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Operational approach in the weak-field measurement of polarization fluctuations

T. Hakioğlu
Physics Department, Bilkent University, 06533-Ankara, Turkey

~Received 1 July 1998!

The operational approach to the measurement of phase studied by Noh, Fougere`s, and Mandel@Phys. Rev.
A 45, 424~1992!; 46, 2840~1992!; Phys. Rev. Lett.71, 2579~1993!; Phys. Rev. A47, 4535~1993!# is applied
to the measurement of the state of polarization of fully polarized light. Operational counterparts of the quantum
Stokes parameters are introduced and their fluctuations are examined. It is shown that if the polarized field is
weak, the measured fluctuations are influenced not only by the quantum properties of the source field but also
that of the measurement. This character is reflected on the measured probability distributions of the parameters
of polarization, which are also investigated independently for the fully polarized coherent states and the Fock
states as the initial field strength is varied. Finally, connection between the operational approach to the
measurement of polarization and the su~2! interferometry is examined.@S1050-2947~99!01402-X#

PACS number~s!: 42.50.Dv, 85.60.Gz
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I. INTRODUCTION

The idea of the operational approach as an experime
technique based on photon counting in the measuremen
quantum-phase fluctuations was suggested in 1986 by
nett and Pegg@1# in the context of a measured phase opera
using certain homodyne experiments and more recently
formulated in detail by Noh, Fouge`res, and Mandel~NFM!
@2#. The operational phase measurement is based on u
N-port quantum homodyne detectors of which the analo
with classical homodyne approach is based on the purpos
extracting information about the phase between two ini
fields by performing a complete set of photocount measu
ments between the components of the field. This proced
of obtaining the phase information between two fields
pends on the particular experimental scheme through its c
sical analogy of relating the relative photocount measu
ments to certain cosine and sine functions of the rela
phase. Since, through this suggested analogy, different q
tum measurement schemes would correspond to diffe
classical ones, the information extracted for the relat
phase is expected to be different for different experimen
schemes. Indeed, this point has been demonstrated in
formulation of the operational phase measurement by N
by starting with two different classical and quantum me
surement schemes where one measurement used two
homodyne detection whereas the second one used four
homodyne detection@2,3#. The two-port measurement yield
either the cosine or the sine information about the ph
failing to give the full phase information. In the four-po
scheme the simultaneous measurements were made po
by well-defined trigonometric operators of the relative pha
where the full information on the phase and its fluctuatio
can be extracted. On the other hand, a comparison of NF
operational approach with the operational approach in
duced by Vogel and Schleich@4# has been compared b
Lynch @5#, who found agreement between the two ope
tional schemes.

Another particularly important part of this scheme depe
dence manifests itself in the weak-field measurements
which the quantized nature of light as well as that of t
PRA 591050-2947/99/59~2!/1586~17!/$15.00
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detectors becomes crucial when the homodyne detec
have a relatively high probability of registering a few or nu
photocounts within the measurement time intervalT. This
being the case for a single set of measurements, one co
ers an ensemble of repeated measurements under the
initial conditions. There, each repeated measurement wo
have generally different but equally acceptable configu
tions of detected photons and one has to make a distinc
between the outcome of a single measurement from the
erage outcome of a collection of such repeated measurem
under otherwise the same conditions. Despite the fact
the experimental verification of NFM’s operational approa
was successfully made by the same group@6#, the appearance
of the discrete outcomes in the phase measurements in
scheme was subject to long and heavy discussions@7–10#. In
this work we suggest another application of their approach
the operational measurement of the state of polarization
fully polarized source. In an earlier publication@11# we in-
vestigated a particular extension of NFM’s operational a
proach to the measurement of the Stokes parameters
fully polarized weak coherent light. In this work we wi
extend this formalism introduced in@11# to a more genera
framework by including the calculations for the measur
probability distributions of the polarization fluctuations an
also examine the case thoroughly when the initial field i
fully polarized Fock state.

We start with a brief outline of the operational approa
to the measurement of polarization fluctuations when the
larized field is given in a classical as well as a quantum st
In Sec. II we present the general formalism of calculating
polarization fluctuations and their corresponding probabi
distributions. Sections II A and II B are devoted to the sp
cific calculations corresponding to two different fully pola
ized initial quantum states of the field as coherent and F
states, respectively. Section II C is devoted to the conn
tions between the operational approach and the su~2! inter-
ferometry.

Classically, the state of polarization of a fully polarize
monochromatic fieldEi5e icos(vt1di), wherei 51,2 are the
polarization indices of two preselected orthogonal polar
tion eigenmodes, can be manifestly described by four Sto
1586 ©1999 The American Physical Society
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parameterssm (m50,1,2,3) as@12–15#

s05 1
2 ~^E1

2&1^E2
2&!,

s15 1
2 ~^E1

2&2^E2
2&!,

~1!

s25~^E1
2&^E2

2&!1/2cosf,

s35~^E1
2&^E2

2&!1/2sin f,

where f5d22d1 is the optical ~temporal! phase andI i

5^Ei
2& is the intensity of the correspondingi th component

( i 51,2). We now describe an experimental setup based
set of photocount measurements for the purpose of inve
gating the fluctuations in the measurement of the class
Stokes parameters in Eqs.~1! and their corresponding quan
tum counterparts.

A. Classical measurement scheme

Within the operational approach, it is possible to meas
all classical Stokes parameters in terms of the various c
ponents of the intensity. The experimental scheme is sh
in Fig. 1. The initial field enters the setup through the 50
50% beam splitter BS1. One of the output beams of BS1 is
sent to a polarizing beam splitter PBS1, which defines a ref-
erence frame 1,2 for the relative angular orientation of
other polarizing beam splitters. The other arm of the be
leaving BS1 is sent to BS2 as an input, leading to the secon
part of the experiment where the simultaneous measurem
of cosf and sinf are realized independently from the fir
part. PBS2 is aligned at a 45° angle with respect to the r
erence frame selected by PBS1. The intensities measured a
the detectorsD3 andD4 yield the measured values of cosf
and its moments. For the sinf measurement, the phase
the remaining arm of the field is shifted byp/2 via a quarter
wave platel/4. The field is then sent to PBS3, which is

FIG. 1. Experimental setup to measure the classical and q
tum Stokes parameters. Note that this setup is also able to me
a total of six Stokes parameters for partially polarized light.
a
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aligned in parallel to PBS2. A simple calculation shows tha
the classical intensities measured at all detectorsDi ( i
51, . . . ,6) aregiven by

I 15 1
2 ^E1

2&,

I 25 1
2 ^E2

2&,

I 35 1
4 @^E1

2&1^E2
2&12A^E1

2&^E2
2&cosf#,

~2!

I 45 1
4 @^E1

2&1^E2
2&22A^E1

2&^E2
2&cosf#,

I 55 1
4 @^E1

2&1^E2
2&12A^E1

2&^E2
2&sin f#,

I 65 1
4 @^E1

2&1^E2
2&22A^E1

2&^E2
2&sin f#.

Equations~1! and~2! imply that the classical Stokes param
eters can be extracted operationally by measuring all fi
intensitiesI i ( i 51, . . .,6). In terms of these intensities, th
Stokes parameters are simply given by

s05~ I 11I 2!, s15~ I 12I 2!,
~3!

s25~ I 32I 4!, s35~ I 52I 6!.

In @11# we parametrized the polarized field in terms of t
functions

cosu5s1 /s0 , sin u5As0
22s1

2/s0 ,
~4!

cosf5s2 /As2
21s3

2, sin f5s3 /As2
21s3

2.

This particular choice of parameters proves to be very c
venient in the quantum operational measurements on f
polarized light. They also lead us naturally to Poincar´’s
geometric interpretation of polarization@12–15#. Here u
and f are physical parameters as shown in Fig. 2. Th

n-
ure

FIG. 2. Ellipsometry for the fully polarized transverse elect
field E in the tangent plane. Angular parameters are shown as
fined in Eqs.~4!.
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1588 PRA 59T. HAKIOĞLU
values are directly connected with the ellipsometry of
polarized field. From now on we will adopt this paramet
zation and study the polarization fluctuations in terms of
fluctuations of these observables.

B. Quantum measurement scheme

The classical description above is adequate when the
intensity is sufficiently high. The vacuum fields, which a
not present in the classical approach, are necessary fo
correct quantum description of the apparatus as well as
field observables.

In Fig. 1 the field operatorsd̂1 ,d̂2 at the output of PBS1
are related to the input field componentsâ1 ,â2 as @11#

d̂15
1

&
~râ11t v̂1

~1!!, d̂25
1

&
~râ21t v̂2

~1!!, ~5!

wherer 5 i /& andt51/& are the field reflection and trans
mission coefficients andv̂ j

(1) ( j 51,2) are the polarized
vacuum fields entering through the vacuum port of BS1. If
the measurement scheme in Fig. 1 is extended to include
photodetectorsDi ( i 53,4,5,6), thenf measurements can b
made compatible with a proper quantum treatment of
fields. The output fields of PBS2 and PBS3 at D3 ,D4 ,D5 ,D6
are given by

d̂35
1

&
@~ trâ11r 2v̂1

~1!1t v̂1
~2!!1~ trâ21r 2v̂2

~1!1t v̂2
~2!!#,

d̂45
1

&
@2~ trâ11r 2v̂1

~1!1t v̂1
~2!!1~ trâ21r 2v̂2

~1!1t v̂2
~2!!#,

~6!

d̂55
1

&
@ i ~ t2â11tr v̂1

~1!1r v̂1
~2!!1~ t2â21tr v̂2

~1!1r v̂2
~2!!#,

d̂65
1

&
@2 i ~ t2â11tr v̂1

~1!1r v̂1
~2!!1~ t2â21tr v̂2

~1!1r v̂2
~2!!#.

In connection with their classical counterparts in Eqs.~3!, we
are now at a point to suggest the quantum Stokes param
for the field operatorsd̂i within this operational approach i
terms of the observable photon number operatorsn̂i5d̂i

†d̂i as

Ŝ05n̂11n̂2 , Ŝ15n̂12n̂2 ,
~7!

Ŝ25n̂32n̂4 , Ŝ35n̂52n̂6 .

In Eqs.~6! all field operators commute as a manifestation

the vacuum fields. Hence, in Eqs.~7! we have@Ŝ i ,Ŝ j #50
( iÞ j ) and all photon number operators can be simu
neously measured at the detectorsDi ( i 51, . . .,6). As a
result, Eqs.~7! are compatible with their classical counte

parts in Eqs.~3!. This property of theŜ i ( i 50, . . . ,3) op-
erators allows us to further suggest an extension~4! to their
operator counterparts as
e

e

ld

the
he

he

ll

ers

f

-

Ĉu5Ŝ0
21Ŝ1 , Ŝu5~12Ĉu

2!1/2,
~8!

Ĉf5Ŝ2~Ŝ2
21Ŝ3

2!21/2, Ŝf5Ŝ3~Ŝ2
21Ŝ3

2!21/2.

Ĉu ,Ŝu andĈf ,Ŝf are well-defined and compatible quantu
observables. They commute with each other and satisfy
operator relationsĈu

21Ŝu
251 andĈf

2 1Ŝf
2 51 and, as a re-

sult, can be measured simultaneously.
One of the benefits of adopting Eqs.~7! and~8! is that all

measurements are now based on pure photon counting
pending on the measured photocounts at the detectorsDi ( i
51, . . . ,6) andhence they do not involve any temporal in
terference effects. This is an advantage of the operatio
measurement, which will be transparent later in our disc
sion of the weak-field limit.

Equations~8!, hereinafter referred to as theoperational
quantum Stokes parameters~OQSP!, are the most conve
nient choice forŜ i ( i 50, . . . ,3)befitting the purpose of the
photocount measurement scheme of Fig. 1. All operator
Eqs. ~8! are now compatible with the classical variables
Eqs.~4! as long as the measurements of theŜ2 and Ŝ3 op-
erators do not yield zero simultaneously.

II. MEASUREMENT OF POLARIZATION FLUCTUATIONS
IN WEAK FIELDS

The operational approach as applied to the polariza
measurement of a fully polarized and weak initial field
based on individual detections of single photons where
quantum nature of the field as well as that of the detect
mechanisms is dominant. The influence of the direct qu
tum homodyne detection on the statistics of a quantum m
surement has been examined by Mandel@16#, Kelley and
Kleiner @17#, and Glauber@18# and expressed in the form o
a combined quantum probability distribution

P~$nj%!5)
j 51

N

:~ d̂ j
†d̂ j !

njexp~2d̂ j
†d̂ j !/nj !:, ~9!

where : : accounts for the normal ordering of the operat
d̂i

† ,d̂i inside andd̂i
†d̂i corresponds to the photon numb

operator. Throughout the calculations the measurement
interval will be assumed to be much smaller than the coh
ence time~which is naturally satisfied for a monochromat
field! and much larger than the inverse of the oscillati
frequency of the field. Under these conditions it is possible
consider the simplest case when the photocount meas
ment at the detectors is time translationally invariant a
linearly dependent on the measurement time intervalT.

Including the quantum effects of the homodyne detect
in Eq. ~9!, an individual measurement of an arbitrary fie
operatorf ($n̂ j%) yields the measured value

^ f ~$n̂ j%!&5N(
$nj %

f ~$nj%!Trˆr̂P~$nj%!‰, ~10!

where the trace is considered over the complete set of s
in the density matrix of the initial fieldr̂5uc& in in^cu. With
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Eqs.~9! and~10! representing a general scheme of measu
ment in the operational approach, we now consider
f ($n̂ j%) the operators of$n̂ j% ( j 51,2 or 3,4,5,6!,

Êu~x!5~Ĉu1 iŜu!x, Êf~x!5~Ĉf1 iŜf!x for xPR.
~11!

In the construction ofĈu ,Ŝu and Ĉf ,Ŝf pairs in Eqs.~8!,

the compatibility conditions@Ŝ i ,Ŝ j #50 of the OQSP ensure

that i Êu(x)i51 andi Êf(x)i51; henceÊu(x) andÊf(x) are
unitary operators for allxPR. According to the procedure
outlined in the context of Eqs.~9! and ~10!, the measure-
ments of these operators yield

^Êu~x!&5Nu(
$nj %

Fn12n212iAn1n2

n11n2
G x

^P~$nj%!& ~12!

and

^Êf~x!&5Nf(
$nj %

F ~n32n4!1 i ~n52n6!

A~n32n4!21~n52n6!2G x

^P~$nj%!&,

~13!

where ^P($nj%)&5Trˆuc& in in^cuP($nj%)‰. In Eq. ~12! $nj%
5(n1 ,n2) and in Eq. ~13! $nj%5(n3 ,n4 ,n5 ,n6). Clearly,
Eq. ~12! is well defined ifn1 ,n2 are not simultaneously zer
and similarly Eq.~13! is well defined ifn32n4 andn52n6
are not simultaneously zero in the respective summat
above. The idea of the elimination of the configurationsn1
5n250, andn35n4 andn55n6 from the statistical weight
has been introduced as a crucial element of the operati
approach@2,3,6,9# in the implementation of the statistica
averages. The effective weight of such configurations
comes non-negligible particularly in the case when the ini
field strength is sufficiently weak when the probability
receiving zero photons within the detector’s measurem
time intervalT is finite. For instance, the weight of observin
zero photons simultaneously at the detectorsD1 ,D2 is given
by ^P~0,0!&. The result of such a null measurement is inco
clusive in the calculation of the averages in Eq.~12!. Simi-
larly, n35n4 and n55n6 yield additional inconclusive re
sults in the measurement on̂Êf(x)& in Eq. ~13!. The
measured averages are then normalized by excluding th
tal statistical weight of these inconclusive configuratio
from the integrated probability. For strong fields, the weig
of such ambiguous outcomes is smaller and in the class
field limit there is no contribution from such terms, viz
Nu5Nf51. In the measurement of the temporal phase
individual fluctuations of these weak components as wel
the fluctuations in the relative number of photons can
strong due to the absence of a classical reference source~i.e.,
a strong local oscillator!. Hence the normalization techniqu
introduced by NFM proves to be essential for any ope
tional measurement based on phase and thus also for
approach here.

More explicitly, this normalization procedure amounts
@2#

N u
21512^P~0,0!& ~14!
-
r

s

al

-
l

nt

-

to-
s
t
al

e
s
e

-
ur

and

N f
21512(

n,m
^P~n35n45n,n55n65m!& ~15!

in Eqs. ~12! and ~13!. The observed unitarity conditions o

Êu(x) and Êf(x) suggest that one can associate a class
random variableeixu andeixf respecting the probability dis
tributionsP(u) andP(f) such that@6#

^Êu~x!&5E
0

p

du eixuP~u!, ^Êf~x!&5E
2p

p

df eixfP~f!.

~16!

The probability distributions can then be obtained by t
inverse Fourier transformations of Eq.~16! by

P~u!5E
2`

` dx

2p
e2 ixu$^Êu~x!&1^Êu~2x!&%,

~17!

P~f!5E
2`

` dx

2p
e2 ixf^Êf~x!&,

with *0
pdu P(u)5*2p

p df P(f)51.
Defining two auxiliary functions of$n% j by

u$n%5tan21S 2An1n2

n12n2
D , f$n%5tan21S n52n6

n32n4
D , ~18!

where $n%5(n1 ,n2) and $n%5(n3 ,n4 ,n5 ,n6) for u and f
respectively, and using Eqs.~12! and~13!, the moments for a
generalized initial stateuc& in read

^Êu~x!&5Nu ( 8
n1 ,n2

eixu$n%^P~$nj%!&

where

^P~$nj%!&5Nu ( 8
n1 ,n2

F ~n12n2!1 i2An1n2

n11n2
G x

3
1

2n11n2n1!n2! in^cu:~ â1
†â1!n1~ â2

†â2!n2

3exp@21/2~ â1
†â11â2

†â2!#:uc& in , ~19!

and

^Êf~x;d0!&5Nf ( 8
n3 ,n4 ,n5 ,n6

eixf$n%^P~$nj%,d0!&

where
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#P~$nj%,d0!

5Nf ( 8
n3 ,n4 ,n5 ,n6

F ~n32n4!1 i ~n52n6!

A~n32n4!21~n52n6!2G x

3
1

8n31n41n51n6n3!n4!n5!n6!

3 in^cu:~ â1
†1â2

†!n6~ â11â2!n3~2â1
†1â2

†!n4

3~2â11â2!n4~2 i â1
†1â2

†!n5~ i â11â2!n5

3~ i â1
†1â2

†!n6~2 i â11â2!n6

3exp@21/2~ â1
†â11â2

†â2!#:uc& in , ~20!

with d05d22d1 implicitly described in Eq.~20! as the rela-
tive temporal phase between the components of the in
field. The primes on the summations in Eqs.~19! and ~20!
now indicate that the summations are performed by exc
ing those configurations for which the outcome is inconc
sive.

All moments are now determined once the initial comp
nents ^n̂1&,^n̂2& and the relative temporal phased0 of the
inclusive fieldsâ1 ,â2 are known. In our calculations the in
tial field parameters are chosen as the ratio of the pho

numbersh5^n̂1&/^n̂2&, the total number of photonŝŜ0&
5^n̂1&1^n̂2&, and the relative temporal phased0 .

The credibility of the results obtained from the quantu
operational approach crucially depends on the understan
of the influence of the quantum detectors on the final sta
tics. As pointed out in Refs.@2, 3, 6, 9#, another essentia
element of the operational approach is the construction o
ensemble from a long series of such single operational m
surements. The final physical results are then obtained
averaging the outcomes of single measurements over the
ated ensemble. Based on this prescription, we must now
struct a physical ensemble of measured configurations in
calculations of the moments as well as the probability dis
butions in Eqs.~19! and ~20!. The response of the quantu
detectors to the incoming photons in the creation of the p
tocurrent is a random process that obeys the Poisson s
tics in Eq. ~9! @19#. As the photoelectrons are emitted
random times respecting this statistics, the information
garding the initial temporal phased0 of the incoming pho-
tons is modified and each repeated measurement is eq
lent to superposing a random phase shiftD on d0 . Hence the
process of repeated measurements creates an ensem
temporal phase configurationsd01D, with D being uni-
formly distributed over the available range. Since we co
sider in our calculations that the measurement time intervT
is considerably larger than the coherence time, the avail
range forD is the entire 2p range. Hence the average ov
the created ensemble corresponds to an averaging over a
form distribution of D. It is clear from Eq.~19! that the

momentŝ Êu(x)& are independent fromd0 ; hence they will
also be independent ofD. This implies that a uniform aver
age over D does not influence the measured mome

^Êu(x)& and the probability distribution forP(u) is given by
al

-
-

-
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s-
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-
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P~u!5E
2`

` dx

2p
e2 ixu$^Êu~x!&1^Êu~2x!&%, 0<u<p.

~21!

On the other hand, the moments^Êf(x)& depend on the tem
poral phased0 and before theD average, thed0 dependence
must be replaced byd01D. This produces, at each measur

ment, the conditionedf moments^Êf(x;d01D)& and, fol-
lowing Ref. @6#, their conditional probability distribution
P(f,d0 ;D) is given by

P~f,d0 ;D!5E
2`

` dx

2p
^Êf~x;d01D!&e2 ix~f2D!,

~22!
2p<f<p.

Therefore, the ensemble-averaged probability distribution

P~f,d0!5E
2p

p dD

2p
P~f;d0 ;D!. ~23!

After a short calculation using Eqs.~19! and ~20! in Eqs.
~21!–~23!, the probability distributionsP(u) and P(f,d0)
can be expressed by

P~u!5Nu (
$nj %

d~u2u$n%!^P~$nj%!& ~24!

and

P~f,d0!5Nf (
$nj %

^P~$nj%,d02f$n%1f!&, ~25!

where the last term in Eq.~25! is obtained by using Eqs.~20!
in Eq. ~22!.

On the other hand, the detectors’ influence on the m
sured statistics can only be understood if the measured
ments and probability distributions are compared with tho
without the detectors’ influence. For this purpose and, f
lowing Refs.@2,3#, we define the theoretically inferred value

of the u andf moments aŝÊu
I (x)& and ^Êf

I (x)&, where

^Ê u
I ~x!&5 inK cU:F n̂12n̂21 i2An̂1n̂2

n̂11n̂2
G x

:UcL
in

~26!

and

^Ê f
I ~x!&5 inK cU :F ~ n̂32n̂4!1 i ~ n̂52n̂6!

A~ n̂32n̂4!21~ n̂52n̂6!2G x

:UcL
in

,

~27!

where : : stands for the normal ordering of the field a
vacuum operators inside.

We calculate the probability distributionsP(u), where 0
<u<p, andP(f,d0), where2p<f<p, numerically us-
ing Eqs.~24! and ~25!. Since cosu is single valued in theu
range considered, we will only need to examine the fluct
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tions in theĈu operator. On the other hand, in thef range
considered bothĈf and Ŝf operators will be necessary. I
our calculations, the summations over an infinite range
$n% j ’s are truncated at$n% j

max520 for all j that naturally re-
strict the accuracy of the results to sufficiently weak init
fields. The measured moments and the probability distri
tions are then compared with the theoretically inferred o
by using Eqs.~26! and ~27!.

A. Calculations for a fully polarized quantum coherent field

Let us now assume that the initial field is in a fully pola
ized quantum coherent stateuc& in5ua1 ,a2&, with the param-
eters given bya j5ua j ueid j , whereua j u2 andd j ( j 51,2) are
the average number of photons and the coherent temp
phase of thej th component, respectively. The relative tem
poral phase is given, as before, byd05d22d1 . From Eqs.
~19! and ~20!, the measured moments in this state are giv
by

^Êu~x!&5Nu ( 8
n1 ,n2

F ~n12n2!1 i2An1n2

n11n2
G x

3ua1u2n1ua2u2n2

3exp$2 1
2 ~ ua1u21ua2u2!%/2n11n2n1!n2! ~28!

and

^Êf~x;d0!&5Nf ( 8
$n%

F ~n32n4!1 i ~n52n6!

A~n32n4!21~n52n6!2G x

3ua11a2u2n3u2a11a2u2n4u

2 ia11a2u2n5u ia11a2u2n6

3exp$2 1
2 ~ ua1u21ua2u2!%/8n31n41n51n6

3n3!n4!n5!n6!, ~29!

where$n%5(n3 ,n4 ,n5 ,n6). For the specific initial polarized
coherent state considered, using Eqs.~14! and~15!, the nor-
malizations are given by

N u
21512exp$2 1

2 ~ ua1u21ua2u2!% ~30!

and definingb52ua1uua2u/(ua1u21ua2u2), whereb<1,

N f
21512(

n,m
S ua1u21ua2u2

8 D 2~n1m!

3
exp$2 1

2 ~ ua1u1ua2u2!%

~n! !2~m! !2

3@12b2 cos2 d0#n@12b2 sin2 d0#m. ~31!

We will first examine theP(u) distribution. Using Eq.~24!,
the calculation ofP(u) yields
f

l
-
s

ral

n

P~u!5Nu ( 8
n1,n2

d~u2u$n%!
ua1u2n1uga2u2n2

2n11n2n1!n2!

3exp$2 1
2 ~ ua1u21ua2u2!% ~32!

whereu$n% is defined by the first expression in Eqs.~18!. For
sufficiently weak fields, i.e.,̂ S0&!1, each detector mea
sures null or a very few number of photons. This implies th
in Eq. ~32! it is sufficient to restrict the summation ove
$n1,n2% to a few terms. For instance, let us consid
$n1,n2%50,1. Then including only the first-order terms in th
average total photon number, Eq.~32! can be approximately
expressed in the weak-field limit byPw(u) in the form

Pw~u!5Nw^S0&H 1

11h21 d~u!1
1

11h
d~u2p!J ,

~33!

where ^S0&5(ua1u21ua2u2)/2 is the total average photo
number deduced from the measurements at the dete
D1 ,D2 , h5ua1u2/ua2u2, and Nw5^S0&

21 so that
*0

pdu P(u)51. From Eq.~33! we find that

^cosu&w[E
0

p

du~cosu!P~u!5
h21

h11
, ^cos2u&w51.

~34!

Clearly, ^cosu&w in Eq. ~34! is consistent with the theoreti
cally inferred values calculated from Eq.~26! @i.e., ^cosu&w

5^Ĉu
I &]. In the initial polarized coherent state the theore

cally inferred moments are given by

^Ê u
I ~x!&5Fh211 i2h1/2

h11 Gx

5eix tan212Ah/~h21!, ~35!

which respect a nonfluctuating distribution. Equation~35! is
also consistent with the classical calculations using Eq.~4!.
However, for the second moments we obtain

^~Ĉu
I !2&5S h21

h11D 2

Þ^cos2 u&w . ~36!

The u distribution in Eq. ~32! is plotted in Fig. 3 forh

51.0,0.5 and̂ Ŝ0&50.1,1.0,5.0,10.0. The first observation
Fig. 3~a! is that ath51.0 the probability distribution is sym
metrically centered aroundu5p/2. In the weak-field limit
P(u) is peaked atu50,p. As the field strength is suffi-
ciently increased, the central peak atu5p/2 gradually de-
velops as all other peaks are suppressed. The averag
cosu within the full range 0<u<p is zero, as it would also
be expected from the theoretically inferred moments in E
~35!. For hÞ1, the measuredP(u) is plotted in Fig. 3~b!.
The d functions in Eq.~32! are numerically simulated by
sharp Lorentzians, hence they acquire a finite width in F
3~a! and 3~b!. On the other hand, using Eq.~21!, the inferred
probability distributionPI(u) can be found asPI(u)5d„u
2cos21(h21)/(h11)….



in

b
-

ll

A
d
e

re

e
he
nts
.
rge

s in
of
e
red

the

an
the

e

1592 PRA 59T. HAKIOĞLU
A similar calculation can also be done for theP(f) dis-
tribution by making use of Eqs.~29!, ~22!, and ~23!. After
some calculation using the normalization procedure lead
to Eq. ~23! we find that

P~f,d0!5Nf ( 8
$nj % ~ j 53,4,5,6!

e2~ ua1
2u1ua2u2/2

n3!n4!n5!n6!

3S ua1
2u1ua2u2

8 D n31n41n51n6

3@11b cos~d02f2f$n%!#
n3

3@12b cos~d02f2f$n%!#
n4

3@11b sin~d02f2f$n%!#
n5

3@12b sin~d02f2f$n%!#
n6, ~37!

which is, not surprisingly, the same distribution obtained
NFM in Ref. @6# in a slightly different context. The weak
field limit of Eq. ~37! has also been studied in Ref.@6#, which
we refer the reader to for additional details. The numerica
calculated equation~37! is plotted in Fig. 4 forh51.0,0.5;
S050.1,1.0,5.0,10.0, andd050. The first observation we
make here is thatP(20.0,d0) is almost independent fromh
but strongly dependent on the strength of the initial field.
the field strength increases, the fluctuations decrease an
distribution becomes gradually narrower. On the oth
hand, using Eq.~27!, the theoretically inferred moments a
calculated as

FIG. 3. Measured probability distributionP(u) versusu for the
fully polarized coherent state and~a! h51.0 and~b! h50.5 for the
indicated average total photon numbers.
g

y

y

s
the
r

^Ê f
I ~x!&5eid0x. ~38!

Hence the theoretically inferredf distribution is also non-
fluctuating given byP(f,d0)5d(f2d0). The operational
averages forf as well as the probability distributions ar
strongly peaked in the strong-field limit and they have t
tendency to approach to the theoretically inferred mome
and thed-function-like probability distributions respectively
On the other hand, the operational approach predicts la
deviations of the measurement from the theoretical value
the weak-field limit. In order to understand the influence
the photo-detection particularly in the weak-field limit, w
now examine the second-order fluctuations in the measu
moments of theu andf related operators.

Measured fluctuations in polarization

Once the moments in Eqs.~28! and ~29! are defined, the
measured moments of the cosine and sine operators ofu and
f can be found. The same moments can also be found by
use of the probability distributions in Eqs.~32! and ~37!.
Here the weak-field limit is particularly interesting and c
also be examined analytically. We start our analysis of
fluctuations by reminding that, since 0<u<p, we will be
confined to the measured fluctuations in theĈu operator. In
the weak-field limit ~keeping only the leading term in th
total field strength!

FIG. 4. Measured probability distributionP(f) versusf for the
fully polarized coherent state and~a! h51.0 and~b! h50.5 for the
indicated average total photon numbers.
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^Ĉu&.
h21

h11
, ^Ĉu

2&.1, ~39!

where we find the dispersionD(u) as

D~u!5A
Š~Ĉu2^Ĉu&!2

‹.
2h1/2

h11
<1. ~40!

The dependence ofD(u) for h51.0,0.5,0.1 on the total field
strength is shown in Fig. 5. We now shift our attention to t
measured fluctuations in thef distribution. Since2p<f
<p we need to consider here both the cosine and the
moments. Considering first the weak-field limit and keep
only linear terms in the total field strength we have

^Ĉf&.
h1/2 cosd0

h11
,

^Ŝf&.
h1/2 sin d0

h11
, ~41!

^Ĉf
2 &5^Ŝf

2 &5
1

2
.

In this case we define the dispersionD(f) as

D~f!5A
Š~Ĉf2^Ĉf&!2

‹1Š~Ŝf2^Ŝf&!2
‹

5A12
h

~h11!2>
)

2
. ~42!

The dependence ofD(f) on the total field strength is plotte
for h51.0,0.5,0.1 in Fig. 6.

On the other hand, for both theu and thef related mo-
ments the theoretically inferred fluctuations vanish in the

FIG. 5. Second-order fluctuations in theu related measuremen
for the fully polarized coherent state and the indicated values oh.
ne
g

-

herent state@i.e., DI(u)5DI(f)50]. The measured fluctua
tions differ significantly from the theoretically inferred one
as the strength of the initial field becomes weak. These
viations in Figs. 5 and 6 from the theoretically inferred va
ues arise from the nature of the photodetection of weak fie
and the normalization of the probability weight after disca
ing the inconclusive data. We find that the results for t
fully polarized coherent field and the differences between
measured and inferred fluctuations in the weak-field lim
closely relate to the results obtained by NFM@2,6#.

The h dependence of the fluctuations in Figs. 5 and
implies thath can be used as a parameter in the measurem
to search for an optimum orientation of the setup in Fig. 1
rotating the reference axes 1,2 around the initial field dir
tion. Note that this corresponds to a solid rotation of t
entire setup since the relative orientation of each polariz
beam splitter with respect to PBS1 is fixed. By this operation
the angle between the polarization axes of the setup and
mean principle axes of the polarization ellipse of the init
field can be changed. Let us suppose thata10 and a20 are
initial coherent state parameters defined with respect to s
fixed orientation 10,20 of PBS1 and given by a j 0
5ua j 0ueid j 0. If the principle axes 1,2 are rotated by an ang
g with respect to 10,20 , the initial coherent field parameter
a1 ,a2 are effectively rotated by the same angle with resp
to a10 anda20. In particular, the average number of photo
^n̂1& and ^n̂2& measured atD1 andD2 are given by

^n̂1&5 1
2 ua10cosg2a20sin gu2,

^n̂2&5 1
2 ua20cosg1a10sin gu2. ~43!

Sinceg is arbitrary, we can use it to tuneh5^n̂1&/^n̂2& in
order to find whether an optimum orientation of the set
exists such that bothu andf related measurements~or what-
ever other observables are examined! can beimprovedsimul-
taneously. The measuredh at the detectorsD1,2 is then a
function ofg and is represented in terms of the initially fixe
h05ua10u2/ua20u2 and the relative phase (d202d10) as

FIG. 6. Second-order fluctuations in thef related measuremen
for the fully polarized coherent state and the indicated values oh.
h~g!5
~Ah02tan g!21Ah0tan g sin2~d202d10!/2

~Ah01tan g!22Ah0tan g sin2~d202d10!/2
. ~44!
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FIG. 7. Second-order fluctuations in theu and
f related measurements for the fully polarize
coherent state as a function of the rotation para
eterg for the indicated values ofh and the rela-
tive temporal phase in the extreme weak-fie
limit ^S0&51.
to

as
e

he

m

f
lar

see

ict-
The second-order fluctuations represented byD(u) and
D(f) are plotted in the weak-field limit as a function ofg
for 0<g<p/2 and for^(0&51 in Fig. 7 and for̂ (0&59 in
Fig. 8. The figures imply that such an optimum orientation
simultaneously minimize the fluctuationsD(u) and D(f)
for a fixed value ofg, d202d10, and ^(0& does not exist.
Hence, depending on the measured observable, one h
engineer such optimum configurations for each measurem
independently.

B. Calculations for a fully polarized Fock state

Now let us assume that the initial field is given by t
fully polarized photon number stateuc& in5uM &f0

as

uM &f0
5NM (

m50

M S M
mD 1/2

eif0~M2m!um,M2m&, ~45!

wheref0 is a temporal phase between the polarization co
ponents,NM522M /2, (m

M) is the binomial coefficient, and
to
nt

-

um,M2m&[um& ^ uM2m& describes the relative number o
photons in each component in reference to a particu
choice of predefined axes of polarization. It is possible to
that the field operators for the Fock state

âf0
5

1

&
~ â11e2 if0â2!, âf0

† 5
1

&
~ â1

†1eif0â2
†!

~46!

satisfy

âf0
uM &f0

5AM uM21&f0
, âf0

† uM &f0
5AM11uM11&f0

.

~47!

The temporal phase factorf0 determines the ellipticity of
the polarization. Iff050,p, Eq. ~45! provides the basis for
linear polarization. Forf56p/2 left and right circularly
polarized states are obtained. For arbitraryf0 left and right
elliptically polarized Fock states can be produced. Restr
d
m-
FIG. 8. Second-order fluctuations in theu and
f related measurements for the fully polarize
coherent state as a function of the rotation para
eter g for the indicated values ofh and ^S0&
59.
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ing f0 within the range 0<f0<p, the left and right ellip-
tically polarized states are realized respectively byuM &f0

anduM &f02p with the respective field operatorsâf0
,âf0

† and

âf02p ,âf02p
† . The second pair of field operators is the

found by making the changef0→f02p in Eqs. ~46!. The

field angular momentum operator is given byL̂z5(âf0

† âf0

2âf02p
† âf02p) andL̂z is diagonal inuM &f0

with eigenvalue

M.
Using Eqs.~46! and ~47!, Eq. ~45! can be written as

uM &f0
5

1

AM !
S â1

†1eif0â2
†

&
D M

u0,0&5
1

AM !
~ âf0

† !Mu0&,

~48!

whereu0& is the vacuum state forâf0
as well as forâ1 andâ2

~i.e., u0&[u0,0&). In what follows, the full range2p<f0
<p will be considered. In fact, Eq.~45! is an example in a
class of fully polarized Fock states corresponding toh
5^n̂1&/^n̂2&51, where^n̂1& and ^n̂2& describe the averag
number of photons in individual polarization modes. For E
~45! we have^n̂1&5^n̂2&5M /2. If a rotation parameterg is
introduced@for instance, as in Eq.~43! for the coherent state#
in the field space by

âf0 ,g5~cosgâ11e2 if0sin gâ2!,

~49!
âf0 ,g

† 5~cosgâ1
†1eif0sin gâ2

†!

in terms of the new field operatorsâf0 ,g ,âf0 ,g
† , the field

operators of the initial Fock state in Eq.~45! would be ob-
tained wheng5p/4 in Eq. ~49!. This implies that the Fock
stateuM &f0 ,g created by Eq.~49! is realized effectively by a

g2p/4 degree rotation of the Fock state in Eq.~45! with
uM &f0 ,g being

uM &f0 ,g5
1

AM !
~ âf0 ,g

† !Mu0&

5 (
m50

M S M
mD 1/2

~cosg!m~eif0sin g!M2mum,M2m&.

~50!

Equation~50! for a fixedf0 now describes a fully polarized
generalized Fock state with an arbitrary ratio of photon nu
bersh(g)5cot2g between the polarization components.

In comparison to the coherent initial field, considerab
more tedious work is involved in the numerical calculatio
of both measured moments. In the general fully polariz
Fock state given by Eq.~50!, Eqs.~12! and ~13! become

^Êu~x!&5Nu ( 8
n1 ,n2

F ~n12n2!1 i2An1n2

n11n2
G x

3
1

2n11n2n1!n2! H(
r ,p

~21!r 1p

2r 1pr ! p!
m

~n11r !

~n21p!J
~51!
.

-

d

and

^Êf~x,f0!&5Nf( 8
$n%

F ~n32n4!1 i ~n52n6!

A~n32n4!21~n52n6!2G x

3
1

8n31n41n51n6n3!n4!n5!n6!

3(
r

~21!r

2r r ! K MU:~ â1
†â11â2

†â2! ñ1r

3S 11
â1

†â21â2
†â1

â1
†â11â2

†â2
D n3

3S 12
â1

†â21â2
†â1

â1
†â11â2

†â2
D n4

3S 12 i
â1

†â22â2
†â1

â1
†â11â2

†â2
D n5

3S 11 i
â1

†â22â2
†â1

â1
†â11â2

†â2
D n6

:UM L , ~52!

where in Eq.~51!

m
~n11r !

~n21p!
5^M u:~ â1

†â1!n11r~ â2
†â2!n21p:uM &

5 (
m50

M
M !

~m2n12r !! ~M2m2n22p!!

3~cosg!2m~sin g!2~M2m!, ~53!

with n11n2<M in Eq. ~51! and ñ<M , where ñ5n31n4

1n51n6 in Eq. ~52!. In Eq. ~52!, ^Êf(x,f0)& is understood

in the same sense as^Êf(x,d0)& in Eq. ~20!. The normaliza-
tions are determined as before by satisfying the condit

^Êu(0)&5^Êf(0,f0)&51.
The simplest analytic results can be obtained for the c

M51 with g and f0 being free parameters. This corre
sponds for the initial state to

u1&f0 ,g5cosgu1,0&1eif0sin gu0,1&, ~54!

which is a fully polarized version of the split photon state
Refs.@2, 6#. Using Eqs.~51!–~53!, we find for the moments

^Êu~x!&5
Nu

2
@cos2g1~2 !xsin2g#, ~55!

whereN u
2151/2, and

^Êf~x,f0!&5
Nf

8
$@11~2 !x1 i x1~2 i !x#

1@12~2 !x#sin 2g cosf0

1@ i x2~2 i !x#sin 2g sin f0%, ~56!

whereN f
2151/2. For the probability distributionsP(u) and

P(f,f0) we use Eqs.~21!–~25! in the same spirit as we
applied to the coherent initial state in Sec. II A.
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A simple calculation yields that

P~u!5cos2gd~u!1sin2gd~u2p! ~57!

and

P~f,f0!5
1

2p
$11sin 2g cos~f02f!%, ~58!

where the probability distributions are positive definite a
properly normalized, i.e.,*0

pdu P(u)5*2p
p df P(f,f0)

51. At this point, a crucial limiting case in Eqs.~57! and
~58! needs to be mentioned. Forg5p/4, Eqs.~57! and~58!
describe the probability distributions of a fully polarize
symmetric Fock state. Forg50 and p/2 we have single-
mode photon Fock statesu1,0& andu0,1&. The measured prob
ability distributions in these states areP(u)5d(u) and
P(f,f0)51/2p for g50 and P(u)5d(u2p) and
us
s
t

on

a
e
s

P(f,f0)51/2p for g5p/2, which correctly describe the
statistics of the single-mode Fock state consistently with
theoretical expectations of a uniform distribution f
P(f,f0). For all otherg, Eqs. ~57! and ~58! correctly de-
scribe the theoretical distributions for a generaluM &f0 ,g .
This behavior of the probability distributions can also
observed in Eq.~37! in the limits 1!h andh!1. The ana-
lytic calculations become exponentially harder for 2<M .
Nevertheless, explicit forms of theP(u) and P(f,f0) can
be given for a generalM as

P~u!5Nu ( 8
n1 ,n2

d~u2u$n%!
1

2n11n2n1!n2!

3H(
r ,p

~21!r 1p

2r 1pr ! p!
m

~n11r !

~n21p!J , ~59!

where Eq.~53! is used, and
P~f,f0!5Nf( 8
$n%

1

8n31n41n51n6n3!n4!n5!n6!
(
r 50

` S 21

2
D r

1

r !
(
p50

r S r

p
D (

l 350

n3 S n3

l 3
D (

l 450

n4 S n4

l 4
D (

l 550

n5 S n5

l 5
D

3 (
l 650

n6 S n6

l 6
D (

k350

n3 S n3

k3
D (

k450

n4 S n4

k4
D (

k550

n5 S n5

k5
D (

k650

n3 S n3

k6
D ~21! l 41k4~ i ! l 61k52 l 51k6

3 (
m50

M

e2 i ~f02f1f$n%!~ l̃ 2 k̃!
M !

~m2 l̃ 2r 1p!! ~M2m2p2ñ1 l̃ !!
~cosg!2m2 l̃ 1 k̃~sin g!2~M2m!1 l̃ 2 k̃, ~60!
nt
l-

re
tions

lly
It
heme
even
with u$n% and f$n% as given by Eqs.~18!. The numerical
calculations of Eqs.~59! and ~60! for linear polarization
~e.g., f050), and h51.0,0.5 @i.e., corresponding tog
5p/4,tan21(&)] are presented in Figs. 9 and 10 for vario
values ofm. Like in the coherent case, the temporal pha
factorf0 in Eq. ~60! only shifts the distribution and does no
play any role in the fluctuations. We now shift our attenti
to the second-order fluctuations in theu- and f-dependent
moments.

Measured fluctuations in polarization

Similar to the coherent state example in Sec. II A, we c
examine theu andf dispersions in the weak-field limit in th
range 0<u<p and2p<f<p using the same observable
as in Sec. II A 1. ForM51 we have foru

^Ĉu&5cos 2g, ^Ĉu
2&51, ~61!

hence

D~u!5A
Š~Ĉu2^Ĉu&!2

‹5sin 2g5
2h1/2

11h
, ~62!

and forf

^Ĉf&5 1
2 sin 2g cosf0 ,
e

n

^Ŝf&5 1
2 sin 2g sin f0 , ~63!

^Ĉf
2 &5^Ŝf

2 &5 1
2 ,

hence

D~f!5A
Š~Ĉf2^Ĉf&!2

‹1Š~Ŝf2^Ŝf&!2
‹

5A12 1
4 sin22g5A12

h

~h11!2>
)

2
. ~64!

It is not an accident that the weak-field limit for the cohere
state described in Eq.~42! coincides with the Fock state ca
culation in Eq.~64! for M51 for all h. The results of the
numerical calculations ofD(u) andD(f) as the initial num-
ber of photons is varied are shown forh51.0,0.1,0.01 in Fig.
11 for D(u), and for h51.0,0.5,0.1 in Fig. 12 forD(f)
corresponding to linear polarization~e.g., f050). Due to
the large number of summations in Eq.~60!, calculations are
considered within the range 1<M<10.

The fully polarized Fock state is a typical example whe
the correlations are present between the relative occupa
of the polarization components. As pointed out in Ref.@2#,
this renders the physical interpretation of the theoretica
inferred moments for thef related operators impossible.
appears that the operational approach here provides a sc
where the temporal phase distribution can be measured
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FIG. 9. Measured probability distributionP(u) versusu for the
fully polarized Fock state for~a! h51 and ~b! h50.5 and the
indicated average total photon numbers.

FIG. 10. Measured probability distributionP(f) versusf for
the fully polarized Fock state for~a! h51 and~b! h50.5 and the
indicated average total photon numbers.
if such correlations are present. We believe that the res
obtained in Figs. 9 and 10 should be checked experiment
with the particular emphasis on the weak-field regim
which we expect to provide further confirmation of NFM
operational scheme. The split-photon state discussed
NFM in Refs.@2, 6# can also be interpreted as the weak-fie
limit of the polarized Fock state in Eq.~45! corresponding to
M51, where strong intensity correlations are present.
this state the inferred moments of the correspondingĈf and
Ŝf are unphysical because of the fact that in Eq.~27! the
denominator vanishes. To examine the theoretically infer
moments for a generalM we use Eqs.~26! and ~27! in the
Fock state~45! ~we considerg5p/4 for simplicity! to cal-
culate

^~Ĉu
I !x&5

^M u:~ n̂12n̂2!x:uM &

^M u:~ n̂11n̂2!x:uM &
, ~65!

where we find that

^Ĉu
I &5^~Ĉu

I !2&50 ~66!

and

^Ê f
I ~x!&5

^M u:@~ n̂32n̂4!1 i ~ n̂52n̂!#x:uM &

^M u:@A~ n̂32n̂4!21~ n̂52n̂6!2#x:uM &

5
^:@~ â1

†â21â2
†â1!1 i ~ â1

†â22â2
†â1!#x:&

^:@Aâ1
†â2

†â1â2#x:&
.

~67!

FIG. 11. Second-order fluctuations in theu related measure-
ments for the fully polarized Fock state as a function of the aver
total number of photons and the indicated values ofh.

FIG. 12. Second-order fluctuations in thef related measure-
ments for the fully polarized Fock state as a function of the to
number of photons and the indicated values ofh ~here we consid-
eredf050).
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The vacuum fields do not contribute to the normal order
and we also omitted the state labelM in the second step o
the expression. In order to calculate Eq.~67! we need
^:@An̂1n̂2#x:&. In the presence of correlations~i.e., ^n̂1n̂2&
Þ^n̂1&^n̂2&) we have

^n̂1n̂2&

^n̂1&^n̂2&
512

1

M
,1. ~68!

Hence the correlation effects cannot be ignored if the ini
Fock state contains a few photons. Furthermore, Eq.~68!
implies that, forM51, the denominator in Eq.~67! diverges
at x52. It might therefore be suggested to consider that
comparison with the theoretically inferred moments with t
measured operational ones is limited to the strong-field
gime (1!M ), where also consistency with the classical
sults are expected to hold. On the other hand, the denom
tor in Eq.~67! is not well defined for values ofx not equal to
an even integer. Now let us assume for the moment that
are able to replace the denominator of Eq.~67! by
(^â1

†â2
†â1â2&)

x/2. One expects that if this replacement can
done, it can only be valid in the sufficiently strong-field lim
where the correlations as well as fluctuations are expecte
be negligible. With this replacement, Eq.~67! would yield

^Ĉf
I &5

cosf0

A121/M
, ^Ŝf

I &5
sin f0

A121/M
,

^~Ĉf
I !2&5cos2f0 , ^~Ŝf

I !2&5sin2f0 . ~69!

The inferred dispersionDI(f) calculated from Eqs.~69! is
purely imaginaryfor all M, which is an unphysical result
Hence the replacement we made above, in order to make
denominator of Eq.~67! calculable, is unphysical for allM;
thus it cannot be done. Unlike the coherent state, the c
parison with the theoretically inferred moments is made
possible by the presence of strong correlations. Theref
we are unable to examine the photodetector effects in
weak-field limit in the operational measurement of the fu
polarized Fock state using the standard formalism of th
retically inferred moments. The unphysical results we o
tained for the inferred moments are not inherent to the qu
tum scheme. Even in the classical measurement sch
there is no unique way of extracting the theoretically inferr
moments when the relative phase or the relative inten
fluctuations are correlated. We refer the reader to Ref.@2# for
a detailed discussion on this topic in the context of ope
tional phase formalism. Nevertheless, we will suggest in
following subsection that for the Fock state in Eq.~50!, or
specifically for Eq.~45!, it is possible to find another mea
sure to examine the photodetector effects in the weak-fi
limit by making use of the properties of the uncertainty
lations.

C. Fully polarized Fock state and connections
to the su„2… interferometry

For symmetric distribution of photon numbers in the co
ponents of the polarization, the fully polarized Fock state
Eq. ~50! becomes Eq.~45!, which is a generalized su~2! co-
herent state@20#
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u j 0j&5e~j Ĵ12j* Ĵ2!u j 0 ,2 j 0&

5
1

~11uju2! j 0 (
n52 j 0

j 0 S 2 j 0

j 01nD 1/2

j j 01nu j 0n&, ~70!

which becomes clear if one makes a correspondence betw
Eqs.~70! and ~45! as

j 0→M /2, j 02n→m, j 01n→M2m, j→eif0

or ~71!

j 01n→m, j 02n→M2m, j→e2 if0,

where in Eq.~70! u j 0n&5u j 02n, j 01n&. Here Ĵ65 Ĵ16 i Ĵ2
are the standard raising and lowering operators of the s~2!

angular momentum algebra defined by the generatorsĴi ( i
50, . . .,3),

Ĵ05~ â1
†â11â2

†â2!/2,

Ĵ15~ â1
†â12â2

†â2!/2,
~72!

Ĵ25~ â1
†â21â2

†â1!/2,

Ĵ35~ â1
†â22â2

†â1!/2i ,

where, considering that (â1
† ,â1),(â2

† ,â2) represent two inde-
pendent boson pairs, we have the standard su~2! algebra

@ Ĵi ,Ĵ j #5 i e i jk Ĵk ( i , j ,k51,2,3). Here the central invariant o
the algebra isĴ25 Ĵ0( Ĵ011)5 j 0( j 011), where j 05M /2
with M describing the total number of particles in the Fo
state~45!. The uncertainty relations for theĴi ’s are given by

~D Ĵi !~D Ĵ j !>
ue i jk u

2
^Jk&, iÞ j Þk51,2,3. ~73!

Hence, the fully polarized Fock state is nothing but the g
eralized coherent state of the free field su~2! angular momen-
tum algebra. Under certain conditions Eq.~70! also coincides
with the su~2! minimum uncertainty states@21–23# minimiz-
ing Eq. ~73! which has been explored recently in the curre
literature in the context of su~2! interferometry@22–24#.

The idea of su~2! interferometry is to create interferenc
between two arbitrary input fields by using passive and
tive lossless optical devices to measure the relative temp
phase between the fields. For this purpose the measured
erators of the su~2! interferometry are defined as in Eqs.~72!
or they are related to Eqs.~72! by certain unitary transfor-
mations induced by the passive and active optical devic
These transformations of Eqs.~72! ~or the inverse transfor-
mations on the initial fields! can be engineered in such a wa
that the relative phase shift between the input fields can
measured by pure intensity measurements on the fields a
output ports of the interferometer@22#. The principles of
the quantum interferometry are thus based on a genera
operational scheme that is, in principle, very similar to t
idea of the operational phase measurement presented in
@2, 3, 6, 9# as well as the present work.
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FIG. 13. Second-order fluctuations in theu
and f related measurements for the fully pola
ized Fock state as a function of the rotation p
rameterg for the indicated values ofM andf0 .
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Now let us construct the uncertainty product for the ge
eral fully polarized Fock stateuM &f0 ,g and particularly focus

our attention on the specific limituM &f0
at g5p/4. The

measured interferometric operators correspond, in the s
dard su~2! interferometry, to the expected values of the o
erators in Eqs.~72! or some linear superpositions of them
the initial state. ForuM &f0 ,g being the initial state, we hav

^Ĵ0&5
M

2
,

^ Ĵ1&5
M

2
cos 2g,

~74!

^Ĵ2&5
M

2
sin 2g cosf0 ,

^Ĵ3&5
M

2
sin 2g sin f0

and

~D Ĵ0!250,

~D Ĵ1!25
M

4
sin22g,

~75!

~D Ĵ2!25
M

4
~12cos2f0sin22g!,

~D Ĵ3!25
M

4
~12sin2f0sin22g!.

Usingg5p/4 in Eqs.~75! and~74! we observe thatuM &f0
is

an important state in the algebra defined by the operator
Eq. ~72!. It is an su~2! coherent state@see Eq.~70!# as well as
a minimum uncertainty~intelligent! state minimizing Eq.
~73! for iÞ j 51,3;k52 and iÞ j 51,2;k53. This can be
explicitly seen by using Eqs.~74! and ~75! in Eq. ~73!. Fur-
thermore, wheng5p/4, this result is independent fromf0 ;
hence a temporal shift inf0 does not change any of thes
properties. This implies that if su~2! interferometric tech-
niques@22# are employed foruM &f0

, the standard precision
can be achieved in the measurement of the temporal p
@23,24#. The precision in the phase measurement can
found from Eqs.~74! and ~75! for the general case with
uM &f0 ,g as
-

n-
-

in

se
e

df0~g!5
~D Ĵ3!

u]^Ĵ3&/]f0u
5

1

AM

A12sin22g sin2f0

sin 2g cosf0

,

~76!

where d(g)>df0(p/4)51/AM , which is the well-known
minimum standard noise limit. Hence,theoretically, the
maximum precision in the phase measurement can
achieved only atg(p/4)51 corresponding toh51. The ba-
sic idea being the extraction of the phase statistics from p
photon counting, the su~2! interferometry is in close analog
to the operational measurement scheme. The operatorsĴi ( i
50,1,2,3) are the interferometric analogs of the operatio

onesŜ i ( i 50,1,2,3) in Eq.~7!, but there are also significan
differences between them. Although theĴi ’s are the genera-

tors of the su~2! algebra, theŜ i ’s all commute with each
other and no useful uncertainty product similar to Eq.~73!
can be written for them. Now a legitimate question arises
to how much the properties of the quantum stateuM &f0 ,g , as

far as theĴi ’s are concerned, are preserved in the operatio

measurement scheme using theŜ i operators. The main dif-
ference arising from the presence of the vacuum states in

Ŝ i ’s as well as the operational scheme itself, it is nevert
less expected that for sufficiently strong fields the quant

operational measurement using theŜ i operators should be
consistent with Eq.~73!. The deviations in the quantum op
erational measurement scheme from Eq.~73! are expected
when the initial field is sufficiently weak. Hence, by exam
ining the uncertainty properties ofuM &f0 ,g , particularly near

g5p/4, a perfect ground to understand the influence of
operational scheme in the final measurement can be
vided.

We start the analysis of the uncertainty relations
uM &f0 ,g by examining theg dependence of the measure

D(u) andD(f) . The results are represented in Fig. 13 f
M51,5 and linear polarization in the range 0<g<p/2. The
figure indicates that, similarly to the results obtained for t
fully polarized coherent state measurements, it is not p
sible to simultaneously minimize the fluctuations in the me
surements of theu and f related moments. The values o
D(u) and D(f) in Fig. 13 corresponding tog5p/4 ~i.e.,
h51), g.0.3p ~i.e., h50.5),g.0.4p ~i.e., h50.1), and
g.0.47p ~i.e.,h50.01) can also be seen in Figs. 11 and 1
Here g5p/4 has a special importance since this point c
responds to whereuM &f0 ,g becomes a coherent as well as

minimum uncertainty state of theĴi ’s. As g is shifted away
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from p/4, particularly towardsg50,p/2, one particular po-
larization mode starts dominating where the initial st
gradually starts looking like a single-mode Fock state. T
single-mode Fock limit is realized atg50,p/2 for u related
measurements@i.e., Du50 and P(u) comprises a single
d-function peak# and maximally random fluctuations are o
served in thef related measurements@i.e., Df51 and
P(f)51/2p]. Because of the fact that the interferometr
operators do not commute with each other, it is not poss
to find the interferometric analogs of the trigonometric o
eratorsĈu ,Ŝu and Ĉf ,Ŝf defined in Eqs.~8!. This implies
that the interferometric analogs ofDu and Df cannot be
found by direct analogy and a comparison between
theory and the measurement is not possible for them. At
level, the only comparison with the theory can be made
examining the minimum uncertainty product for theĴi ’s and

the Ŝ i ’s.
Keepingg as the parameter, we now express Eq.~73! in

uM &f0 ,g in the form

U~g!5
~D Ĵ2!21~D Ĵ3!2

^Ĵ2&
21^Ĵ3&

2
~D Ĵ1!2 ~77!

and find from Eqs.~74! and ~75! that

U~g!5 1
2 ~12 1

2 sin22g!, ~78!

with the minimum uncertainty corresponding toU(p/4)

5 1
4 . The operational analog of Eq.~77! in terms of theŜ i ’s

can be found by direct inspection of Eqs.~5!–~7! and~72! as

Uop~g!5
~DŜ2!21~DŜ3!2

^Ŝ2&
21^Ŝ3&

2
~DŜ1!2, ~79!

with all fluctuations in Eq.~79! calculated within the opera
tional scheme outlined in Sec. II. In comparing Eq.~79! with
Eq. ~77! the differences arising from the different normali
ing factors of the transmission and the reflection coefficie
in the d̂i ’s in Eq. ~5! should also be accounted for. The res
of the numerical calculations forUop(g) /U(g) is presented
in Fig. 14 as a function ofM for various h values where
h(g)5cot2g. We also observed that Eq.~79! has nof0 de-
pendence for allM and g ~not shown in Fig. 14!, which is
consistent with the theoretical calculation in Eq.~78!.

FIG. 14. Comparison between the theoretical uncertainty pr
uct and the measured one in the fully polarized Fock state for
indicated values ofh.
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Figure 14 indicates that the photodetection in the ope
tional scheme unavoidably creates an additional noise in
measurement such that the theoretical value of the un
tainty is not reached until the initial state has a sufficien
large ~i.e., 5&M ) number of photons. Here, asg varies,
there is a compromise between the value of the meas
uncertainty product for largeM and the detector noise fo
small M. For instance, atg5p/4 ~i.e., h51), the measured
uncertainty product approaches the theoretical minimum
certainty for largeM, although the detectornoiseis as large
as 100% at the small-M limit. On the other hand, asg devi-
ates fromp/4, the measured uncertainty product is no long
at the minimum for largeM, but the detector noise is smalle
for small M. Hence it appears that there is no global op
mum value forg. We thus conclude thatg can be optimally
fixed only depending on the individual observables chose
the measurement~i.e., a result that we have also reached
the fully polarized coherent state example in Sec. II A!.

In the theoretical interferometric calculations it is a com
mon practice to neglect the influence of the photodetect
This is certainly a valid assumption if the initial field is su
ficiently strong. On the other hand, we expect the additio
noise in the uncertainty product to be a manifestation of a
scheme based on photon counting in the weak-field li
arising from the quantum nature of the photodetecti
Hence it is also natural to expect these effects to be obs
able in the su~2! interferometric measurements. This res
indeed needs experimental verification, particularly consid
ing the advantage that certain schemes have been prop
for the generation of such quantum states as Eq.~45! experi-
mentally using active nonlinear processes@25#.

III. DISCUSSION

In this work we focused our attention on the operation
measurement scheme as applied to certain fully polari
quantum states particularly in the weak-field regime. W
have shown that, similarly to NFM’s operational phase m
surement scheme, it is possible to base the measureme
the state of polarization on pure photocount measureme
hence providing another example for an operational
proach. In particular, the measurement of the fluctuations
the temporal phase between the polarized field compon
is, not surprisingly, identical to the original work by NFM
The statistical behavior of the Stokes parameters is inve
gated in terms of the trigonometric operators in Eqs.~8! and
the operational counterparts of the quantum Stokes par
eters of the polarized field are introduced in Eqs.~7!. The
application of the operational polarization measurem
scheme is made to fully polarized quantum coherent as w
as Fock states. With the purpose of extracting the detect
influence on the measurement, the statistics of the meas
fluctuations are examined and compared with the theore
calculations. Our results confirm those of NFM’s operation
phase measurement scheme to conclude that the pho
counting process introduces additional noise in the final
tistics particularly in the weak-field regimes. For sufficient
strong fields, the operational measurement scheme is co
tent with those theoretical predictions in which the photod
tection effects are not included.

The connection between the operational approach to

-
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measurement of polarization and the su~2! interferometry is
examined and the uncertainty principle is used as a mean
analyzing the photodetection effects in the measurem
where applications are made on the fully polarized Fo
state. The operational approach to the measurement of p
has been investigated by D’Ariano and Paris@26# in the con-
text of quantum estimation theory@27#, which provides a
unified formulation of the measurement process and the
tial system under investigation. The quantum probability d
tribution of theN-port homodyne detection in Eq.~9! is a
specific example of the probability-operator-valued meas
~POM! in the quantum estimation theory. An ideal quantu
measurement is realized when the POM is based on an
thogonal and complete set of states comprising the eig
space of the measured observable. Hence, depending o
nature of the measured observables of the initial state, fi
ing an optimum detection scheme is the primary goal o
unified formulation of the measurement and the initial s
tem. For the measured observable being phase related q
tities, such an approach has not been idealized yet becau
orthogonal POM cannot be physically realized for the ph
observable. With this in mind, one resorts to optimizing t
phase measurement by a proper choice of the initial state
well as the parameters of the measuring system. At this p
a connection is present between the primary goal of
quantum estimation theory and the attempts to surpass
standard noise limit by using interferometric transformatio
tin
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s
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on the measuring system~or inverse transformations on th
initial state!. The optimal choice of these transformatio
using active as well as passive optical devices naturally
pends on the initial state. Furthermore, it is also desira
~and under certain conditions strictly required! to have the
transformed state conserve the basic features of the orig
state, i.e., full polarization, coherent and minimum unc
tainty states for Eq.~45!, the statistics of the fluctuations, et
It is natural that for the initial state being fully polarized, th
full polarization itself is a strict condition that should b
conserved by the transformations. On the other hand, s
uM &f0

is a minimum uncertainty state, the quantum statist
of the temporal phasef and the fluctuations in correspond
ing f-dependent operators are coupled with those describ
the fluctuations in the relative photon numbern̂12n̂2 . Hence
the minimum uncertainty condition ofuM &f0

will most cer-
tainly be at stake after such transformations and this w
change the quantum nature of the state@for instance, a rota-
tion in the field space byg does not change the full polar
ization property but changes the minimum uncertainty re
tions, as it can be seen from Eqs.~73! and ~78!#. For those
states that are not the minimum uncertainty ones, this ob
vation is still valid to a lesser extent. We nevertheless c
clude that attempts to surpass the standard noise limit for
fully polarized quantum states have to comply with a num
of restrictions, which certainly renders it a rather interest
problem.
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