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Correlations in a one-dimensional Bose gas

E. Demirel and B. Tanatar
Department of Physics, Bilkent University, Bilkent, 06533 Ankara, Turkey

~Received 11 June 1998!

We study the correlation effects in a one-dimensional Bose gas with repulsive delta-function interaction. The
correlation effects are described by a local-field correction which takes into account the short-range correla-
tions. We find that the ground state energy is in good agreement with the exact result up to intermediate
coupling strengths, showing an improvement over the Bogoliubov and other related approximations. The
velocity of sound, the static structure factor, and pair-correlation function are also calculated within the present
approximation.@S0163-1829~99!00314-8#
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I. INTRODUCTION

The one-dimensional~1D! electron gas models are attrac
ing a lot of interest because of theoretical and technolog
implications, since the motion of electrons confined to mo
freely only in one spatial dimension gives rise to a variety
novel phenomena, such as the non-Fermi liq
characteristics.1 The system of bosons are of equal impo
tance because of the role played by statistics and the rev
tion of macroscopic effects like Bose-Einstein condensa
and superfluidity.2 The interplay between the statistics a
interaction effects, the enhanced quantum fluctuations
low-dimensional systems, and the prospects of experime
realization provide ample motivation to study quantu
many-body systems in 1D.

A system of bosons in one-dimension interacting via
short-range, delta-function potential has been a useful m
to study the nature of ground state properties of quan
systems and assessing the role played by statistics in c
parison to the corresponding system of 1D fermions.3,4 The
close analogy between the fermions and bosons in 1D
been established.4 An exact analysis of the ground-sta
properties, in particular the ground-state energy as a func
of the coupling strength, of a 1D interacting Bose gas w
provided by Lieb and Liniger.5,6 Yang and Yang7 extended
this Bethe ansatz approach to study the thermodynamic
finite temperature. Correlation effects in a 1D Bose g
within the self-consistent field approximation was first
tempted by Hipoˆlito and Lobo8 and recently by Gold.9 The
many-body effects beyond the mean-field theory was
scribed by the local-field correction calculated within t
Singwi et al.10 ~STLS! scheme. The local-field corrected Bo
goliubov approximation11 shows a definite improvement fo
the ground state energy. Recently, Kerman and Tommas12

introduced a Gaussian time-dependent variational princ
for bosonic systems and applied their method to the prob
of 1D bosons interacting through a repulsive contact pot
tial. Charged bosons in 1D have also attracted so
interest.13 Correlation effects in a quasi-one-dimension
charged Bose condensate is also studied within the S
scheme.14 There has been a renewed interest in low densi15

Bose gases because of the recent experimental progre
achieving Bose-Einstein condensation in atomic vapors
der external potentials.16 It is expected that by adjusting th
PRB 590163-1829/99/59~14!/9271~7!/$15.00
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confining potential in these atomic systems, two and poss
one-dimensional boson condensates may be produced.

In this work we revisit the problem of 1D bosons inte
acting via a delta-function potential within the local-fie
correction approach. We describe the correlation effects
the interacting Bose gas in terms of a local-field factor int
duced by Vashishta and Singwi17 ~VS! in an approximate
way. We find that the exact ground-state energy5 within this
perturbation theory approach can be faithfully reproduced
to large values of the coupling constant. This is an impro
ment over the Bogoliubov approximation11 and the STLS
scheme10 which show agreement with the exact ground st
energy for small values of the coupling strength. Althou
based on certain approximations, the perturbation theory
proaches have the advantage of obtaining the ground-s
properties, and in particular the correlation functions in t
weak and intermediate coupling regimes. These may a
find their use in other applications. The self-consistent
proximation scheme of Singwiet al.10 makes use of the one
particle distribution function in deriving the density respon
of the many-body system to an external perturbation. Si
the equation of motion of the one-particle distribution fun
tion depends on the two-particle distribution function, and
on, the hierarchy of equations is truncated by making
assumption for the two-particle distribution function. The a
proach developed by Vashista and Singwi17 is also based on
a similar idea but introduces a slightly different assumpt
at the truncation level. More explicitly, the instantaneo
pair-correlation function is approximated as the equilibriu
pair-correlation function and a term involving its derivativ
with respect to the density which amounts to a first ord
correction in the density fluctuationdn. The VS approach
has recently been applied to a degenerate plasma of cha
bosons.18

An important limitation of the present approach which
shared by the Bogoliubov and STLS approximations is t
the system is assumed to be in the Bose-Einstein conde
state. Since it is established19 that the homogeneous one- an
two-dimensional systems cannot have long-range or
~hence no condensate! the above assumption violates the co
rect behavior of interacting systems in 1D. As we show
the sequel, the ground-state energy and some correla
functions are nevertheless determined quite reliably. T
method is not appropriate to account for the long-range c
9271 ©1999 The American Physical Society
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9272 PRB 59E. DEMIREL AND B. TANATAR
relations responsible for the behavior of the momentum
tribution, whereas the other correlation functions such as
static structure factor and pair-correlation function are
pected to be less severely influenced by this assumption

The rest of this paper is organized as follows. In the n
section we present the model of 1D bosons and the theo
ical framework with which to discuss the correlation effec
In Sec. III we calculate the ground state energy of the sys
and compare with the exact result and other related
proaches. Sections IV and V discuss the collective exc
tions and the compressibility sum-rule, respectively. The c
relation functions within the present model are calculated
Sec. VI. We conclude in Sec. VII with a brief discussion
our results.

II. MODEL AND THEORY

We consider a system of bosons in 1D interacting vi
contact potentialV(r 1 ,r 2)5V0d(r 12r 2), where V0 is the
interaction strength. In terms of the boson massm and the
density of the particlesn, we use the dimensionless param
eter g5mV0 /n to characterize the strength of the coupli
~we take \51). After Hipôlito and Lobo8 and Gold9 we
further assume that the 1D bosons are in the condensate
the generalized Bogoliubov model is applicable. The loc
field concept has been demonstrated by Gold9 to be quite
useful in understanding the weak coupling regime of
bosons. The ground state properties were calculated to b
good agreement with the exact results of Lieb and Linige5,6

asg→0.
In this work we choose a different local-field factor in th

description of the ground state correlation effects for
bosons. We use the approach introduced by Vashishta
Singwi17 ~VS! which was originally constructed to satisfy th
compressibility sum-rule. As discussed in Sec. I, in t
modified theory of Vashishta and Singwi17 the equilibrium
pair correlation functiong(r ) which enters the ansatz for th
two-particle distribution function is amended by a correcti
term involving the density derivative ofg(r ). For a one-
dimensional system of bosons interacting via a constant
tential ~in the wave vector space! the local-field factor in the
Vashishta-Singwi approximation now reads

GVS~g!5S 11an
]

]nD 1

npE0

`

dq@12S~q!#, ~1!

wherea is an adjustable parameter. Note that the local-fi
factorG is still independent of the wave vector variable as
the STLS approximation. As in the case of the ST
scheme, the above equation forG has to be solved self
consistently along with the static structure factorS(q) given
in the generalized Bogoliubov approximation by9

S~q!5F11
4n2

q2 g„12G~g!…G21/2

. ~2!

Substituting Eq.~2! into Eq. ~1!, we obtain the following
differential equation forGVS(g)
-
e
-

t
et-
.
m
p-
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dGVS

dg
5

p

ag3/2
GVS~12GVS!1/21

~122/a!

g
~12GVS!,

~3!

which is first order, but highly nonlinear. Rather than a
tempting to solve Eq.~3! numerically, we adopt a simple
approximation given by

GVS~g!5S 12ag
]

]g DGSTLS~g!, ~4!

which is the lowest-order expression in the iterative solut
of Eqs.~1! and ~2!, starting from the STLS solution. As w
shall see later, the lowest-order approximation is capable
improving the STLS approach to the ground-state ene
remarkably, keeping the discussion at the same leve
transparency given by Gold.9 The closed form expression
for GSTLS ~Refs. 8 and 9! andGVS ~within our approximate
scheme! are easily obtained to be

GSTLS~g!5
2g

p2 @~11p2/g!1/221#, ~5a!

and

GVS~g!5
2

p2 ~12a!g@~11p2/g!1/221#1a~11p2/g!21/2,

~5b!

respectively. In Fig. 1 we display the local field correctio
GVS(g) for a51/2 anda51, andGSTLS(g) as a function of
the coupling strengthg. The weak coupling limit ofGVS(g)
is GVS(g→0)'(2/p)g1/2(12a/2) which reduces to the re
sult given by Gold,9 GSTLS(g→0)'(2/p)g1/2, asa→0. In
the Vashishta-Singwi theory17 the parametera is determined
by adjusting the compressibility calculated using the grou
state energy and that obtained from the long-wavelen
limit of the dielectric function. In this work we takea51/2
which gives the best agreement with the exact ground s
energy. We discuss the compressibility sum rule in the s
sequent sections.

FIG. 1. The local-field factorGVS(g) at a51/2 ~solid line! and
a51 ~dashed line!, andGSTLS(g) ~dotted line! ~Ref. 9! as a func-
tion of g.
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III. GROUND STATE ENERGY

The interaction energy~per particle! of a many particle
system is written asEint(g)5(1/2)(qVq@Ndq501S(q)21#,
in which the Hartree contribution is also included. Within t
mean-field theory this reduces toEint(g)5(n2/2m)@1
22g1/2

„12G(g)…1/2/p#. The ground state energy per pa
ticle is calculated by a coupling constant integrationE0

5*0
gdlEint(l)/l. We expressE0 in terms of the dimension

less quantity given by

e~g!5E
0

g

dlF12
2

p
l1/2

„12GVS~l!…1/2G , ~6!

whereE05(n2/2m)e(g).
In the exact treatment ofe(g), an expansion for smallg

was not provided because of the inadequacy of the pertu
tion theory and nonanalytic properties ofe(g) as g→0.
Gold9 has shown that the local-field correction become
useful quantity in the analysis of 1D bosons and has give
weak coupling expansion

eSTLS~g→0!5g2
4

3p
g3/21

1

p2 g22
2

5p3 g5/21
1

14p5 g7/2

1•••. ~7!

As may be seen in Fig. 2, the STLS approximation compa
well with the exact result of Lieb and Liniger5 only for g
&2. Our Vashishta-Singwi approach yields the followin
weak coupling expansion~for a51/2)

eVS~g→0!5g2
4

3p
g3/21

3

4p2 g22
7

40p3 g5/22
5

192p4 g3

2
11

3584p5 g7/21•••. ~8!

Figure 2 shows that the VS approach adopted here giv
better agreement than the STLS result to the exact grou

FIG. 2. The ground-state energy per particlee(g), in units of
n2/2m, as a function of the coupling strengthg. The dotted and
dot-dashed lines are for the STLS approximation~Ref. 9! and the
exact result of Ref. 5, respectively. The solid and dashed lines
resent the VS approximation fora51/2 anda51, respectively.
a-

a
a

s

a
d-

state energye(g). More interestingly, the comparison o
weak coupling expansions ofeSTLS(g) and eVS(g) demon-
strates that terms of ordergn wheren>3 are missing in the
eSTLS(g) expansion. Some other ground state quantities
interest are the chemical potential

m5]E0 /]N5~n2/2m!~3e2gde/dg!,

the average potential energy per particlêV&
5(n2/2m)gde/dg, and the average kinetic energy^T&5E0
2^V&5(n2/2m)(e2gde/dg). Using the numerically calcu-
latedeVS(g) we compare these quantities with the results
the exact solution to the 1D boson problem in Fig. 3. We fi
note that the STLS approximation results~dotted lines! start
deviating from the exact calculation of^T& and ^V& for g
'2. The VS calculation represents^T& reasonably well, but
the potential energy term starts to deviate from the ex
result for g*6. However a cancelation effect renders t
total energy in quantitative agreement with the exact re
up tog'10 ~see Fig. 2!. In the available range ofg both the
STLS and VS approximations agree well with the exact
sult for the chemical potentialm(g). The weak coupling lim-
its of the chemical potential and the average potential
kinetic energies per particle~in units of n2/2m) in the VS
approximation are given by

m52g2
2

p
g3/21

3

4p2 g22
7

80p3 g5/21
11

7168p5 g7/21•••,

~9a!

^V&5g2
2

p
g3/21

3

2p2 g22
7

16p3 g5/22
5

64p4 g3

2
11

1024p5 g7/21•••, ~9b!

p-

FIG. 3. The chemical potential, average kinetic and poten
energies as functions ofg. The thick solid lines denote the exac
results of Ref. 5. The thin solid lines and dotted lines are for the
and STLS approximations~Ref. 9!, respectively.
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^T&5
2

3p
g3/22

3

4p2 g21
21

80p3 g5/21
5

96p4 g3

1
55

7168p5 g7/21•••. ~9c!

When we perform a similar calculation using the groun
state energy within the STLS approximation,8,9 we obtain

m52g2
2

p
g3/21

1

p2 g22
1

5p3 g5/22
1

28p5 g7/21•••,

~10a!

^V&5g2
2

p
g3/21

2

p2 g22
1

p3 g5/21
1

4p5 g7/21•••,

~10b!

^T&5
2

3p
g3/22

1

p2 g21
3

5p3 g5/22
5

28p5 g7/21•••,

~10c!

which again shows that certain terms are missing in the
pansion of̂ V& and^T& compared to the VS approximation

IV. COLLECTIVE EXCITATIONS

The collective mode excitation spectrum in our model
readily obtained from the RPA-like density-density respon
function. The dispersion relation for the collective mode
given by9

vq5S n2

2mDq

n
@~q/n!214g„12G~g!…#1/2, ~11!

which represents a gapless excitation~may be identified as
the Goldstone mode!. TakingG(g)50 or its weak coupling
limit G(g)'2g1/2/p yields the collective mode dispersio
in the RPA and the Bogoliubov approximation, respective
In the exact solution6 of the interacting 1D boson gas tw
types of elementary excitations were found, the first of wh
~‘‘particle’’ excitations! corresponds to the Bogoliubov spe
trum. The second type~‘‘hole’’ excitations! of the elemen-
tary excitation which exists only foruqu,pn, is not ac-
counted for within the Bogoliubov approximation or th
present model with a local-field correction. Part of the rea
for this is that the Bogoliubov model assumes that all
particles are in the condensate whereas in the treatme
Lieb and Liniger5,6 no such assumption is made. In the rece
work of Kerman and Tommasini12 the self-interactions of the
particles out of the condensate are taken into account.
though the Gaussian variational method provides only
upper bound for the ground state energy and does not re
duce the exact energy so well forg*5, it captures success
fully the basic structure of the elementary excitations.

V. SOUND VELOCITY

The VS theory was originally devised17 to fulfill the com-
pressibility sum rule in interacting electron systems. It w
demonstrated that the compressibility calculated from
long-wavelength limit of the response function coincid
with that calculated from the ground-state energy through
-

x-

e

.

h

n
e
of
t

l-
n
ro-

s
e

e

thermodynamic relation. Since the compressibility is also
lated to the velocity of sound by 1/k5mnvs

2 , we can use the
sound velocity in the present context to check the compre
ibility sum rule. The sound velocity may be calculated fro
the excitation spectrumvs5 lim

q→0
]vq /]q which yields the

resultvs52n@4g„12G(g)…#1/2. On the other hand, the ther
modynamic relationvs

25(g2/m)]2E0 /]g2, gives

vs52F g2

1

2
]2e

]g2
22g

]e

]g
13eG 1/2

. ~12!

In Fig. 4 we show the velocity of sound calculated in the V
and STLS approximations using the above mentioned
different ways. The ground-state energy based calculatio
vs within the STLS and VS approximations are quite close
the exact result forg&10. The excitation energy spectrum
based calculation ofvs remains below the thermodynam
results. In the VS approach the compressibility sum rule
violated less than in the STLS approach, but it is still n
very satisfactory. The Bogoliubov spectrum yields a sou
velocity above the energy based results. It is not surpris
that the compressibility sum rule is not satisfied either in
STLS or the VS approximations, since both of these sche
assume that all the particles are in the condensate. In o
words, the local-field based theories take only the ‘‘particl
contribution to the excitation spectrum and neglect
‘‘hole’’ excitations.

VI. STATIC STRUCTURE FACTOR AND
PAIR-CORRELATION FUNCTION

The static structure factor as defined in Eq.~2! gives a
measure of the correlation effects. For a noninteracting s
tem it is unity and in the random-phase approximation~RPA!

FIG. 4. The velocity of soundvs as a function ofg. The lower
~dashed! and upper~solid! curves are calculated from the excitatio
spectrum and thermodynamic definition, respectively. The thick
thin lines are for the VS and STLS approximations~Ref. 9!, respec-
tively. The exact result from Ref. 6 is depicted by the dot-dash
line. vs calculated using the Bogoliubov excitation spectrum
given by the dotted line.
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PRB 59 9275CORRELATIONS IN A ONE-DIMENSIONAL BOSE GAS
we takeG(g)50. The Bogoliubov approximation is recov
ered when the leading order term in the local-field factor
retained, viz.G(g)52g1/2/p. Figure 5 shows the stati
structure factorS(q) for g52 in the RPA, Bogoliubov,
STLS and the present VS approximations. In the RPA
interaction effects are over-stressed. The Bogoliubov
proximation is closest to the noninteracting result, but fog
52 it may already be not so good. The inclusion of t
local-field correctionG(g) tends to decreaseS(q) from the
Bogoliubov result, since in the latter correlation effects a
not fully taken into account. The probability of finding tw
bosons at a distancer is described by the pair-correlatio
function g(r ) which is the Fourier transform ofS(q). Per-
forming the one-dimensional Fourier integral analytically20

we obtain the pair-correlation function within the prese
model as

gVS~r !5gVS~0!1g1/2~12GVS!1/2@ I 1„2rng1/2~12GVS!1/2
…

2L1„2rng1/2~12GVS!1/2
…#, ~13!

where I 1(x) is the modified Bessel function~of the first
kind!, L1(x) is the modified Struve function,20 and gVS(0)
512(2/p)g1/2(12GVS)1/2 is the pair-correlation function
at zero separation. Note that a similar expression for
pair-correlation function within the STLS was also given
Gold.9 Figure 6 comparesgVS(0) with gSTLS(0) as a func-
tion of g. It was noted9 that in the STLS approximationg(0)
remains positive for allg, unlike the Coulomb system
which yield unphysically negativeg(0) at some intermediate
coupling strength. In the case of Vashishta-Singwi appro
mation, we find thatg(0) eventually becomes negative fo
g*15. Since the theories involving the local-field factor a
perturbational in character, thus limiting their applicabili
for small and intermediate range ofg, our result forgVS(0)
should be useful in practical applications. The weak coupl
limit of gVS(0) is given by

FIG. 5. The static structure factorS(q) at g52 for various
approximations. The solid and dot-dashed lines indicateSVS(q) and
SSTLS(q) ~Ref. 9!, respectively. The dotted and dashed lines are
the RPA and Bogoliubov approximations, respectively.
s

e
p-

e

t

e

i-

g

lim
g→0

gVS~0!.12
2

p
g1/21

2

p2 g~12a/2!1•••, ~14!

which reduces to the STLS result9 gSTLS(0).122g1/2/p, as
a→0. The effect of the STLS and VS local-field correctio
on the pair-correlation function is further illustrated in Fig.
whereg(r ) is plotted forg51 andg55, and we also spe
cialize to thea51/2 case. The differences occur largely
small separations. The asymptotic forms ofg(r ) are obtained
as

gVS~r→0!5gVS~0!1rng@12GVS~g!#

2
8r 2n2

3p
g3/2@12GVS~g!#3/21••• ~15!

and

r

FIG. 6. The pair-correlation function at zero separationg(0) as
a function ofg. The solid, dashed, and dotted lines indicategVS(0),
gSTLS(0) ~Ref. 9!, andg(0) in the Bogoliubov approximation, re
spectively.

FIG. 7. The pair-correlation functiong(r ) at g51 andg55 as
a function of r . The solid and dotted lines indicategVS(r ) and
gSTLS(r ) ~Ref. 9!, respectively.
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gVS~r→`!512
2

pr 2n2 g21/2@12GVS~g!#21/2

2
3

2pr 4n4 g23/2@12GVS~g!#23/21•••. ~16!

A comparison with the corresponding expansions in
STLS approximation9 shows that both methods have th
samer dependences.

VII. DISCUSSION

In this work we have employed the formalism of Vas
ishta and Singwi17 to study the ground state properties of
system of 1D boson condensates. The VS approach is lar
based on the STLS theory. The local-field factor which s
cessfully describes the correlation effects in electron liqu
is found also to be useful in the present analysis. In comp
son to the STLS approach, the VS local-field descript
extends the validity range of approximate theories tog&10,
since for this region the ground-state energy is faithfully
produced. The strong coupling regime, viz.g→` is not de-
scribed well by the STLS and VS approaches, thus we h
omitted any discussion on this regime. In the dielectric f
mulation of the interacting quantum systems the sum-r
constraints21 on the frequency and wave vector depend
dielectric function«(q,v) is often found useful. We poin
out that the frequency and wave vector independent lo
field corrections satisfy the first and third moment sum-ru
simultaneously. This follows from the fact that the local-fie
factor is independent of wave vector variableq. However, it
is conceivable to imagine the correlation effects giving r
to an effective q-dependent interaction given byV0@1
2G(q;g)#, even though the bare interactionV0 is a con-
stant. This may be achieved within the so-called SSTL
proach of Singwiet al.22 in which the bare Coulomb inter
action is renormalized by the static screening function«(q)
which is incorporated into the self-consistent scheme. T
consequences of the SSTL approach with wave vector
pendent local-field correction in the context of 1D boso
appears to be an interesting problem for future exploratio

The major shortcoming of the present model~as well as
the Bogoliubov and STLS approaches! is that the 1D bosons
are assumed to be in the condensate. It is known that the
Bose system at zero temperature cannot have long rang
der and the Bose condensation in this system is absent.19,23In
fact, our effort to calculate the depletion of the condensat
l-
e

ely
-
s
ri-
n

-

ve
-
le
t

l-
s

e

-

e
e-
s
s.

D
or-

as

a result of particle interactions was fruitless. The inequa
nq>n0/4S(q)21/2, for the momentum distribution which
must be obeyed for Bose systems satisfying thef-sum rule,23

yields negative values forq/n*2. However, it is interesting
to observe that the assumption of full condensation yie
ground state energy and other properties in reasonable a
ment with the exact results. Combining our results and
calling the earlier results of Gold9 and those of Kerman and
Tommasini12 we conclude that the condensate assumptio
not very severe for the ground state energy, but the inte
tion with out of condensate particles is essential for the
scription of elementary excitations. Because of the rec
interest in Bose-Einstein condensed gases in lo
dimensional systems, we believe our results should be us
in understanding the interaction effects on the conden
systems. One possible way to improve upon the conden
assumption is to consider a two fluid model, and take
momentum distribution of the out of the condensate partic
explicitly into account. Further work is necessary to explo
these ideas.

Both the STLS and VS approximations are based on
perturbation theory, thus they are not expected to yield r
able results in the strong coupling limit,g→`. In particular,
GVS(g) behaves as;12p2(11a)/4g for large g. A pos-
sible improvement may be achieved if one considers the
der diagrams~multiple scattering! which take the short-range
correlations into account in an improved way. Such an
proach was shown to work quite well for 1D fermions inte
acting with ad function.24

In summary, we have considered the correlation effect
a system of 1D bosons interaction with a short-range po
tial. We have introduced a local-field factor based on
Vashishta-Singwi approach to describe the correlation
fects. The ground state energy calculated within this appro
mation is in good agreement with the exacts results fog
&10, thus showing an improvement compared to the Bo
liubov and STLS approximations. The sound velocity a
correlation functions in the present model are also calcula
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