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Abstract

In this Letter, we propose the application of dither for controlling chaotic systems in Lur’e form. Dither is a high
frequency periodic signal that can be used for stabilization of limit cycles in some type of nonlinear systems. We apply the
dither to change some parameters of the system which may determine its behaviour. We also present some simulation
results. q 1999 Elsevier Science B.V. All rights reserved.

PACS: 05.45.Gg
Keywords: Chaos; Dither; Control of chaos; Lur’e systems

1. Introduction

Recently, there has been an extensive interest on
the study of analysis and control of chaotic be-
haviour in nonlinear systems. Similar to classical
control problems, various problems could be defined
for the control of chaotic systems. Some authors
define the control problem as targeting trajectories to

w xa desired point, see 1 , others as the elimination of
w xmultiple basins of attraction, see 2 , and yet others

w xas stabilizing unstable periodic orbits, see 3,4 , main
goal being the suppression of chaos. We note that the
literature is quite rich on this subject, and review of

w xvarious methodologies can be found in 5,6 . For
w xadditional information and references, see 7–10 . In

this Letter we propose a technique which may enable

) Fax: 90-312-266 43 07; e-mail: morgul@ee.bilkent.edu.tr

Žus to switch between chaotic and regular e.g. peri-
.odic trajectories of some chaotic systems.

In this work, we propose the application of a
dither signal for the control of a class of chaotic
systems, see Fig. 1. Such systems are said to be in
Lur’e form and will be explained in the next section.
Dither is a high frequency periodic signal, commonly
used in the control of nonlinear systems to stabilize

w xlimit cycles, see 11,12 . When dither is applied as in
Fig. 1, it modifies the nonlinearity by sweeping
quickly accross the domain of the nonlinear element.
In other words, under some weak conditions the
dither applied system given in Fig. 1 is equivalent to
a similar system without dither provided that the
nonlinear block is replaced by an appropriate nonlin-
earity. If dynamical behaviour of the system depends
on some parameters and if these parameters can be
effectively changed by the application of dither, then
by choosing an appropriate dither it may be possible
to control the behaviour of the system. Dither does
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Fig. 1. A Lur’e system with dither.

not depend on signals of the system to be controlled.
Hence the application of dither is essentially an
open-loop control technique, as opposed to closed-
loop techniques which requires feedback. We note
that open-loop control methods are known to have
many limitations and disadvantages; they are sensi-
tive to noise and disturbances, they depend on the
model of system and are not robust against parame-
ters mismatch, etc. However, main advantages of
open-loop control methods are their simplicity and
economy, which makes them attractive for certain
applications.

The use of periodic forcing in chaotic systems,
mainly to eliminate chaotic behaviour has been in-

w x w xvestigated before, see e.g. 13–15 . In 14 , the Duff-
ing–Holmes equation, which is a special case of the

Ž .Duffing equation given in 14 has been considered.
By changing the coefficient of the cubic term from p

Ž .to p 1qhcosV t where h is small, it was shown in
w x14 that for certain values of V , it is possible to

w xeliminate chaotic behaviour. In 15 a damped pendu-
Ž . Ž .lum with DC i.e. constant and AC i.e. sinusoidal

forcing terms is considered. By adding a new sinu-
soidal forcing term to this system, it was shown in
w x15 that depending on the frequency it is possible to

Žconvert chaotic behaviour into a regular one i.e.
. w xlimit cycle . See also 5 for additional references.

Note that both of these techniques can be considered
as open-loop control techniques in which certain
parameters of the system to be controlled are modi-
fied periodically. In our method, certain signals of
the system to be controlled, namely the output y of
the linear block, are modified periodically, see Fig.

w x1. Besides, while the results of 14,15 depend on the
frequency of the perturbation, our results do not, as
long as dither frequency is sufficiently high.

It is known that some chaotic systems are either
w xin Lur’e form, or can be converted into it, see 16 .

The use of dither to control such chaotic systems has
w x w xalso been suggested in e.g. 17–19 . In 17 , some

w xtheoretical results have been shown, in 18 some
experimental results in an electronic chaotic circuit

w xhave been demonstrated and in 19 both theoretical
and experimental results have been given. Although
our approach shows some similarities with the refer-
ences cited above, there are some differences as

w xwell. In 19 , the effect of square-wave, sinusoidal
and triangular wave dithers on the output of the
nonlinear block were given and then this idea was
applied to some chaotic systems. In our work we use
only square-wave type dither, but while only sym-

w x Ž Ž .metric dither was considered in 19 i.e. d t takes
constant values W and yW alternately in each half

.period , we consider a general square-wave dither,
Ž .see 3 . Moreover, we show the effect of the dither

signal to the system parameters, and propose a gen-
eral methodology to change the behaviour of the
system to be controlled. The systems we consider are

w xmore general than the ones considered in 17,18 and
the latter contains mainly some experimental results.

This Letter is organized as follows. In Section 2
we will give an outline of our method. In Section 3
we will present some simulation results. The first
two simulations are based on some Lur’e type sys-
tems, one of which is the well-known forced Duffing
oscillator. The third simulation is based on an un-
usual forcing of the well-known Van der Pol oscilla-
tor, which is not in Lur’e form. This simulation
suggests that the proposed technique may be applied
to systems not in Lur’e form as well.

2. Dither control

We consider the systems given in Fig. 1, which
are named after the Soviet scientist Lur’e who inves-
tigated them in 1960s. Such systems are composed
of a linear dynamical block whose output is fed back
to its input via a nonlinear transformation. Here,
Ž .L s represents the transfer function of a linear,

Ž .time-invariant block, n P represents a memoryless
Ž .nonlinearity, y is the system output, r t is an

external signal, which could be regarded as a refer-
Ž .ence input, and d t is the dither signal applied to
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the system. Let us assume that the linear block be
Ž . Ž . Ž .represented by a transfer function L s sp s rq s

Ž . Ž .where p s and q s are polynomials in s given as
follows:

p s sc sny1 q . . . qc sqc ,Ž . ny1 1 0

q s ssn qb sny1 q . . . qb sqb . 1Ž . Ž .ny1 1 0

Ž .In 1 , all coefficients are assumed to be real con-
stants. The dynamical equation of the system in

Žterms of the output variable y can be given as D
d .s :dt

q D yqp D n yqd sp D r . 2Ž . Ž . Ž . Ž . Ž .
Main use of dither in Lur’e systems is the possi-

Ž .bility of modifying the nonlinearity n P . Due to its
high frequency and periodic nature, a dither signal
has the effect of averaging the nonlinearity. Under
some weak conditions, the system in Fig. 1 with

Ž .dither signal d t is equivalent to the system in Fig. 1
Ž .without dither provided that the nonlinearity n P is

Ž .replaced by a suitable nonlinearity n P . The formr
Ž .of equivalent nonlinearity n P depends on ditherr

w xsignal, see e.g. 12,17 . For some simple dither sig-
Ž .nals, n P in terms of dither parameters can ber

obtained easily. Then, by using dither parameters,
Ž . Ž .and using 1 – 2 , it may be possible to change some

parameters of the system, and by using this property
it may be possible to control the behaviour of the
system to a certain extent. This is the rationale in
using dither.

We consider the following piecewise continuous
periodic signal as dither:

Ž .b kT - t- a q k T ,° 1 1

Ž . Ž .b a q k T - t- a q a q k T ,2 1 1 2~,... . . . ,Ž .d t s , ks0,1, . . . ,
ly1

Ž .b a q k T - t- kq1 T ,Ýl i¢ ž /
is1

3Ž .
where b gR ; a )0 for is1,2, . . . ,l ;Ýl a si i is1 i

1 and T)0. It can be shown that with this dither, if
Ž .the nonlinearity n P satisfies certain smoothness

conditions and if the period T is sufficiently small,
Ž .then the nonlinearity n P could be replaced by the

Ž .following function n y :r

n y sa n yqb qa n yqb q . . .Ž . Ž . Ž .r 1 1 2 2

qa n yqb . 4Ž . Ž .l l

That is, the system in Fig. 1 with the dither signal
Ž . Ž .d t given by 3 is equivalent to the system in Fig. 1

Ž .without dither provided that the nonlinearity n P is
Ž . Ž . w xreplaced by n . given in 4 , see e.g. 12,17 . Herer

the equivalence is in the sense that trajectories of
both systems starting from the same initial condi-
tions converge each other. If solutions of both sys-
tems are bounded, then this property holds provided

Ž . Ž . w xthat n P is locally Lipschitz, see 12 . The period
T is not important, as long as 1rT is much bigger
then the cut-off frequency of the linear block. Hence,
Ž . Ž .L s should be low-pass, i.e. NL jv N™0 as v™`.

To simplify the computations, let us assume that
Ž .the nonlinearity n P is also a polynomial in y as

given below:

n y sa y m qa y my 1 q . . . qa yqa , 5Ž . Ž .m my1 1 0

where the coefficients a are also assumed to bei

constant. Now consider the dither applied system
given in Fig. 1. After the application of dither signal

Ž . Ž .given by 3 , by using 4 we find that the nonlinear-
Ž . Ž .ity n y given by 5 changes to the following

Ž .nonlinearity n y :r

m k l
k Žkyi. in y s a a b y . 6Ž . Ž .Ý Ý Ýr k j jž /i

ks0 is0 js1

Ž .It can easily be shown that 6 can be written as:
my1

in y sn y q r y , 7Ž . Ž . Ž .Ýr i
is0

where the coefficients r are given as:i

m l
k Žkyi.r s a a b . 8Ž .Ý Ýi k j jž /i

ks1 js1

Hence after the application of dither, dynamical
equation of the system becomes:

q D yqp D n y sp D r . 9Ž . Ž . Ž . Ž . Ž .r

Ž . Ž . Ž . jsm jFrom 5 and 7 it follows that n y sÝ a yˆr js0 j

where a sa and a sa qr , 0F jFmy1. Inˆ ˆm m j j j

other words, after the application of dither effective
Ž .nonlinearity has the same form as given by 5 but

with different coefficients. Hence if the dynamical
behaviour of chaotic system depends on some of
these coefficients, we could modify them by the use
of dither, and required dither parameters may be

Ž . Ž .found by using 8 . We note that the form of 8
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imposes some constraints on r , hence an arbitraryj

change in the parameters may not be possible.
Ž .We can also rearrange 9 as follows. If we define

Ž . Ž .a new nonlinearity n as n y sn y yr y, thene e r 1
Ž . Ž . Ž .9 could be further modified as q D yqp Dˆ
Ž . Ž . Ž . Ž .n y sp D r, where q s is defined as: q sˆ ˆe

n Ž . ny1 Ž .ss q b qc r s q . . . q b qc r sqny1 ny1 1 1 1 1
Ž .b qc r . In other words, after the application of0 0 1

dither, the system changes to another Lur’e system
whose linear part is given by the transfer function
ˆŽ . Ž . Ž .L s sp s rq s and the nonlinear part is given byˆ

Ž .the nonlinearity n P . Hence by choosing dithere

parameters, we could change some parameters of the
system, and by using this degree of freedom we may
control its behaviour. If a bifurcation diagram in

Ž . Ž .terms of the parameters of q s andror n P is
available, then by choosing dither parameters appro-
priately, we may change the behaviour of the system.

Ž .We note that due to the structure of p s andror r ,j
it may not be possible to change the parameters of
Ž . Ž .q s andror n P arbitrarily. We also note that the

Ž .constant term a in 5 changes to a qr after the0 0 0
Ž . Ž .application of dither, see 7 , 8 . If we do not want

to change a , then even if r /0, we could apply an0 0
Ž .input r t sc r to cancel the effect of this term.0 0

Ž . 2Let us consider the special cases such as n y sy
Ž . 3or n y sy , which is frequently encountered in

chaotic systems proposed in the literature. For these
Ž .cases, we assume that dither is given by 3 , with

Ž . 2ls2. When n y sy the coefficients r and r1 0
Ž .are calculated from 8 as:

r s2 a b q 1ya b ,Ž .Ž .1 1 1 1 2

r sa b 2 q 1ya b 2 . 10Ž . Ž .0 1 1 1 2

Since 0-a -1, we cannot have r s0, but the1 0

effect of r can be eliminated by applying an appro-0
Ž .priate constant input r t sc r . By choosing r0 0 1

Ž .appropriately we may modify the polynomial q s .ˆ
Ž . 3For the case n y sy , the coefficients r , r and r2 1 0

Ž .are calculated from 8 as:

r s3 a b q 1ya b ,Ž .Ž .2 1 1 1 2

r s3 a b 2 q 1ya b 2 ,Ž .Ž .1 1 1 1 2

r sa b 3 q 1ya b 3 . 11Ž . Ž .0 1 1 1 2

By selecting a sa s0.5 and b syb , we have1 2 2 1

r sr s0 and r s3b 2. Note that in this case we2 0 1 1

have r )0, hence we cannot modify the parameters1
Ž .of q s arbitrarily.

Let us compare the effect of dither with the effect
of a possible output feedback scheme. Since the

Ž .effect of dither is to change the nonlinearity n P to
Ž . Ž .n P given by 4 , obviously if an arbitrary nonlin-r

ear output feedback is allowed, then the same effect
may be obtained. However, such an output feedback
requires output measurement, which may contain
measurement errors, a nonlinear operation, which
may complicate the realization of the controller and
may amplify the errors, and a feedback path, which
may also complicate the realization. On the other
hand, application of dither, if physically possible, is
a much simpler scheme and does not require any
measurement. Obviously a linear feedback may not
produce the same effect, since it does not contain

Ž .higher order terms, see 7 .

3. Simulation results

In the simulations, we choose the dither as given
Ž .by 3 with ls2. The parameters a , b , b will be1 1 2

calculated in each example. The period T is not
crucial and does not affect solutions provided that it
is small, e.g. 1rT is much higher than the cutoff
frequency of the linear block. In all our simulations
we choose Ts0.001 s. We also note that for simula-
tions, we use the differential equation of the form

Ž .given by 9 .
( )i . A Lur’e system with square nonlinearity: see

w x16 .
Ž . 2 Ž .This system is given by n y sy and L s s

Ž . Ž . 3 21rq s with q s ss qb s qb sqb which can2 1 0
Ž Ž ..be written as follows see 2 :

yŽ3.qb yqb yqb yqy2 s0 . 12Ž .¨ ˙2 1 0

This system exhibits the following behaviour for the
corresponding parameters:

case i: b s0.4,b s1.18,b s1. In this case the2 1 0

system exhibits chaotic behavior.
case ii: b s0.4,b s1.18,b s0.9. In this case2 1 0

the system exhibits period-2 limit cycle.
case iii: b s0.4,b s1.18,b s0.8. In this case2 1 0

the system exhibits a limit cycle.
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After applying the dither signal d and a constant
input r as explained above, the new dynamical0

equation becomes:

2Ž3.y qb yqb yqb yq yqd sr . 13Ž . Ž .¨ ˙2 1 0 0

Ž .If we use the dither signal given by 3 with
Ž .ls2, by using 10 we see that if we apply a

Ž .constant input r t sr , then the closed-loop system0
Ž .will be the same as given by 12 with the parameter

b changed to b qr where r and r are given by0 0 1 0 1
Ž .10 . Hence by choosing dither parameters appropri-
ately, we could switch the behaviour of the system
between the cases i–iii given above. We performed
3 simulations for this system. In all simulations
dither is applied at ts200 s. We have x sy and1

x sy.˙2

In the first simulation, to switch from the limit
Ž . Ž .cycle i.e case iii to chaotic motion i.e case i , we

choose the dither parameters as a sa s0.5 , b1 2 1

s0.3 , b sy0.1 which results in r s0.05, and2 0

r s0.2. This effectively changes b from 0.8 to 1.1 0
Ž . Ž .The results are shown in Fig. 2. In Fig. 2 b and c ,

x yx graph is plotted for 115- t-200 and for1 2

350- t-600, respectively. As can be seen, the
system exhibits a limit cycle behaviour prior to the

Ž .application of dither case iii and exhibits a chaotic
Ž .behaviour case i after the application of dither.

In the second simulation, to change the chaotic
Ž . Žbehaviour i.e case i to period-2 limit cycle i.e.

.case ii , we choose the dither parameters as a sa1 2

s0.5 , b sy0.2 , b s0.1, which results in r s1 2 0

0.025 and r sy0.1. This effectively changes b1 0

from 1 to 0.9. We observed that the system exhibits
a chaotic behaviour prior to the application of dither
Ž . Ž .case i and exhibits a period-2 limit cycle case ii
after the application of dither. Same approach could
be used to change a regular behaviour to another
one. In the third simulation, to switch from limit

Ž . Ž . Ž .Fig. 2. Results of simulation for the system 12 . Dither is applied at ts200 s. a x sy versus time. b x sy versus x sy for˙1 1 2
Ž .115- t-200 s. c x sy versus x sy for 350- t-600 s.˙1 2
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Ž . Žcycle i.e. case iii , to period-2 limit cycle i.e. case
.ii , we choose the dither parameters as a sa s1 2

0.5 , b s0.2 , b sy0.1 which results in r s1 2 0

0.025, and r s0.1. The results confirm our predic-1

tion, however due to space limitation, we do not
present these simulations.

( )ii . Duffing Oscillator:
Duffing oscillator given below is a forced oscilla-

tor which is extensively used in nonlinear studies,
since it can exhibit many types of dynamical be-
haviour:

yqb yqb yqpy3 sqcos v t . 14Ž . Ž .¨ ˙1 0

This equation can be turned into Lur’e form with
Ž . Ž . Ž . 2 Ž .L s s1rq s with q s ss qb sqb , n y s1 0

3 Ž .py , r t sqcosv t. For this system, with ps1,
qs11, vs1, we choose the following set of pa-
rameters:

case i: b s0.25, b s0. For this set of parame-1 0

ters, the system exhibits chaotic behaviour.

case ii: b s0.25, b s0.75. For this set of pa-1 0

rameters, the system exhibits a limit cycle.
Ž .By choosing dither signal as given by 3 with

ls2 and dither parameters as a s0.5, b syb ,1 1 2
Ž . 2from 11 we obtain r sr s0 and r s3b .2 0 1 1

Hence after the application of dither signal given
above, resulting system is the same as given by

Ž .given by 14 with b changed to b qr . In this0 0 1

case if original parameters are given as in the case i
Ž .i.e. chaotic behaviour , and if we choose b syb1 2

s0.5, then the resulting system will have the param-
eters as given in the case ii, and the resulting system
exhibits a limit cycle behaviour. The results are

Ž . Ž .shown in Fig. 3. In Fig. 3 b and c , x yx graph1 2

is plotted for 0- t-200 and for 450- t-600,
respectively. As can be seen, the system exhibits a
chaotic behaviour prior to the application of dither
Ž . Ž .case i and exhibits a limit cycle case ii after the
application of dither. Since r )0, we cannot switch1

the behaviour given by the case ii to the case i by
this approach.

Ž . Ž . Ž .Fig. 3. Results of simulation for the Duffing oscillator 14 . Dither is applied at ts200 s. a x sy versus time. b x sy versus x s ẏ1 1 2
Ž .for 0- t-200 s. c x sy versus x sy for 450- t-600 s.˙1 2
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( )iii . Van der Pol oscillator:
w xIn 20 , following version of the forced Van der

Pol oscillator oscillator is considered and is shown to
w xexhibit chaotic behaviour, see also 21 :

xs0.7yq10 x 0.1yy2 ,Ž .˙

ysyxq0.25sin 1.57t . 15Ž . Ž .˙

Note that the classical forced Van der Pol equa-
Ž 2 . Ž .tion has the form uqa u y1 uqb usr t where¨ ˙

Ž .a and b are constants and r t is the forcing term.
Ž .When the forcing terms are set to zero, 15 can be

put into this form. However, with the forcing term as
Ž . w xgiven in 15 , this is not possible. As argued in 21 ,

this unusual type of forcing can be implemented in
chemical and electronic systems. It can easily be

Ž .shown that 15 cannot be put into Lur’e form. Let
us assume that it is possible to apply a dither signal

2 Ž .to the nonlinear term y in 15 , i.e. we may replace

Ž .2it by yqd . Let us assume that the same averag-
Ž .ing is still possible, i.e. we may use 4 for equiva-

lent nonlinearity. Note that if d changes much faster
then the signal y, which is the case if dither fre-
quency is much larger, this averaging may make
sense. Then, by using the dither signal as given by
Ž .3 with ls2, a s0.5, b syb sb , equivalent1 1 2

Ž . Ž . 2nonlinearity as given by 4 becomes n y sy qr

b 2. By using linear analysis, it can be shown that for
b 2 )0.1, origin becomes asymptotically stable for
the unforced system. Hence, by using the dither
signal as given above with b 2 )0.1, we may expect

Ž .a regular i.e. periodic behaviour when forcing is
present. In simulations, we chose bs0.32 and ap-
plied dither at ts250 s. The results are shown in
Fig. 4. As can be seen, prior to the application of
dither, the system exhibits a chaotic behaviour,
whereas after the application of dither the system
exhibits a regular behaviour.

Ž . Ž . Ž .Fig. 4. Results of simulation for the Van der Pol oscillator 15 . Dither is applied at ts250 s. a x sx versus time. b x sx versus1 1
Ž .x sy for 0- t-250 s. c x sy versus x sy for 300- t-400 s.2 1 2
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4. Conclusion

Since dither is an external signal, its application
does not require any kind of measurement. Therefore
main advantage of the application of dither is its
simplicity. This technique is also widely used in

w xpractice in many mechanical systems, see e.g. 11,19 .
In both theoretical results and practical applications
reported in the literature, the system to be controlled
is usually assumed to be in Lur’e form. Some well
known chaotic systems and many chaotic electronic
oscillators are already in this form. Especially in
electronic circuits the application of dither is rather

w xsimple and effective, see 18 . In this Letter we
considered three systems, one of which is not in
Lur’e form, and showed that it may be possible to
switch between chaotic and regular behaviour in
these systems by using dither. The theory presented
here justifies the use of dither for this purpose for
Lur’e systems, and simulations suggest that the same
theory may be extended to cover some non-Lur’e
type systems as well. Whether this technique could
be applied to a wider class of chaotic systems or not
is an interesting question and requires further re-
search.
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