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Correlations in a one-dimensional Bose gas
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We study the correlation effects in a one-dimensional Bose gas with repulsive delta-function interaction. The
correlation effects are described by a local-field correction which takes into account the short-range correla-
tions. We find that the ground state energy is in good agreement with the exact result up to intermediate
coupling strengths, showing an improvement over the Bogoliubov and other related approximations. The
velocity of sound, the static structure factor, and pair-correlation function are also calculated within the present
approximation[S0163-18209)00314-9

I. INTRODUCTION confining potential in these atomic systems, two and possibly
one-dimensional boson condensates may be produced.
The one-dimensiondlD) electron gas models are attract-  In this work we revisit the problem of 1D bosons inter-

ing a lot of interest because of theoretical and technologicahcting via a delta-function potential within the local-field
implications, since the motion of electrons confined to movecorrection approach. We describe the correlation effects in
freely only in one spatial dimension gives rise to a variety ofthe interacting Bose gas in terms of a local-field factor intro-
novel phenomena, such as the non-Fermi liquidduced by Vashishta and SingWi(VS) in an approximate
characteristicd. The system of bosons are of equal impor-way. We find that the exact ground-state enéngithin this
tance because of the role played by statistics and the revelgerturbation theory approach can be faithfully reproduced up
tion of macroscopic effects like Bose-Einstein condensatiorto large values of the coupling constant. This is an improve-
and superfluidity. The interplay between the statistics and ment over the Bogoliubov approximatibnand the STLS
interaction effects, the enhanced quantum fluctuations ischemé&® which show agreement with the exact ground state
low-dimensional systems, and the prospects of experimenta&nergy for small values of the coupling strength. Although
realization provide ample motivation to study quantumbased on certain approximations, the perturbation theory ap-
many-body systems in 1D. proaches have the advantage of obtaining the ground-state
A system of bosons in one-dimension interacting via aproperties, and in particular the correlation functions in the
short-range, delta-function potential has been a useful moda¥eak and intermediate coupling regimes. These may also
to study the nature of ground state properties of quanturfind their use in other applications. The self-consistent ap-
systems and assessing the role played by statistics in comroximation scheme of Singveit al° makes use of the one-
parison to the corresponding system of 1D fermidh3he  particle distribution function in deriving the density response
close analogy between the fermions and bosons in 1D hasf the many-body system to an external perturbation. Since
been establishet.An exact analysis of the ground-state the equation of motion of the one-particle distribution func-
properties, in particular the ground-state energy as a functiotion depends on the two-particle distribution function, and so
of the coupling strength, of a 1D interacting Bose gas wa®n, the hierarchy of equations is truncated by making an
provided by Lieb and Liniget® Yang and Yan§extended assumption for the two-particle distribution function. The ap-
this Bethe ansatz approach to study the thermodynamics aroach developed by Vashista and Sintjvié also based on
finite temperature. Correlation effects in a 1D Bose gasa similar idea but introduces a slightly different assumption
within the self-consistent field approximation was first at-at the truncation level. More explicitly, the instantaneous
tempted by Hipbto and Lobd and recently by Gold.The  pair-correlation function is approximated as the equilibrium
many-body effects beyond the mean-field theory was depair-correlation function and a term involving its derivative
scribed by the local-field correction calculated within thewith respect to the density which amounts to a first order
Singwi et al1° (STLS) scheme. The local-field corrected Bo- correction in the density fluctuatiodn. The VS approach
goliubov approximatioht shows a definite improvement for has recently been applied to a degenerate plasma of charged
the ground state energy. Recently, Kerman and Tomntasinibosons'®
introduced a Gaussian time-dependent variational principle An important limitation of the present approach which is
for bosonic systems and applied their method to the problershared by the Bogoliubov and STLS approximations is that
of 1D bosons interacting through a repulsive contact potenthe system is assumed to be in the Bose-Einstein condensed
tial. Charged bosons in 1D have also attracted somstate. Since it is establish€dhat the homogeneous one- and
interest'®> Correlation effects in a quasi-one-dimensionaltwo-dimensional systems cannot have long-range order
charged Bose condensate is also studied within the STL&ence no condensaténe above assumption violates the cor-
schemé* There has been a renewed interest in low defsity rect behavior of interacting systems in 1D. As we show in
Bose gases because of the recent experimental progresstire sequel, the ground-state energy and some correlation
achieving Bose-Einstein condensation in atomic vapors unfunctions are nevertheless determined quite reliably. The
der external potentiaf€ It is expected that by adjusting the method is not appropriate to account for the long-range cor-
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relations responsible for the behavior of the momentum dis- O e IS e o s ey e e sy o

tribution, whereas the other correlation functions such as the

static structure factor and pair-correlation function are ex-

pected to be less severely influenced by this assumption. 0.8
The rest of this paper is organized as follows. In the next

section we present the model of 1D bosons and the theoret-

ical framework with which to discuss the correlation effects. - 0.6 T
In Sec. lll we calculate the ground state energy of the system z? -
and compare with the exact result and other related ap- .
proaches. Sections IV and V discuss the collective excita- 0.4 ]
tions and the compressibility sum-rule, respectively. The cor- .
relation functions within the present model are calculated in ozl ]
Sec. VI. We conclude in Sec. VIl with a brief discussion of Tl _
our results. 1
oL Ll ]
0 2 4 6 8 10
Il. MODEL AND THEORY v

We consider a system of bosons in 1D interacting via @ FiG. 1. The local-field factoGys(y) ata=1/2 (solid line) and
contact potentiaV(rq,r,) =Vod(r,—r,), whereVy is the  a=1 (dashed ling andGgr (y) (dotted ling (Ref. 9 as a func-
interaction strength. In terms of the boson masand the  tion of .
density of the particles, we use the dimensionless param-

eter y=mV,/n to characterize the strength of the coupling _
. A dGVS m (1 2/a)
(we takes=1). After Hipdito and Lobd and Gold we v —5Gys(1—Gyg) "+ ———(1-Gys),
further assume that the 1D bosons are in the condensate and “Y  ay Y
the generalized Bogoliubov model is applicable. The local- ()]

field concept has been demonstrated by &otdbe quite which is first order, but highly nonlinear. Rather than at-

useful in understanding the weak coupling regime of 1Dtempting to solve Eq(3) numerically, we adopt a simpler
bosons. The ground state properties were calculated to be gpproximation given by

good agreement with the exact results of Lieb and Lirfier
as y—0.

In this work we choose a different local-field factor in the Gys(7)=
description of the ground state correlation effects for 1D = . o ) ) )
bosons. We use the approach introduced by Vashishta afich is the lowest-order expression in the iterative solution

Singwit’ (VS) which was originally constructed to satisfy the Of Eds.(1) and(2), starting from the STLS solution. As we
compressibility sum-rule. As discussed in Sec. I, in theshall see later, the lowest-order approximation is capable of

Jd
1_375)GSTLS(7)1 4

modified theory of Vashishta and SindWihe equilibrium ~ improving the STLS approach to the ground-state energy
pair correlation functiory(r) which enters the ansatz for the r€markably, keeping the %scussmn at the same level of
two-particle distribution function is amended by a correctionifansparency given by GoidThe closed form expressions

term involving the density derivative aj(r). For a one- Of Gstis (Refs. 8 and 9andGys (within our approximate
dimensional system of bosons interacting via a constant peicheéme are easily obtained to be
tential (in the wave vector spag¢he local-field factor in the

Vashishta-Singwi approximation now reads Gsts )= Z_Z[(1+ w2l y)H2-1], (5a)
a
g\ 1 [ and
Gus(7)= 1+an%)ﬁfo da[1-S(@], (@) )
Gvs(7)= ;z(l—a)y[(lﬂrzlv)”z— +a(l+m?y) "2
wherea is an adjustable parameter. Note that the local-field (Sb)

factor G is still independent of the wave vector variable as in respectively. In Fig. 1 we display the local field correction
the STLS approximation. As in the case of the STLSG,q(y) for a=1/2 anda=1, andGg, 4 ¥) as a function of
scheme, the above equation fGr has to be solved self- the coupling strengtly. The weak coupling limit ofGy<(y)
consistently along with the static structure facBg) given s G,,g(y—0)~(2/7) y“4(1—a/2) which reduces to the re-

in the generalized Bogoliubov approximation’by sult given by Gold, Ggy §(y— 0)~(2/7)y*? asa—0. In
the Vashishta-Singwi theot{the parametea is determined
an? -12 by adjusting the compressibility calculated using the ground-
S(q)=|1+ — y(1-G(vy)) . (2)  state energy and that obtained from the long-wavelength
q limit of the dielectric function. In this work we taka=1/2

which gives the best agreement with the exact ground state
Substituting Eq.(2) into Eg. (1), we obtain the following energy. We discuss the compressibility sum rule in the sub-
differential equation foiGyg(y) sequent sections.
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FIG. 2. The ground-state energy per partieley), in units of
n?/2m, as a function of the coupling strength The dotted and
dot-dashed lines are for the STLS approximati®ef. 9 and the
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FIG. 3. The chemical potential, average kinetic and potential
energies as functions of. The thick solid lines denote the exact
results of Ref. 5. The thin solid lines and dotted lines are for the VS

exact result of Ref. 5, respectively. The solid and dashed lines repand STLS approximationgRef. 9, respectively.

resent the VS approximation far=1/2 anda=1, respectively.

IIl. GROUND STATE ENERGY

The interaction energyper particle¢ of a many particle
system is written a&i(y) = (1/2)24V[Ndy=o+ S(q) — 1],
in which the Hartree contribution is also included. Within the
mean-field theory this reduces t&;,(y)=(n%2m)[1
—29yY(1—G(%))Y4 7]. The ground state energy per par-
ticle is calculated by a coupling constant integratiBp
= [IANE;ne(N)/N. We expresEy in terms of the dimension-
less quantity given by

e(y)= foydx{l— %)\1’2(1—6\/3(7\))1/2 . ®
whereEqy=(n?%/2m) e(y).

In the exact treatment of(y), an expansion for smaly
was not provided because of the inadequacy of the perturb
tion theory and nonanalytic properties efy) as y—0.
Gold® has shown that the local-field correction becomes
useful quantity in the analysis of 1D bosons and has given
weak coupling expansion

4 1 2 1
ess Y= 0)=y= 3V v - g3y 57"
. )

As may be seen in Fig. 2, the STLS approximation compare
well with the exact result of Lieb and Linigeonly for y
=<2. Our Vashishta-Singwi approach yields the following
weak coupling expansioffor a=1/2)

3 7 5
—y— B2y T2 5/2__ 3
evs(y—0)=7y 377 A7 240737 19277
11
_ 2y ..
3845 ®

Figure 2 shows that the VS approach adopted here gives

better agreement than the STLS result to the exact ground-

state energye(y). More interestingly, the comparison of
weak coupling expansions ekt { y) and eys(y) demon-
strates that terms of ordet” wheren=3 are missing in the
est . y) expansion. Some other ground state quantities of
interest are the chemical potential

w=09Ey/IN=(n?/2m)(3e— ydel/dvy),

the average potential energy per particléV)
=(n?/2m)yde/dvy, and the average kinetic enery)=E,
—(V)=(n?2m)(e— ydel/dy). Using the numerically calcu-
lated eyg(y) we compare these quantities with the results of
the exact solution to the 1D boson problem in Fig. 3. We first
note that the STLS approximation resultiotted line$ start

Zeviating from the exact calculation ¢T) and(V) for y

~2. The VS calculation represent$) reasonably well, but

6{he potential energy term starts to deviate from the exact

5esult for y=6. However a cancelation effect renders the
total energy in quantitative agreement with the exact result
up to y~10 (see Fig. 2. In the available range of both the
STLS and VS approximations agree well with the exact re-
sult for the chemical potential(y). The weak coupling lim-

its of the chemical potential and the average potential and
kinetic energies per particlén units of n?/2m) in the VS
gpproximation are given by

2 3 7 11
—om— 302 2_ 512 72,
m=2y DY Y oY T Tiees Y T
(9a)
2 3 7 5
" —NB82y 2 B2 3
11
a
“To2a Y T (9b)
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When we perform a similar calculation using the ground- - 3 -]
state energy within the STLS approximatidhyve obtain > r — ]
2 1 1 1 2| .
— 3/2 2 5/2 712 r T
=2y— — + — — + ... i 4
W=2y= ¥y Y 5 3V T 5557 , : 1
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2 1 3 5 . .
(T)= e 32_ _2y2+ 375/2_ T Y+ FIG. 4. The velocity of sound as a function ofy. The lower
aa T o T

(dashed and uppersolid) curves are calculated from the excitation
(109 spectrum and thermodynamic definition, respectively. The thick and

which again shows that certain terms are missing in the exthin lines are for the VS and STLS approximatiaRef. 9, respec-

pansion of(VV) and(T) compared to the VS approximation tively. The exact result from Ref. 6 is depicted by the dot-dashed
" line. v calculated using the Bogoliubov excitation spectrum is

given by the dotted line.
IV. COLLECTIVE EXCITATIONS

readily obtained from the RPA-like density-density responsdated to the velocity of sound by &~=mnvg, we can use the
function. The dispersion relation for the collective mode issound velocity in the present context to check the compress-

given by ibility sum rule. The sound velocity may be calculated from
the excitation spectrumg= IiquO dwqldq which yields the

%[(q/n)2+4y(1—G(y))]1’2, (1)  resultvs=2n[4y(1-G(7))]"2 On the other hand, the ther-

( 2
W= | =——
q ) . )
2m modynamic relation 2= (y?/m)d’Eq/dy?, gives

which represents a gapless excitatiomay be identified as

; . . /
the Goldstone modeTaking G(y)=0 or its weak coupling 3326 12

limit G(y)~2yY% yields the collective mode dispersion ,2 de

in the RPA and the Bogoliubov approximation, respectively. vs=2| ¥ 992 _275+35 . (12)

In the exact solutiohof the interacting 1D boson gas two
types of elementary excitations were found, the first of whichin Fig. 4 we show the velocity of sound calculated in the VS
(“particle” excitations) corresponds to the Bogoliubov spec- and STLS approximations using the above mentioned two
trum. The second typ&‘hole” excitations) of the elemen-  different ways. The ground-state energy based calculation of
tary excitation which exists only fofq|<wn, is not ac- y  within the STLS and VS approximations are quite close to
counted for within the Bogoliubov approximation or the the exact result fory<10. The excitation energy spectrum
present model with a local-field correction. Part of the reasomased calculation 0, remains below the thermodynamic
for this is that the Bogoliubov model assumes that all theresults. In the VS approach the compressibility sum rule is
particles are in the condensate whereas in the treatment Qfolated less than in the STLS approach, but it is still not
Lieb and Linige™® no such assumption is made. In the recentvery satisfactory. The Bogoliubov spectrum yields a sound
work of Kerman and Tommasitfithe self-interactions of the velocity above the energy based results. It is not surprising
particles out of the condensate are taken into account. Althat the compressibility sum rule is not satisfied either in the
though the Gaussian variational method provides only arSTLS or the VS approximations, since both of these schemes
upper bound for the ground state energy and does not reprassume that all the particles are in the condensate. In other
duce the exact energy so well fgi=5, it captures success- words, the local-field based theories take only the “particle”
fully the basic structure of the elementary excitations. contribution to the excitation spectrum and neglect the
“hole” excitations.

V. SOUND VELOCITY
VI. STATIC STRUCTURE FACTOR AND

The VS theory was originally devis&tto fulfill the com- PAIR-CORRELATION EUNCTION

pressibility sum rule in interacting electron systems. It was

demonstrated that the compressibility calculated from the The static structure factor as defined in Eg) gives a
long-wavelength limit of the response function coincidesmeasure of the correlation effects. For a noninteracting sys-
with that calculated from the ground-state energy through théem it is unity and in the random-phase approximatiaRA)
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FIG. 5. The static structure fact@(q) at y=2 for various
approximations. The solid and dot-dashed lines indiSgt€q) and

FIG. 6. The pair-correlation function at zero separatig) as
a function ofy. The solid, dashed, and dotted lines indiaggg(0),

Sstiq) (Ref. 9, respectively. The dotted and dashed lines are forgst §0) (Ref. 9, andg(0) in the Bogoliubov approximation, re-

the RPA and Bogoliubov approximations, respectively. spectively.
we takeG(y)=0. The Bogoliubov approximation is recov- . a2 2
ered when the leading order term in the local-field factor is lim gys(0)=1=Zy""+ T2 y(l-al)+- -, (14

retained, viz.G(y)=2yY%w. Figure 5 shows the static
structure factorS(q) for y=2 in the RPA, Bogoliubov,

y—0

which reduces to the STLS resliisy (0)=1— 2y =, as

STLS and the present VS approximations. In the RPA they— 0. The effect of the STLS and VS local-field corrections
interaction effects are over-stressed. The Bogoliubov apon the pair-correlation function is further illustrated in Fig. 7
proximation is closest to the noninteracting result, butfor whereg(r) is plotted fory=1 andy=5, and we also spe-

=2 it may already be not so good. The inclusion of thecijalize to thea=1/2 case. The differences occur largely at

local-field correctionG(y) tends to decreas®(q) from the  small separations. The asymptotic formgyéf) are obtained
Bogoliubov result, since in the latter correlation effects aregs

not fully taken into account. The probability of finding two
bosons at a distanceis described by the pair-correlation
function g(r) which is the Fourier transform db(q). Per-
forming the one-dimensional Fourier integral analyticZlly
we obtain the pair-correlation function within the present
model as

Gvs(r—0)=0ys(0) +rny[1-Gys(y)]

8rn?
iy Y 1-Gys(y) ¥+ -

(15

and

Ovs(r)=0gvs(0) + Y4 1—Gye) ¥ 1;(2rny"4(1-Gys)'?
—L1(2rny"(1-Gye) 3], (13

1.0

LI N L Y N I L N N B S B B N S MO B

where |1(x) is the modified Bessel functiofof the first
kind), L,(x) is the modified Struve functiof? and gys(0)
=1—(2/7) yY((1—Gyg)*? is the pair-correlation function

at zero separation. Note that a similar expression for the
pair-correlation function within the STLS was also given by
Gold?® Figure 6 comparesys(0) with gs7.5(0) as a func-
tion of y. It was noted that in the STLS approximation(0)
remains positive for ally, unlike the Coulomb systems
which yield unphysically negativg(0) at some intermediate -
coupling strength. In the case of Vashishta-Singwi approxi-
mation, we find thag(0) eventually becomes negative for
y=15. Since the theories involving the local-field factor are
perturbational in character, thus limiting their applicability
for small and intermediate range ¢f our result forgys(0) FIG. 7. The pair-correlation functiog(r) at y=1 andy=5 as
should be useful in practical applications. The weak couplinga function ofr. The solid and dotted lines indicatg,s(r) and
limit of gy5(0) is given by gst(r) (Ref. 9, respectively.

g(r)
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2 a result of particle interactions was fruitless. The inequality
Ovs(r—»)=1— Wv_l/z[l—Gvs( y)] 2 Ng=ne/4S(q) —1/2, for the momentum distribution which
must be obeyed for Bose systems satisfyingfteem rule??
3 3 _ap yields negative values far/n=2. However, it is interesting
ot Y T1-Gys(m1 ¥+---. (180 o observe that the assumption of full condensation yields

ground state energy and other properties in reasonable agree-
A comparison with the corresponding expansions in thement with the exact results. Combining our results and re-
STLS approximatioh shows that both methods have the calling the earlier results of Gdldnd those of Kerman and
samer dependences. Tommasint? we conclude that the condensate assumption is
not very severe for the ground state energy, but the interac-
tion with out of condensate particles is essential for the de-
VIl. DISCUSSION scription of elementary excitations. Because of the recent
. . interest in Bose-Einstein condensed gases in low-
In this work we have employed the formalism of Vash- dimensional systems, we believe our results should be useful

ishta and Singwf to study the ground state properties of a-&/ understanding the interaction effects on the condensed

system of 1D boson condensates. The VS approach is large stems. One possible way to improve upon the condensate

based on the STLS theory. The local-field factor which Suc'assumption is to consider a two fluid model, and take the

cessfully describes the correlation effects in electron liquids,, o+ im distribution of the out of the condensate particles

is found also to be useful in the present analysis. In compari- . ... :
) .7 explicitly into account. Further work is necessary to explore
son to the STLS approach, the VS local-field descriptio plcity y P

- ) : hese ideas.
e_xtends the_ Va“d.'ty range of approximate the(_)nes_/telo, Both the STLS and VS approximations are based on the
since for this region the grognd-stgte energy 1S faithfully re'perturbation theory, thus they are not expected to yield reli-
pro'duced. The strong coupling regime, vig->o is not de- able results in the strong coupling limig—oe. In particular,
scrl_bed well b_y the STLS and_ VS a_lpproaches, t_hus we havg.vs( y) behaves as-1— 72(1+a)/4y for large y. A pos-
omltte_d any dlscgssmn on this regime. In the dielectric for'sible improvement may be achieved if one considers the lad-
m“'a“of‘ 2{ the interacting quantum systems the Sum'ﬂ"%er diagramgmultiple scatteringwhich take the short-range
cpnstra!nt on the frequgncy and wave vector depen.demcorrelations into account in an improved way. Such an ap-
dielectric functione(q,w) is often found useful. We point

; proach was shown to work quite well for 1D fermions inter-
out that the frequency and wave vector independent Iocalécting with as function2
field corrections satisfy the first and third moment sum-rules In summary, we have considered the correlation effects in

simultaneously. This follows from the fact that the local-field system of 1D bosons interaction with a short-range poten-

factor is independent of wave vector variableHowever, it a1 "\yg have introduced a local-field factor based on the
is conceivable to imagine the correlation effects giving riseVa.shishta-SingWi approach to describe the correlation ef-
to an. effective grdependent Interaction  given bYo[1l  fects. The ground state energy calculated within this approxi-
—G(a;7)], even though the bare interactiaf is a Con-  ation s in good agreement with the exacts results+for

stant. This may be achieved within the so-called SSTL ap_, thus showing an improvement compared to the Bogo-
proach of Singwiet al?” in which the bare Coulomb inter- Iiubo,v and STLS approximations. The sound velocity and

action is renormahzed _by the static screening funcega) correlation functions in the present model are also calculated.
which is incorporated into the self-consistent scheme. The

consequences of the SSTL approach with wave vector de-
pendent local-field correction in the context of 1D bosons
appears to be an interesting problem for future explorations. ACKNOWLEDGMENTS
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