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Abstract. The algebra of generalized linear quantum canonical transformations is examined in the 

perspective of Schwinger’s unitary-canonical operator basis. Formulation of the quantum phase 

problem within the theory of quantum canonical transformations and in particular with the 

generalized quantum action-angle phase space formalism is established and it is shown that the 

conceptual foundation of the quantum phase problem lies within the algebraic properties of the 

canonical transformations in the quantum phase space. The representations of the Wigner function 

in the generalized action-angle unitary operator pair for certain Hamiltonian systems with 

dynamical symmetry is examined. This generalized canonical formalism is applied to the quantum 

harmonic oscillator to examine the properties of the unitary quantum phase operator as well as the 

action-angle Wigner function. 

1. Introduction and review
 

The quantum mechanical operator realization of the classical phase observable, well known 

as the historical quantum phase problem, is one of the oldest problems in quantum mechanics. 

In the quest for a correspondence between the classical action-angle (AA) variables and their 

quantum counterparts, Born et al investigated [1] the problem in the earliest days of quantum 

mechanics from the general perspective of building a theory of quantum canonical 

transformations and their unitary representations. The search for a quantum phase operator 

within this canonical perspective was specifically begun in one of Dirac’s early works [2] in 

1927 where the principal motivation was to extend the principle of correspondence to that 

between classical AA variables and their quantum counterparts. The quantum phase problem 

was then followed by the works of Heitler [3] and Louisell [4] where it was examined in terms 

of the quantization of the electromagnetic field. The introduction of trigonometric Hermitian 

phase operators by Susskind and Glogower [5] created a trigonometric approach to the phase 

problem. At this point, a landmark was reached with the introduction of a coherent state 

formalism by Glauber [6] and, with the development of laser physics in the 1960s, the 

theoretical and experimental investigation of the properties of the quantum phase became 

mainstreaminquantumoptics. Ontheotherhand, contemporarytoGlauber’swork, Carruthers 

and Nieto in their seminal paper [7], wisely entitled as Phase and angle variables in quantum 

mechanics, revived interest in the canonical approach advocated in the early days of quantum 

mechanics. Since our interest in this paper is within the canonical perspective, we refer the 

interested reader to, for instance, some recent reviews on the quantum phase as seen from the 
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perspective of quantum optics [8,9]. In the search for the quantum counterpart of the classical 

AA pair, the canonical perspective in the quantum phase problem was furthered mainly by 
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the works of Rocca and Siruge [10], Boyer and Wolf [11], Moshinsky and Seligman [12], as 

well as Luis and Sanchez-Soto [13] and more recently by Lewis et al [14]. In an earlier paper 

[15], we introduced a different canonical-algebraic approach to the quantum phase 

problemfromthosein[11–14]bystartingfromthegeneralizeddiscreteunitary-cyclicfinite(D) 

dimensional representations of the quantum phase space (QPS) distribution functions in terms 

ofSchwinger’soperatorbasis[16,17]. Therearetwocrucialpropertiesoftheserepresentations 

from the quantum phase operator point of view. The first one is that Schwinger’s operator 

basis supports discrete cyclic finite D-dimensional subalgebraic representations with non-

negative normsintheD-dimensionalHilbertspaceHD. 

Thesecyclicandadmissiblerepresentationsare 

knowntobecrucialfortheexistenceofthephaseoperatorinanarbitrarybutfinite-dimensional 

algebra. On the other hand, the second crucial property is connected with the fact that the 

complete set of elements of the discrete finite-dimensional cyclic Schwinger operator basis 

are the generalized dual representations of the standard Wigner–Kirkwood (WK) [18] ones 

of the QPS [15–17]. Moreover, these elements are the generators of the discrete area 

preserving diffeomorphism on the two-dimensional toroidal lattice ZD ×ZD which are known 

to respect the Fairlie–Fletcher–Zachos (FFZ) sine algebra [19]. As the dimension D is 

extended to infinity, a limit to continuum can be realized where the connection with Arnold’s 

infinitesimal area preserving diffeomorphism [20] on the continuous two-torus is established. 

Hence, the representations of the QPS in terms of Schwinger’s unitary-canonical operator 

basis paves a direct route to the algebraic formulation of the quantum phase operator in 

connection with the linear quantum canonical transformations (LCT). By this argument we 

imply that the algebraic formulation of the quantum phase problem is connected, through the 

Wigner–Weyl– Moyal (WWM) correspondence, with the existence of a canonical formalism 

of the quantum AA operators in the QPS. This correspondence, although it will be shown to 

be manifest for arbitrary but finite dimensions leading to the finite-dimensional algebraic 

realizations of the AA Wigner function, yields the desired correspondence between the 

quantum and the classical AA formalisms only in the transition to the continuum limit. 

The main purpose of this paper is to extend the canonical-algebraic approach to the 

quantum phase problem in [15] by formulating this correspondence explicitly in terms of the 

generators of the LCT. The quantum AA operators will be found in terms of the generators of 

the LCT and it will be shown that the angle operator unitary-canonical to the quantum action 

will be identified as the unitary quantum phase operator. 

Here we review some relevant parts of [15] for completeness. Some additional material 

is also included in the appendix. The duality relations between the discrete generalized WK 

phase space operator basis 1(n)E and the Schwinger operator basis SˆmE can be expressed as 

[15]   (1) 

where mE = (m1,m2), nE = (n1,n2) are vectors in ZD × ZD; mE × En ≡ (m1n2 − m2n1), γ0 = 

2π/D,withD describingthedimensionofthecyclicrepresentations. HeretheSchwinger operator 
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basis SˆmE is defined in terms of a finite-dimensional unitary cyclic operator pair (Uˆ,Vˆ) such 

that 

 ˆm1Vˆ m2 = eiγ0m1m2Vˆ m2Uˆm1 . (2) 

The D-dimensional cyclic eigenspace {|vik}06k6(D−1) and {|uik}06k6(D−1) of the operators Uˆ,Vˆ 

satisfy 

 Uˆ|vik = eiγi0γk0|kvik |vik+D = |vik 

 Vˆ|uik = e− |uik |uik+D = |uik (3) 

Uˆ|uik = |uik+1 Vˆ|vik 

= |vik+1 

and define a unitary Fourier duality as 

{|vi} = Fˆ{|ui} where  (4) where the dual 

picture implies a Fourier automorphism on Uˆ and Vˆ in a sequence of transformations as 

 . (5) 

It can be shown that this Fourier operator duality between Uˆ and Vˆ implies 

 1 and 1 (6) 

where Rπ/2 : mE = (−m2,m1) corresponds to a π/2 rotation of the vector mE in the discrete 

phase space. 

Equations (2) and (3) imply for the properties of the  basis 

Sˆm
†

E = Sˆ−mE 

TrSˆmE{SSˆˆmmE0} =eDδiγ0mEm,E× Em0E 0/2SˆmE+mE0 (7) E = 

 (SˆmSˆm0 )Sˆm00 = Sˆm(Sˆm0 Sˆm00 ) (associativity) 

(unit element) 

SˆmE Sˆ−mE = I (inverse). 

The generalized discrete Wigner function W(n)E in the physical state |ψi ∈  HD is defined by 

[15,17] 

 W(n)E = hψ|1(ˆ n)E |ψi (8) 

U 
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where equation (8) complies with all fundamental conditions that a generalized QPS 

distribution should satisfy. The normalization of equation (8) is based on an appropriate 

summation of the WK operator basis in equation (1) over the discrete phase space vector nE. 

It is possible to use different normalizations when both (or one of the) labels are (is) 

continuous on the two-dimensional torus. In these particular cases the phase space 

representations are based on R × R or Z × R respectively. Different normalizations are 

necessary for different choices of the phase space variables in order to obtain the appropriate 

continuum limit for the Wigner function. For instance, the symmetric normalization is 

necessary when the discrete phase space labels approach to the continuous ones 

simultaneously (i.e. ZD × ZD → R × R) 

suchasinthecaseofcanonicalpairofcoordinateandmomentumx,p leadingtothecontinuous phase 

space distribution W(x,p). The limit to continuous AA Wigner function W(J,θ) is recovered 

[15] when one of the phase space labels is real and the other remains to be an integer in the 

limit D → ∞; hence ZD × ZD → Z × R. In section 2 we base our formulation on the symmetric 

normalization as given in equation (1) whereas, in section 4, the AA Wigner function is 

examined using the appropriate asymmetric normalization with Z×R without any loss of 

generality. 

In section 2 we start the formulation of the LCT. Section 2.1 is devoted to the discrete 

scenario where the elements of LCT are in SL(2,ZD). Their action on Schwinger’s discrete 

cyclic operator basis is defined. The conditions of existence of a unitary-canonical partner to 

the generators of LCT are found for an arbitrary Hilbert space dimension and, provided such 

conditions are met, the existence of the unitary-canonical partner for each irreducible 

representation is demonstrated in the strong operator sense. 

In section 2.2 the continuous scenario is examined. The elements of the continuous LCT 

are examined within the context of the irreducible representations of SL(2,R). The operators 

corresponding to the unitary canonical partners of continuous LCT within each one parameter 

subgroup of SL(2,R) as well as the entire group are derived by the matrix elements of the 

diagonal representations of the corresponding group elements. Section 3 is devoted to the 

Hamiltonian system with its dynamical symmetry group corresponding to that of LCT. The 

unitary canonical partners to the generators of LCT are identified as the unitary phase 

operators and their equations of motion are derived separately for Hamiltonians with a 

continuous as well as discrete spectrum. The connections between the quantum AA formalism 

and the dynamical symmetry is established at the operator level. Section 4 is devoted to the 

construction of the AA Wigner function. The continuous scenario is treated in section 4.1 and 

the AA Wigner function of the generalized oscillator with a discrete cyclic spectrum is 

presented in 4.2. The limit to the quantum harmonic oscillator (QHO) AA formalism is also 

established. 

2. Generators of the linear canonical transformations 

2.1
. On the discrete toroidal lattice 

ZD × ZD
 

The unitary Fourier automorphism in equation (5) implies the simplest discrete canonical 

transformation mE → Rπ/2 : mE on the phase space labels as given by equation (6). It was 
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shown in [15] that equations (5) are a special case of a more general automorphic sequence 

produced by a unitary canonical transformation generator Gˆ with Gˆ† = Gˆ−1 where 

 Gˆ†UˆGˆ = SˆsE Gˆ†VˆGˆ = SˆtE 

 Uˆ −→GˆSˆsE −→GˆSˆs1sE+s2tE −→ ···Gˆ (9) 

 Vˆ −→GˆSˆtE −→GˆSˆt1sE+t2tE −→ ···Gˆ . 

Such a unitary generator satisfies 

  where R : mE = mE0 = (s1m1 + t1m2,s2m1 + t2m2) (10) 

with det  1 where are two arbitrary labelling vectors 

characterizing the LCT in ZD ×ZD. Hence R ∈  SL(2,ZD). Equations (5) and (6) correspond to 

a special realization of equation (10) when sE = (0,1) and tE= (−1,0). The application of Gˆ 

leaves equation (7) covariant. 

Using equation (10) in equation (1) it can be shown that Gˆ generates discrete canonical 

transformations in the WK basis as 

 1(nE0) = Gˆ†1(n)E Gˆ = 1(R−1 : n)E (11) 

where R−1 : nE = nE0 = (t2n1 − t1n2,−s2n1 + s1n2). 

The explicit form of Gˆ and its irreducible representations have been studied in detail for 

the specific case of D being a prime of the type D = 4k ± 1 where k ∈  Z, in connection with 

the Schwinger operator basis by regarding Gˆ as the generator of the time evolution 

(Hamiltonian) of the SL(2,ZD) oscillator [21]. Specifically, Gˆ has cyclic generators which can 

be chosen as 

 

1 and 4k, respectively. Here g0 is a primitive 

element of ZD where g0 1 mod . 

For such D, the explicit form of Gˆ satisfying equations (9), or more compactly equation 

(10), is given by [21] 
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 if δ 6= 0 

 δ = 0 t1 6= 0 (13) 

where it is defined that δ ≡ 2 − s1 − t2 and {m1,m2} ≡ SˆmE . Here σ(m) is the Gauss sum 

 σ(m) . (14) 

It can be seen by direct inspection that Gˆ(R−1) = Gˆ−1(R
) 

= Gˆ†(R), namely Gˆ is unitary. 

Our main purpose in this section is to search for the condition of existence of a unitary 

canonical partner Oˆ to Gˆ such that 

 GˆOˆ = •OˆGˆ |•| = 1 [Gˆ,•] = [Oˆ,•] = 0. (15) 

If equation (15) is satisfied for some pure phase factor • and a unitary Oˆ, then we consider 

equation (15) as a generalized canonical commutation relation for the pair Gˆ,Oˆ. The equation 

(15) then implies that Oˆ rotates the eigenspectrum of Gˆ in a cyclic order and vice versa. It is 

beyond the scope of this paper to examine the characterization of the irreducible 

representations of the most general group defined by  in equation (15) above. Here, we 

confine our attention to those relatively simpler cases leading to the unique irreducible 

representations of the group in which the operator becomes the unitary-canonical partner 

of the generalized canonical transformation generator G. For this purpose, let us start with the 

simplest case such that for some non-zero integers a,b,c we have 

 Gˆa = Oˆb = •c = 1. (16) 

ThenwecallthegroupdefinedbytheelementsGˆ`1 Oˆ`2 •`3,where`1,`2,`3 areintegersdefined (mod 

a), (mod b), (mod c) respectively, as a discrete Heisenberg–Weyl group 0(a,b,c). An explicit 

calculation yields that the group elements are uniquely defined only when c divides both a 

and b (i.e. a a= ca0,bb = cbc 
0 where a0,b0 ∈  Z). Furthermore, from equations (16) and (15) we 

also have • = • = • = 1 which implies that a,b,c must have a greatest common divisor d. 

These results imply that a = dc00a0,b = dc00b0,c = dc00 where c00 ∈  Z. Without loss of generality 

we will assume that c00 = 1. The group defined by the Schwinger operatorm1 m2 m3 basis SmE in 

equations (2) and (3) with general elements as Uˆ Vˆ ω where m1,m2,m3 are integers (mod D) 

is then a specific example of 0(a,b,c) with a = b = c = D. The number of irreducible 

representations of 0(a,b,c) with a = da0,b = db0,c = d depends on the numbers a0,b0. For a0 = 
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b0 = 1 there is only one irreducible representation which is d-dimensional and is given by the 

Weyl matrices [22], 

 

where a unitarythe number of such irreducible representations is given by the productOˆ 

satisfying equation (15) exists as given in equation (17). Fora0b0 and they are alla0,b0 6= 1, 

d-dimensional. Up to a unitary equivalence, each irreducible representation is isomorphic to 

that in equation (17). The connection of direct product representation of 0(d,d,d) and its 

connection with the Chinese remainder theorem for the unique prime factorization of d was 

studied recently in [23]. Each prime factor represents an independent physical degree of 

freedom allowing the extension of the phase space formalism presented here to more than one 

degrees of freedom [16, 17]. A similar decomposition can also be performed for the more 

general group 0(a,b,d) with a,b,d as defined above. The correspondence between the discrete 

QPS AA formalism with one degree of freedom and the classical one can be extended to more 

than one degree of freedom at an algebraic level. Within the purpose of this paper we will 

establish this correspondence only for the case with one degree of freedom and examine the 

larger degrees of freedom in a separate paper. 

There is already an extensive literature on the representations of the discrete canonical 

transformations induced by Gˆ = SL(2,ZD). One particularly important limit in the discrete 

scenario is when Gˆ is represented only by the rotational generator1/k g3 in equation (12)4k 

corresponding to the discrete fractional Fourier operator Fˆ = Gˆ such that Gˆ = I. This limit 

has been examined in detail both from the formal quantum mechanical [24] and more applied, 

non-algebraic perspectives [25, 26]. For an arbitrary Hilbert space dimension the 

multiplicities of the four distinct eigenvalues of the fractional Fourier operator1/4k Fˆ1/k are not 

identical [25] and neither Fˆ nor Fˆ has an exact unitary-canonical partner in the sense of Oˆ 

satisfying equation (15). 

2.2. Generators of the infinitesimal canonical transformations in R × R 

The modular group SL(2,ZD) does not have a proper continuous limit into SL(2,R); hence, we 

cannot take the formal limit D → ∞ in equation (10) to examine the continuous scenario. We 

will base the continuous representation of linear canonical transformations in SL(2,R) in the 

formal sense on 

 Gˆ∞
† SˆαEGˆ∞ = SˆαE0 (18) 
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where αE = (α1,α2) ∈  R × R is a continuous phase space vector,  are elements of the 

continuous Schwinger operator basis [16] and αE0 = R : αE with R ∈  SL(2,R) indicate the 

transformation matrix with real elements. From here on we will be confined to the continuous 

scenario in which we can drop the subscript ∞ from the canonical transformation generators 

. The three one-parameter subgroups gj, (j = 1,2,3) of SL(2,R), as conventionally 

represented by the three 2 × 2 matrices, correspond to 

 (19) where 

•j ∈  gj, −∞ < ψ < ∞, −π < θ < π and −π 6 ϕ 6 π. A generic group element 

g ∈  SL(2,R) can be parametrized as 

  where det g = 1 (20) 

with α,β,γ,δ ∈  R being functions of ψ,θ,ϕ. 

The three Hermitian operators Kˆj, (j = 1,2,3) corresponding to the infinitesimal 

generators of the transformation in each subgroup respect the commutation relations 

 [Kˆ1,Kˆ2] = iKˆ3 [Kˆ2,Kˆ3] = iKˆ1 [Kˆ1,Kˆ3] = iKˆ2. (21) 

We are particularly interested in the continuous irreducible representation of Kˆj, (j = 1,2,3) 

in the canonical phase space parametrized by αE in equation (18). This particular 

representation of the generators can be given by 

Kˆ1 = −i(α1∂α2 + α2∂α1)/2 

 Kˆ2 = −i(α1∂α2 − α2∂α1)/2 (22) 

Kˆ3 = −i(α1∂α1 − α2∂α2)/2 

where each irreducible representation acts on the Hilbert space of homogeneous polynomials 

of degree 2`, and a definite parity  where 2` ∈  Z with describing the odd(−) and even(+) 

parity. Hence we characterize those irreducible representations using the standard notation by 

Tχ(gj) where χ = (`,) and the sector of the Hilbert space they belong to by Hχ. Also, in the 

family Tχ(gj) we are particularly interested in the diagonal representations of each generator 

in equation (22). 
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2.2.1. Diagonal representations of the jth subgroup gj. We now describe the eigenvectors 

|ej
χ(γj)i in the diagonal representations Tχ(gj) characterized by a particular j where j = (1,2,3) 

with their corresponding projections on the canonical phase space  

. Considering the simplest case of ` = 0 first, are given by 

  (23) 

where γj ∈  R and Cj are constants based on an appropriate normalization by the inner product 

. Equations (23) imply that 

 . (24) 

Within each subgroup gj, (j = 1,2,3) we now define the unitary subgroup elements 

such that 

  (25) 

where 0j ∈  R, (j = 1,2,3). The representations of equations (25) in terms of 2 ×2 matrices in 

the phase space  are given by the •j in equation (19), namely, the action of the each 

group element Gˆj in equation (18) is given by 

 . (26) 

Within each subgroup gj there exists, in the Schwinger sense [15], a special canonical partner 

denoted by  such that 

 . (27) 

Equation (27) implies that 

   (28) 

where the ∼ sign indicates that the equality holds up to an indeterminable phase factor which 

we consider to be irrelevant. Then equation (28) provides a representation for the operator 

in the diagonal representation of . To complete the picture we consider, for each subgroup 

gj, the diagonal representation of the  operator such that 

  ηj ∈  R. (29) 

From equations (27) the action of  on this basis can be found as 

 . (30) 

The ∼ again indicates that there is an overall indeterminable phase which we ignore without 

any loss of generality. Then equations (27)–(30) completely determine, in the weak sense, the 

properties of the operator pair  within the Hilbert space of each subgroup gj as three 
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different realizations of the Schwinger operator basis. The connection between the eigenbasis 

 is given by the Fourier transformation 

|fjχ(ηj)i = Z dγj e−iγjηj |ejχ(γj)i |ejχ(γj)i = Z dηj eiηjγj |fjχ(ηj)i (31) 

where in short notation describing 

the matrix elements parametrized by (ηj,γj) of the unitary Fourier operator Fˆ. Via equation 

(31) a Fourier automorphism is implied between the two eigenspaces for each j as 

 |ejχ(γj)i −F→ |ˆ fjχ(ηj)i −F→ |ˆ ejχ(−γj)i −F→ |ˆ fjχ(−ηj)i −F→ |ˆ ejχ(γj)i. (32) 

2.2.2. Diagonal representations of the entire group g. We now shift our attention from the 

parametrization of the diagonal representations of gj to those of the entire group g of which 

the three-parameter group element will be denoted by Gˆ. For convenience of the calculations 

we adopt the unitary canonical form for Gˆ as [27] 

 Gˆ3 = e−i3E·KEˆ 3E = (31,32,33)  (33) 

where 3E is defined on the SL(2,R) invariant group manifold characterized by the invariant 

32 . Adopting the particular parametrization , 

32 = 3sin a sinh b, and 33 = 3cosa, equation (33) can be obtained, for example, from in 

equation (25) by the unitary transformation 

  where . (34) 

Since Gˆ0 in equation (33) is an element of SL(2,R), the irreducible representations also act on 

the homogeneous polynomials of degree 2` and parity . 

(i) Continuous diagonal representations. 

Similar to equations (24) and to the first set in equations (28) for the subgroups, we now seek 

the eigenvectors |hχ(γ)i ∈  Hχ 
of 

Gˆ3 such that 

 Gˆ3|hχ(γ)i = eiA|hχ(γ)i A ∈  R (35) 

where A and |hχ(γ)i are to be found from the eigenproblem in equation (35). Equation (34) 

suggests that 

  (36) 

where A = −3 in equation (35). Hence |hχ(γ)i spans the eigenspace of the unitary operatorχ in 

equation (33) with3,γ ∈  R. The orthonormality of the eigenbasis|h (γ)i is guaranteed by the 

unitary transformation in equation (36) and the orthonormality of the eigenbasis . A 
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phase space representation for |hχ(γ)i similar to equations (23) can be found by projecting it 

on the phase space vector αE as 

 
where •2(a) and •3(b) are implied by equation (19). The unitary-canonical partner of G can 

be found similarly as it was done for the subgroups. Defining Oˆ such that 

 Gˆ3Oˆζ = e−i3ζ Oˆζ Gˆ3 (38) 

we find 

  (39) 

where we will again neglect the overall phases in the second column of the relations above. 

The basis vectors in equation (39) are connected by the Fourier transformation 

 |kχ(η)
i = 

Z dγ e−iγη|hχ(γ)i |hχ(γ)
i = 

Z dη eiγη|kχ(η)i (40) 

and a similar automorphism to equation (32) between |hχ(γ)i and |kχ(η)i as well as to equation 

(5) at the operator level between Gˆ and Oˆ can be written. 

(ii) Discrete diagonal representations. 

In examining the discrete representations of the entire group we start with the diagonal ones 

 and associate with them the eigenfunctions 

  (41) 

where N2
(`) is a normalization based on an inner product . For 

the state in equation (41) we have 

  (42) 

where  and the Casimir element  has 

eigenvalue `(` + 1). In terms of the ` 6= 0 representation in equations (41) and (42), the 

continuous representations that we used in equation (23) correspond to the ` = 0 case. A 

general eigenvector for a group element in equation (33) can be found similarly as in the 

continuous case by redefining 3
E 

= (31,32,33) as, for instance, 31 = 3sinh a0 sin b0, 32 = 3cosh 

a0, 33 = 3sinh a0 cosb0 and the transformation 

  where . (43) 



4122 T Hakioglu˘ 

The eigenvectors |hχ(m)i of a general group element Gˆ3 are then associated with the functions 

in Hχ 

 

where •2(−b) and •1(a) are implied by equations (19). To establish the representation of the 

unitary canonical pair (Gˆ,Oˆ) in the discrete case we consider 

 Gˆ3Oˆr = e−i3rOˆrGˆ3 (45) 

corresponding to a change ζ → r ∈  Z in equation (38). For the system of eigenvectors we 

find 

  (46) 

where 3,η ∈  R. The eigenspaces are connected by the (discrete and continuous) Fourier 

transformation as 

 

The equations (46) and (47) conclude our brief treatment of the unitary continuous phase 

space representations of the canonical Gˆ,Oˆ pair in the weak matrix element sense. 

3. Implications for the Hamiltonian systems with dynamical symmetry group and 

generalized AA operators 

Recently, an algebraic approach was studied by Wang and Chu [28] in the solution of the 

onedimensional inverse problem for the Hamiltonian systems with dynamical group 

symmetry. In the simplest case of one dimension, the inverse problem reduces to that of 

finding an operator regarding the dynamical symmetry group of the system such that it will 

be invariant under either a certain subgroup or the entire group of canonical transformations. 

The group of canonical transformations then naturally reflects the properties of the dynamical 

symmetry of the system. For one-dimensional autonomous systems, the invariant operator 

under canonical transformations corresponds to the generalized action operator, by which the 

Hamiltonian of the entire system can be fully described. In the following, we will examine 

the quantum canonical transformation group as the dynamical symmetry group for an 

Hamiltonian system and derive the equations of motion describing the time evolution of the 

generalized quantum AA operators. 

LetusassumethattheHamiltonianHˆ describingthedynamicsofasystemwithonedegree of 

freedom is represented by 

 Hˆ ≡ H(Kˆ1,Kˆ2,Kˆ3) (48) 
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where  are the Hermitian generators of the sl(2,R) canonical transformation algebra in 

equation (33). The simplest but a sufficiently general example of an Hamiltonian with a 

dynamical group symmetry can then be obtained if the Hamiltonian is a real function of the 

linear superposition of  as, 

 . (49) 

Here, we do not make any assumptions aside from the one that H is a real valued and a well 

behaved function. Our focus will be on those unitary elements of the dynamical symmetry 

group that can be described by 

  (50) 

where the Hamiltonian in equation (49) becomes 

  . (51) 

The time-dependent eigenvectors |ψγ
χ(t)i of Hˆ and the eigenenergies in the continuous 

representation are given by 

 
where hχ(α,γ)E is given by equation (37). Here, the unitary canonical partner O to G plays the 

role of the unitary angle operator and is defined by equation (38). The time evolution of 

Oˆζ is given by d 

i

  . dt 

If we symbolically associate an Hermitian phase operator at ζ = 0 with 

(53) 

  (54) 

equation (53) becomes, in terms of 

(55) 

which is the quantum analogue of the classical equation of motion for the canonical angle 

variable. Hence the unitary operator should be considered as the quantum angle operator 

which is the unitary canonical partner of the action operator Gˆ. 

The properties of the dynamical group symmetry can also be examined by using the 

discrete representation. In this case, equation (51) is still valid whereas (52) becomes 

 (m) (56) 

where  is the time-dependent eigenvector, hχ(αE;m) is given by equation (44) and 

Em = H(m) is the discrete eigenenergy spectrum depending on the discrete eigenstate indexr 

m. The appropriate angle operator O
ˆ 

r in the discrete case has been studied in equations (45) 
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and (46). The nature of the operator Oˆ becomes more transparent if we examine the derivative 

of equation (45) with respect to 3 at 3 = 0. This can be readily evaluated as 

d 

 → equation (57) d3 

whichisthegeneralizedSusskind–Glogower–Carruthers–Nietocommutationrelation[5,7,15] 

for the generalized radial number operator  and the generalized unitary phase operator 

Oˆ. The time evolution of Oˆr is then 

d 
χ r χ χ r χ χ r χ 

i hψm0 |Oˆ |ψmi = hψm0 |[Hˆ,Oˆ ]|ψmi = −hψm0 |Oˆ |ψmi{H(m + r) − H(m)} (58) dt 

which is the equation of motion for the unitary canonical angle operator of the generalized 

oscillator with a discrete spectrum Em = H(m). Here, two results are in order. The first is that 

we have found a correspondence between the classical and quantum AA formalisms for 

Hamiltonian systems with a dynamical group symmetry of the type given by equations (49) 

and (50). The second result is the equivalence of the quantum action operator to the generators 

of canonical transformations as well as that of the unitary-canonical angle operator to the 

unitary-canonical phase operator. 

Although the continuous and discrete representations of the AA operators are similar, 

depending on the continuous/discrete nature of the eigenenergy spectrum, one or the other is 

more convenient in the formulation of a physical problem. This will be more transparent in 

the next section when we discuss the AA formalism of a generalized oscillator. 

3.1. Implications for the generalized oscillator Hamiltonian and the quantum phase 

operator 

Inthisandthefollowingsectionswerefertotheappendixwhichincludessomerelevantpartsof [15]. 

There, it is shown that the QHO algebra is recovered in the infinite-dimensional limit (i.e. D 

→ ∞ hence q → 1) of the admissible q-oscillator algebraic realization in equations (A.4). 

The importance of the naturally emerging admissible q-oscillator realizations is that they 

admit an algebraic formulation of the quantum phase problem and also provide a natural basis 

to examine the harmonic oscillator phase in the infinite-dimensional limit of the algebra in 

equations (A.4). Respecting the historical development, we will nevertheless start with a brief 

outline of the phase problem using the dynamical continuous symmetry group of the QHO. 

The generators of the dynamical sl(2,R) symmetry of the QHO in the x,ˆ pˆ 

representation are given by 

  [x,ˆ pˆ] = i (59) 

where the generators respect equations (21). Our first attempt will be to find the unitary 

canonical partner to Kˆ3 in equations (59). With pˆ → −i∂/∂x, the eigenproblem for  yields 

Kˆ3|ψ3(γ3)i = γ3|ψ3(γ3)i γ3 ∈  R hx|ψ3(γ3)i = N3x(2iγ3−1/2) (60) where N3 is a 

normalization based on an inner product. Hence, for , 
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 . (61) 

The unitary canonical partner , such that equation (27) is satisfied for i = 3, can be 

found following the steps leading to equations (28)–(30). The operator for an arbitrary and 

real ζ is given by 

 

or equivalently by 

  (62) 

where 

 
namely, the existence of O3 is manifested by the presence of a complete spectrum of Kˆ3 on 

the real axis and, in return, Oˆ3 and Gˆ3 are connected by a Fourier automorphism. A similar 

procedure can also be applied to Kˆ1 in equation (59) since the eigenspectrum of this operator 

also spans the symmetric positive and negative values on the entire real axis. However, there 

is a problem with the Kˆ2 operator. Because of the fact that  in equations (59) is a 

nonnegative operator, its eigenspectrum spans only the positive real axis. Hence, the Fourier 

automorphism is not applicable to Kˆ2 and, in return, the unitary canonical partner to  cannot 

be found. This problem was attacked from a completely different perspective a long time ago 

in the elegant work of Boyer and Wolf [11] where they made use of the unitary isomorphism 

between the radial representation of the dynamical SL(2,R) symmetry group of the 

multidimensional QHO with an added centrifugal term of arbitrary strength and the 

representation of the same group on the unit circle. Through this unitary mapping the space 

of square integrable functions on the unit circle is an inner product space endowed with a 

translationally invariant non-local measure. However, the drawback of this elegant method is 

that, the unitary irreducible representations are not single-valued under full rotations on the 

unit circle and this applies particularly to the standard one-dimensional QHO. 

The phase problem in the QHO being the central theme of this paper, we suggest here 

and in the following sections an alternative and, perhaps, a formally simpler way of looking 

into the problem. We start with the admissible q-oscillator realization in equation (A.4) with 

the operators A,ˆ Aˆ† and Qˆ and approach the QHO algebra by extending D to infinity. We 

formally express the generalized oscillator Hamiltonian as (in analogy with equation (51)) 

 Hˆ = H(N)ˆ = H(q∂/∂q)Qˆ|q→1 (63) 

where the limit q → 1 is achieved simultaneously with† D → ∞. The deformed algebra defined 

by the elements A,ˆ Aˆ and Qˆ is an admissible version of the well known (deformed) q-

oscillator algebra naturally admitting real and non-negative norms in the finite-dimensional 

cyclic Hilbert spaceDHD. Since the deformation parameter† q = e−iγ0mE× Em0 is a pure phase with 
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the property that q = 1, the operators A,ˆ Aˆ ,Qˆ act on in the finite-D-dimensional cyclic Fock 

space spanned by the cyclic orthonormal vectors {|ni} = {|ni06n6(D−1);|ni = |n + Di} 

 as, with

(64) 

| 

with 0 6 f(n) and f(n) = f(n + D) where 

 . (65) 

The algebra in equation (A.4) and the relations (64) admit a unitary canonical partner to Qˆ, 

i.e. the unitary quantum phase operator  

   (66) 

such that 

. 

The eigenvectors of 

where 

  . (68) 

The dynamical time evolution of Eˆφ for the generalized Hamiltonian in equation (63) is given 

by equation (58) as 

 d 
r

 r n+r

 n 

i hn0 Eˆ |ni = −hn0|Eˆ ni{H(q ∂/∂q)(q ) } d 

 = −hn0|Eφ
r|ni{H(n + r) − H(n)} (69) 

and a close inspection of equation (69) with (58) indicates that the pair  is the 

corresponding unitary AA pair for the Hamiltonian in equation (63). As mentioned before, 

the q → 1 and the D → ∞ limits are to be taken simultaneously on both sides of equation (69). 

In this limit the phase operator  is the unitary version of the Hermitian Pegg–Barnett phase 

operator [29]. Making use of the fact that , equation (67) yields the Susskind– 

Glogower–Carruthers–Nieto commutation relations [5, 7, 15] for the operator pair . 

Note that, the QHO described by H = ωn yields the equation of motion for the phase operator 

in equation (69) which is formally identical to the equation of motion of the canonical angle 

variable for the classical harmonic oscillator. When we examine the quantum AA formalism 

of the generalized quantum oscillator in section 4.2, the harmonic oscillator will be realized 
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in the specific limit when the dimension of the discrete phase space representations of the 

generalized oscillator is extended to infinity. 

4. An equivalent realization of the Wigner function by (Gˆ,Oˆ ) 

4.1. A generalized approach to the AA Wigner function using continuous phase space 

representations 

It was shown that the generalized canonical phase space representation of a quantum system 

can be given based on the duality between the discrete WK and the unitary cyclic Schwinger 

operator bases [15,16] in equation (1). An alternative to this approach is to formulate the same 

problem using the canonical transformation Gˆ and its unitary canonical partner Oˆ. 

The properties of  studied in sections 2 and 3 manifest a full analogy to those of 

 in equations (3)–(5). Among the four equivalent choices in (5), we define this analogy 

by the correspondence 

 . (70) 

It is now suggestive to define a Schwinger operator basis labelled by τE = (τ1,τ2) ∈  R×R 

and defined as 

 6ˆ τ = e−iτ1τ2/2Oˆτ1Gˆτ2 = eiτ1τ2/2 Gˆτ2Oˆτ1. (71) 

E 

Before we study the algebraic properties of 6ˆ τE, we look into some of the tracial properties 

of Gˆ and Oˆ operators. Since we consider the continuum limit, it is more appropriate to 

examineχ Gˆ and Oˆ in their continuous representation. Starting with equation (39) we choose 

the |h (γ)i basis for their representation as 

 (72) 

from which we obtain 

Tr  (73) 

Using equation (73) the properties of 6ˆ τE can be found in manifest analogy with those of 

SˆmE in equation (7) as 

6ˆ τ†
E = 6ˆ −τE 

 6Trˆ τE{66ˆ
ˆ
τEτE0

} =
= e2i

τEπδ(×E
τ0/τ)E26ˆ τE+τE0 (74) 

 (6ˆ τE6ˆ τE0 )6ˆ τE00 = 6ˆ τE(6ˆ τE0 6ˆ τE00 ) (associativity) 
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6ˆ 0E = I (unit element) 6ˆ 

τE6ˆ −τE = I (inverse). 
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Hence, the canonical transformation generator Gˆ and its unitary canonical partner O form a 

continuous realization of Schwinger’s operator basis. 

Using equation (1) and the analogy manifested by equation (70) we construct a dual form 

for the WK operator basis using the realization of the Schwinger basis defined in equations 

(71) and (74) as 

   (75) 

where the integrals are to be considered in R×R. Using the properties of it can be shown 

that equations (75) provide an operator basis for the Wigner function as 

  (76) 

Tr{1ˆ CT (V)E 1ˆ CT (VE0)} = δ(VE − VE0). 

The properties (76) are necessary and sufficient conditions in order to define a correspondence 

between an arbitrary operator Fˆ and its WWM symbol f(V)E 

 Fˆ = Z dV f(EV)E 1ˆ CT (V)E f(V)E = Tr{Fˆ1ˆ CT (V)E } (77) 

with the condition that3 kFˆk = R dVE |f(V)E |2 < ∞. A few simple examples can be given:3 

(a) for Fˆ = Gˆ . 

 Using the same relations as in (a), the WWM symbol of Gˆ is 

 g3(V)E = Tr{Gˆ31ˆ CT (V)E } = e−i3V1 (78) 

and similarly 

(b) for Fˆ = Oˆζ 

 oζ (V)E = Tr{Oˆζ 1ˆ CT (V)E } = eiζV2. (79) 

(c) A particularly interesting case arises when the arbitrary operator Fˆ is invariant under a 

specific unitary transformation by 6ˆ µE such that 
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 (80) Such an operator has a translationally invariant WWM symbol 

f(V)E = f(VE + µ)E 

where, since 3 is arbitrary, it is implied that f(V)E is independent of VE · Enµ 

where is the unit vector in the µE direction. 

For Gˆ describing the elements of the dynamical symmetry group, 1CT (V)E corresponds 

to thequantumAAoperatorrepresentationoftheWKbasis. Basedontheanalogyinequation(70) 

and the generalized Wigner function defined in equation (8) we now define a generalized AA 

Wigner function of an arbitrary quantum state |ψi as 

 Wψ(V)E = hψ|1CT (V)E |ψi (82) 

which can be expressed in the continuous action eigenbasis as 

  (83) 

and in the continuous angle eigenbasis as 

 . (84) 

Thus, equations (8) and (82) are two equivalent phase space representations of the same 

quantum system. The former is defined in a generic canonical basis (Uˆ,Vˆ), whereas the latter 

is expressed in terms of the elements of the dynamical symmetry group of the same system. 

In equations (83) and (84) V1 and V2 are, by the WWM correspondence in equations (78) and 

(79), the generalized classical AA variables. 

4.2. AA Wigner function for the generalized oscillator with the discrete phase space 

representations 

In the previous sections we examined the generalized theory of quantum AA formalism using 

the continuous representations of the generalized AA operators. Here, we particularize this 

formalism to that of the representations of a generalized oscillator with a discrete spectrum in 

the finite D-dimensional Hilbert space HD by constructing the unitary canonical pair (Gˆ,Oˆ) 

as 

  (85) 

where as defined in equations (A.3), (A.4) and (64). The unitary operator 

 corresponding to the unitary angle operator Oˆ above will be represented by the unitary 

quantum phase operator defined in equations (66)–(68). To facilitate the correspondence with 

the classical case, we switch from the generalized notation VE = (V1,V2) of the AA variables 

in section 4.1 to the more standard one (J,θ). The realization of the AA WK basis in the unitary 

number-phase basis has been derived in [15] for the generalized oscillator with 
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discrete, cyclic and finite D-dimensional Hilbert space representations as 

 mE ∈  ZD × ZD. (86) 

In the discrete case, the set of completeness relations analogous to the continuous ones in 

equation (76)—by direct use of equation (86)—are 

  (87) 

Tr  

The AA Wigner function of (J,θ) in a physical state |ψi is then given by [15] 

(88) 
= 

where the states |J ± k/2i are vectors in continuously shifted Fock spaces [15]. Here {|J ± k/2i;k 

= odd} ∈  F(α±1/2) and {|J ± k/2i;k = even} ∈  F(α) with α satisfying the conditions [15] that 2(J − 

α) ∈  Z and(β)α ∈  R[0,1). The definition of an arbitrary vector in the continuously shifted Fock 

space F has been given in [15] by 

. 

(89) 
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Now, let us take D → ∞ in equation (86) and, using equation (89) examine equation (88) for 

the type|ψi being: (a) a pure Fock state, i.e.|ψim = (|ni + |n − 1i)/√2 ,|ψn ifixed.p = |ni, n fixed 

and (b) a typical mixed Fock state of 

(a) For |ψip, and after a short calculation, equation (88) can be evaluated in the limit 

D → ∞ as 

  (90) 

The marginal probability distributions for the J or θ variables in the pure Fock state can then 

be found by integrating over the other variable θ or J, respectively, as 

  (91) 

which correctly describe the expected results for the pure Fock state. 
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(b) The state |ψim is the so-called split state. For this state, using equation (89), we obtain 

 

The marginal probability distributions yield for |ψim 

  (93) 

which are the correct action and angle probability distributions for the split state. 

Equation (88) also provides the correct time dependence for the AA Wigner function in 

the QHOlimit. Inordertoobservethiswewillstartwiththegeneralizedoscillatorinequation(63). 

The time dependence of the AA Wigner function is given by the standard expression 

d 

 id t Wψ(J,θ) = hψ|[Hˆ,1ˆ CT (J,θ)]|ψi (94) 

or, equivalently, in terms of the WWM symbol h(J,θ) of Hˆ as [30] 

d 

dt ( " E E #) (95) 

where (h ∗  Wψ − Wψ ∗  h) ≡ {h,Wψ}MB is the Moyal (sine) bracket [30]. The calculation of 

equation (95) requires the knowledge of h(J,θ). This can be obtained by using the 

completeness equations in (87) and the Hamiltonian operator Hˆ in (63) as 

Hˆ = Z dJ Z dθ h(J,θ)1ˆ CT (J,θ) where h(J,θ) = Tr{Hˆ1CT (J,θ)}. (96) 

The trace operation can be conveniently carried in the discrete finite-dimensional cyclic 

eigenspace {|ni} = {|ni06n6(D−1);|n + Di ≡ |ni} of the Hamiltonian Hˆ. Since for the diagonal 

matrix elements hn|1ˆ CT (J,θ)|ni = W(J,θ)|p are Wigner functions of the pure Fock states, we 

can also directly use the expression (90) in the calculation of the trace. We find that 

 h(J,θ) = H(J). (97) 

Using equation (97) in equation (95) 

d 

 Wψ(J,θ) = −i (J,θ). (98) 

dt 
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Equation (98) is the equation of motion of the AA Wigner function for an arbitrary generalized 

cyclic oscillator in equation (63). Now, we apply equation (98) to the QHO case where the 

Hamiltonian in equation (63) is a linear operator of Nˆ , let us say H(N)ˆ = ωNˆ with ω 

describing the oscillator frequency. Then, by equations (96) and (97), h(J,θ) = ωJ. For the 

QHO equation (98) then yields, 

  H⇒ θ = θ(t) = ωt (99) 

namely, the time evolution of the QHO AA Wigner function in the phase space takes place 

on the classical manifold (J = constant,θ = ωt) as expected. By equation (90), The AA Wigner 

function for the pure Fock state is static. The full time dependent solution of the AA Wigner 

function, for instance, for the split state and the corresponding marginal probability 

distributions can be completely determined by inserting the solution of θ(t) in equation (99) 

into equations (92) and (93). 

5. Conclusions 

The canonical-algebraic connection between the quantum phase problem and the QPS has 

already been noticed recently by some other workers. In particular, using the generators of 

the angular momentum su(2) algebra and its dual in terms of the Hermitian canonical phase 

operators Vourdas studied [31] an equivalent canonical pair to (Gˆ,Oˆ) as defined in this paper. 

Our specific aim in this paper was to further the canonical algebraic approach introduced in 

[15] to unify the formulation of quantum phase with that of the algebraic theory of quantum 

canonicaltransformations. Inthiscontext,weinvestigatedthegeneratorsofquantumcanonical 

transformations, their unitary canonical partners in the Schwinger sense, as well as their action 

on the functions of canonical variables of the QPS, in particular the Wigner function. Through 

this connection, the quantum phase is formally established as the unitary canonical partner of 

the quantum action operator which is also demonstrated for the one-dimensional generalized 

oscillator. 
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Appendix A. 

In [15] we examined two subalgebraic realizations of the discrete-cyclic Schwinger operator 

basis . In the following we will have a brief summary of them. Based on a fixed pair of 

vectors m,E mE0 the sine algebra generated by  supports two subalgebraic realizations [15]. 

4129 The standard uqsl(2) subalgebraic realization is obtained by constructing the generators 
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  (A.1) 

where dd0∗  = d∗ d0 = −(q1/2 − q−1/2)−2 and q = e−iγ0 mE× Em0 so that 

 Jˆ Lˆ = 

q±1LˆJˆ∓ ˆ ˆ . (A.2) 

∓ 

This particular subalgebraic realization is sometimes referred as the magnetic translation 

group [32]. 

On the other hand, more importantly for the purpose of this work, a second class of 

subalgebraic realizations exist in the form of an admissible q-oscillator algebra which can be 

obtained by defining 

Aˆ ≡ dSˆmE + d0SˆmE0 

 Aˆ† ≡ d∗ Sˆ−mE + d0∗ Sˆ−mE0 (A.3) 

 Q
ˆ 

≡ q−Nˆ −(D−1)/2 = q1/2Sˆ ( 0) 

whereso that 

 AˆQˆ = q−
1QˆAˆ Aˆ†Qˆ = q 

QˆAˆ 

(A.4) 

such that 

 

where [Nˆ ] = (Qˆ −1 − Q)/(qˆ − q−1) and C = (|sin(γ0mE × Em0)|)−1. Equations (A.4) imply that 

the q-oscillator spectrum is non-negative (i.e. 0 6 kAˆ†Aˆk where the spectrum is given by the 

eigenvalues of the operator Aˆ† Aˆ = C + [Nˆ ]) which, further implies that the Hilbert space 

is spanned by vectors with admissible (non-negative) norm. It was shown in [15] that the 

admissible q-oscillator algebra in equations (A.3) and (A.4) is crucial in establishing a 

canonical-algebraic approach to the quantum phase problem. Interested readers can find more 

detailed discussions of the admissible q-oscillator realizations therein. 
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