intensity measurements on the fields at the
output ports of the interferomet¢R2]. The principles of

For symmetric distribution of photon numbers in the com-the quantum interferometry are thus based on a generalized
ponents of the polarization, the fully polarized Fock state inoperational scheme that is, in principle, very similar to the
Eq. (500 becomes Eq(45), which is a generalized €2) co- idea of the operational phase measurement presented in Refs.
herent stat¢20] [2, 3, 6, 9 as well as the present work.

(3, i#j#k=123. (73

C. Fully polarized Fock state and connections
to the su2) interferometry



PRA 59 OPERATIONAL APPROACH IN THE WEAK-FIEID . .. 1599

1 :1 LR N »]\t T T T '|’<J<<¥,J>'7’ T N _1‘»[_.\\.[ T T T T T T 177 "F'>J»‘T_
o f D(¢) 1 D@~ .
‘2’ 0.6 [ 4 F . FIG. 13. Second-order fluctuations in tite
Y L ] r ] and ¢ related measurements for the fully polar-
S 04r M=1 1 F M=5 E ized Fock state as a function of the rotation pa-
= 02 [ D(6)  $o=0 @ 4 L D(O)  $o=0 7 rametery for the indicated values d¥l and ¢.

O y ] I - { | I l I - | I - ‘ 11 | “‘ : 11 | ‘ 11 | | -] | i1 l L1 :

0 02 04 06 08 1 0 02 04 06 08 1
Ry/m &y/7

Now let us construct the uncertainty product for the gen-
eral fully polarized Fock statéM ) b0y and particularly focus

our attention on the specific Iimi|tl\/|)¢0 at y=/4. The

measured interferometric operators correspond, in the stan-

AJd 1 V1-sirf2y sir
Sboly) (AJy) 1 Y Sinfgg

v |0(33)/ 9o UM sin2y cos g
(76)

dard su2) interferometry, to the expected values of the OP-\vhere 5(y)= So(/4)= 1M, which is the well-known

erators in Eqs(72) or some linear superpositions of them in
the initial state. FoqLM)%'7 being the initial state, we have

minimum standard noise limit. Henceheoretically the
maximum precision in the phase measurement can be
achieved only aty(7/4)=1 corresponding toy=1. The ba-

<jo>_ M sic idea being the extraction of the phase statistics from pure
2 photon counting, the $B) interferometry is in close analogy
to the operational measurement scheme. The operatrs
(3;)=— cos 2, =0,1,2,3) are the interferometric analogs of the operational

A M
(Jo)= > sin 2y cos ¢y,

<33>:

2

sin 2y sin ¢,

(74

onesii (i=0,1,2,3) in Eq(7), but there are also significant
differences between them. Although thiés are the genera-

tors of the s(@) algebra, theii’s all commute with each
other and no useful uncertainty product similar to EZB)
can be written for them. Now a legitimate question arises as

to how much the properties of the quantum Stm%o,w as

far as thef]fs are concerned, are preserved in the operational

measurement scheme using ﬁleoperators. The main dif-
ference arising from the presence of the vacuum states in the

ii’s as well as the operational scheme itself, it is neverthe-
less expected that for sufficiently strong fields the quantum

operational measurement using tBe operators should be
consistent with Eq(73). The deviations in the quantum op-
erational measurement scheme from EZ&B) are expected
when the initial field is sufficiently weak. Hence, by exam-
ining the uncertainty properties {1 >¢o!7’ particularly near
v=l4, a perfect ground to understand the influence of the
operational scheme in the final measurement can be pro-
vided.

We start the analysis of the uncertainty relations for
H\/I)%'7 by examining they dependence of the measured

D(6) andD(¢) . The results are represented in Fig. 13 for
M=1,5 and linear polarization in the range=@/< /2. The
figure indicates that, similarly to the results obtained for the
explicitly seen by using Eq$74) and(75) in Eq. (73). Fur-  fully polarized coherent state measurements, it is not pos-
thermore, wheny= 7/4, this result is independent frogy; sible to simultaneously minimize the fluctuations in the mea-
hence a tempora] shift |d)o does not Change any of these surements of the& and ¢ related moments. The values of
properties. This implies that if §2) interferometric tech- D(6) andD(¢) in Fig. 13 corresponding tg= /4 (i.e.,
niques[22] are employed fotM),, , the standard precision 7=1), y=0.3m (i.e, #=0.5), y=0.47 (i.e., »=0.1), and
can be achieved in the measurement of the temporal phage=0-47 (.., 7=0.01) can also be seen in Figs. 11 and 12.
[23,24. The precision in the phase measurement can pEiere y=m/4 has a special importance since this point cor-
found from Egs.(74) and (75) for the general case with '€Sponds to whergM), ., becomes a coherent as well as a
IM) g, .y @S

and

(Ajo)ZZO,

(Ad))?

=7 Sin22'y,

(79

(AJ,)? %(1—co§¢osin22y),

(A33)2=% (1—sirP¢osit2y).

Using y= /4 in Egs.(75) and(74) we observe thaltM)% is

an important state in the algebra defined by the operators i
Eq.(72). It is an sy2) coherent statksee Eq(70)] as well as

a minimum uncertainty(intelligeny state minimizing Eq.
(73) for i#j=1,3;k=2 andi#j=1,2;k=3. This can be

minimum uncertainty state of th&'s. As v is shifted away
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2 T j Figure 14 indicates that the photodetection in the opera-
tional scheme unavoidably creates an additional noise in the
measurement such that the theoretical value of the uncer-
tainty is not reached until the initial state has a sufficiently
large (i.e., 5=M) number of photons. Here, ag varies,
there is a compromise between the value of the measured
~ uncertainty product for larg® and the detector noise for
small M. For instance, ay= /4 (i.e., =1), the measured
uncertainty product approaches the theoretical minimum un-
M certainty for largeM, although the detectaroiseis as large
FIG. 14. Comparison between the theoretical uncertainty prog@S 100% at the smaM limit. On the cher hand, agp devi-
uct and the measured one in the fully polarized Fock state for thét€s froma/4, the measured uncertainty product is no longer
indicated values of. at the minimum for largé/, but the detector noise is smaller
for small M. Hence it appears that there is no global opti-
from @/4, particularly towardsy=0,7/2, one particular po- mum value fory. We thus conclude thag can be optimally
larization mode starts dominating where the initial statefixed only depending on the individual observables chosen in
gradually starts looking like a single-mode Fock state. Thdhe measuremerit.e., a result that we have also reached in
single-mode Fock limit is realized at=0,m/2 for ¢ related  the fully polarized coherent state example in Sec.)ll A
measurementgi.e., D,=0 and P(¢) comprises a single In the theoretical interferometric calculations it is a com-
sfunction peak and maximally random fluctuations are ob- Mon practice to neglect the influence of the photodetection.
served in theg related measuremenfs.e., D,=1 and This is certainly a valid assumption if the initial field is suf-
P(¢)=1/27]. Because of the fact that the interferometric ficiently strong. On the other hand, we expect the additional
operators do not commute with each other, it is not possibl&Cise in the uncertainty product to be a manifestation of any
to find the interferometric analogs of the trigonometric op-Scheme based on photon counting in the weak-field limit

eratorség,ég andé¢,§¢ defined in Eqs(8). This implies arising _fr_om the quantum nature of the photodetection.
; . Hence it is also natural to expect these effects to be observ-
that the interferometric analogs &, and D, cannot be

found by direct analogy and a comparison between thg\ble in the s(P) interferometric measurements. This result

theory and the measurement is not possible for them. At thi;Sndeed needs experimental verification, particularly consider-

level, the only comparison with the theory can be made b ing the advantage that certain schemes have been proposed

o o ) ~ )?or the generation of such quantum states as(&%). experi-
examining the minimum uncertainty product for thés and mentally using active nonlinear proces$2s).
theX;’s.

Keeping vy as the parameter, we now express &) in
IM) 4, in the form lll. DISCUSSION
0

In this work we focused our attention on the operational
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(AJ,)2+(AJ5)% . 5 measurement scheme as applied to certain fully polarized
U =——5 -, (&) (77)  quantum states particularly in the weak-field regime. We
(J2)°+(J3) have shown that, similarly to NFM’s operational phase mea-

surement scheme, it is possible to base the measurement of
the state of polarization on pure photocount measurements,
hence providing another example for an operational ap-
proach. In particular, the measurement of the fluctuations of
the temporal phase between the polarized field components
L ) i , is, not surprisingly, identical to the original work by NFM.
=7. The operational analog of E¢7) in terms of theS;’s  The statistical behavior of the Stokes parameters is investi-
can be found by direct inspection of E4S)—(7) and(72) as  gated in terms of the trigonometric operators in E&s.and

the operational counterparts of the quantum Stokes param-

and find from Eqgs(74) and (75) that

U(y)

with the minimum uncertainty corresponding 4 /4)

1(1-1 sirf2y), (79

(AS,)2+(AS3)2 . ) eters of the polarized field are introduced in E¢8. The
Uop( Y)Zﬁ (AZ))%, (79 application of the operational polarization measurement
(22)°+(23) scheme is made to fully polarized quantum coherent as well

as Fock states. With the purpose of extracting the detectors’
with all fluctuations in Eq(79) calculated within the opera- jnfluence on the measurement, the statistics of the measured
tional scheme outlined in Sec. Il. In comparing Ef9) with  fluctuations are examined and compared with the theoretical
Eq. (77) the differences arising from the different normaliz- cajculations. Our results confirm those of NFM’s operational
ing factors of the transmission and the reflection coefficient%hase measurement scheme to conclude that the photon-
in theai's in Eq. (5) should also be accounted for. The resultcounting process introduces additional noise in the final sta-
of the numerical calculations fdd,(y) /U(y) is presented tistics particularly in the weak-field regimes. For sufficiently
in Fig. 14 as a function oM for various n values where strong fields, the operational measurement scheme is consis-
n(y)=cofy. We also observed that E(79) has nog, de-  tent with those theoretical predictions in which the photode-
pendence for alM and y (not shown in Fig. 11 which is  tection effects are not included.
consistent with the theoretical calculation in E@8). The connection between the operational approach to the
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measurement of polarization and thgZunterferometry is  on the measuring systefor inverse transformations on the
examined and the uncertainty principle is used as a means ofitial statg. The optimal choice of these transformations
analyzing the photodetection effects in the measurementsing active as well as passive optical devices naturally de-
where applications are made on the fully polarized Fockpends on the initial state. Furthermore, it is also desirable
state. The operational approach to the measurement of phag¥d under certain conditions strictly required have the
has been investigated by D’Ariano and P4@6] in the con-  transformed state conserve the basic features of the original
text of quantum estimation theofi27], which provides a State, i.e., full polarization, coherent and minimum uncer-

unified formulation of the measurement process and the initainty states for Eq45), the statistics of the fluctuations, etc.

tial system under investigation. The quantum probability disJt is natural that for the initial state being fully polarized, the

tribution of the N-port homodyne detection in Eq9) is a full polarization itself is a str_ict condition that should b_e
specific example of the probability-operator-valued measur onser_ved b_y _the transformgtlons. On the other hand,.smce
(POM) in the quantum estimation theory. An ideal quantum M>¢0 is a minimum uncertainty state, the quantum statistics
measurement is realized when the POM is based on an off the temporal phase and the fluctuations in correspond-
thogonal and complete set of states comprising the eigeridd ¢-dependent operators are coupled with those describing
space of the measured observable. Hence, depending on tH fluctuations in the relative photon numifgr-f,. Hence
nature of the measured observables of the initial state, findhe minimum uncertainty condition gM), will most cer-

ing an optimum detection scheme is the primary goal of aainly be at stake after such transformations and this will
unified formulation of the measurement and the initial sys-change the quantum nature of the s{dt& instance, a rota-
tem. For the measured observable being phase related quaien in the field space by does not change the full polar-
tities, such an approach has not been idealized yet becauseiaation property but changes the minimum uncertainty rela-
orthogonal POM cannot be physically realized for the phaseions, as it can be seen from Eqg3) and (78)]. For those
observable. With this in mind, one resorts to optimizing thestates that are not the minimum uncertainty ones, this obser-
phase measurement by a proper choice of the initial states aation is still valid to a lesser extent. We nevertheless con-
well as the parameters of the measuring system. At this pointlude that attempts to surpass the standard noise limit for the
a connection is present between the primary goal of thdully polarized quantum states have to comply with a number

guantum estimation theory and the attempts to surpass thaf restrictions, which certainly renders it a rather interesting
standard noise limit by using interferometric transformationsproblem.
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