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1. INTRODUCTION
Phase space is a remarkable concept facilitating the gen-
eralized understanding of the transition between the clas-
sical and the quantum formulations and is principally
built on proper sets of independent dynamical variables
(the canonical coordinates) describing the considered
physical system and symmetry transformations between
them. The transformations induced on the phase space
are said to be canonical if the equations of motion are
form invariant under their action. Although the canoni-
cal form derives its name from Hamilton for his historical
work on the time evolution of quadratic systems, a gen-
eral frame on which a canonical structure can be built is
independent from any dynamical system considered.
One simple feature of these systems initially considered
by Hamilton is that the preservation of the canonical
structure becomes identical to the covariance under time
evolution. Indeed, the simplicity afforded by quadratic
Hamiltonians is that they provide a natural transition be-
tween the linear (ray) optics and the phase-space repre-
sentation in mechanics in terms of the standard canonical
phase-space pair, viz., linear coordinate and momentum.
If one replaces the time with the parameter defined along
the optical axis, the equations of motion obtained for the
phase-space variables are identical in terms of mechanics
to those in the linear optics. The importance of the qua-
dratic Hamiltonians is not limited by the classical linear
optics correspondence and extends far beyond the classi-
cal realm into the quantum world. The classical and the
quantum versions of a quadratic system respect the same
phase-space symmetry transformations, viz., affine ca-
nonical transformations (ACT’s). For these systems, the
equations of motion for the classical phase-space pair
( p, q) and their quantum counterparts (p̂, q̂) are identi-
cal.

One of the most important conceptual breakthroughs in
the phase-space representations of quantum systems was
made by Weyl1 in 1927 and by Wigner2 in 1932 and later
by Groenewold3 in 1946 and by Moyal3 in 1949. The
Weyl–Wigner–Groenewold–Moyal (WWGM) correspon-
dence is based on the existence of an orthogonal and com-
plete operator basis [the Weyl–Heisenberg (WH) basis] in
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which an arbitrary operator F( p̂, q̂) as a function of the
canonical phase-space operators ( p̂, q̂) can be invertibly
mapped to a classical phase-space function f( p, q). The
crucial property is that, if the basis operators are sym-
metrically ordered, the WWGM correspondence is covari-
ant under the action of ACT’s between the transformed
operator F8( p̂, q̂) [ F( p̂8, q̂8) and its transformed sym-
bol f8( p, q) [ f( p8, q8), where the phase-space variables
( p, q) and the phase-space operators ( p̂, q̂) are trans-
formed under the same linear map.

The representations in quantum-mechanical phase
space and the distribution functions studied therein were
largely limited until very recently to the linear canonical
coordinate and momentum ( p, q). The Wigner function
Wc( p, q), as the best example for such representations,
is well known to be covariant under ACT’s, and its time
evolution under quadratic Hamiltonians is given by the
classical Liouville equation. By contrast, the action of
the ACT’s on the linear canonical phase-space pair ( p, q)
consists in the symmetry operations for such systems,
whose dynamics are governed by quadratic Hamiltonians.
This implies that the time dependence of the Wigner func-
tion in quadratic systems can be represented by time-
parameterized trajectories that coincide with the classical
ones. This seems to be the ultimate limit to which one
can push the classical–quantum correspondence in the
phase space. If we bear in mind that standard quadratic
systems represented in the linear canonical coordinate
and momentum are not that numerous or that they are
Gaussian approximations to the original ones, the utility
of these results is limited.

The general canonical phase-space formulation of any
mechanical system (whether quantum or classical) is ex-
pected to be independent of the choice of a particular ca-
nonical basis, which suggests that there can be more than
one such basis doing the same job. In some cases a non-
linear canonical transformation generated by, say, W`

can be used to connect these two bases. It can be shown
that4 one WWGM correspondence scheme transforms
noncovariantly to another such scheme under a general
nonlinear canonical transformation. Within a particular
correspondence scheme the Weyl map is then expected to
2000 Optical Society of America
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maintain the covariance under ACT’s acting on the ca-
nonical basis of the choice. In this paper we will consider
the covariant phase-space formulation of two-dimensional
(2D) systems in polar space coordinates and their canoni-
cal momenta. The spectrum of the radial phase-space
operator is shown to be the logarithmic variate of the clas-
sical one, r P R1, and in the operator language these two
representations are connected by a Fourier–Mellin trans-
formation. The logarithmic radial (log-radial) coordinate
is itself a representation of r P R1 in Cartesian r P R,
enabling a radial WWGM quantization as well as the cor-
responding radial Wigner function formulations through
the standard Cartesian formalism. It must be empha-
sized that, although the polar coordinate basis is the most
natural choice for systems with specific rotational symme-
tries, the formulation is not limited in applications to
them.

Section 2 is devoted to the polar representation of the
Wigner function based on the log-radial spectrum. Sub-
section 2.A discusses the log-radial and the angular ca-
nonical bases and presents the respective Wigner func-
tions. In each part therein, the properties of the Wigner
function are examined, and the covariance under ACT’s is
discussed. There I also define a nonlinear canonical
transformation that basically undoes the effect of the log-
radial spectrum at the expense of losing most of the co-
variances of the Wigner function. In Subsection 2.B the
log-radial and the angular bases are combined in a prod-
uct form, and the polar Wigner function is introduced.
Section 3 is a short and elementary example of the polar
Wigner function. The validity of the canonical formalism
presented here in generic mechanical as well as optical
systems is implied by the absence of \ or by the reduced
wavelength | throughout the study.

2. CONTINUOUS POLAR REPRESENTATION
Let us assume a 2D wave field in the x –y plane, with z
representing the evolution parameter of the wave along
the optical axis. If we follow the wave along the instan-
taneous direction of propagation by a screen normal to
that direction, the wave field at the particular location z
of the screen can be given by

C~r, f; z ! 5 (
nPZ

C̃n~r; z !exp~inf!. (1)

Throughout the paper we will assume that the screen lo-
cation is fixed. We will hence consider the z coordinate
as implicit in all expressions.

A. Polar Canonical Basis
Our main aim in this section is to introduce displacement
operators in polar representation in the form of an or-
thogonal and complete operator basis for the 2D WH
group of polar canonical operators. The standard 2D
Wigner function WC(p, q), where p 5 ( px , py) and q
5 (qx , qy) are the canonical phase-space variables of the
linear momentum and coordinate in the independent x
and y directions, respectively, is written in terms of a
complete and orthogonal operator basis,

D̂~p, q! 5 D̂x~ px , qx! ^ D̂y~ py , qy!, (2)
in a representation-independent manner as

WC~p, q! 5 ^C, D̂, ~p, q!C&. (3)

The operator bases D̂i , where i 5 x,y, are given by the
unitary displacement operator (WH basis) D̂ai ,bi

as

D̂i 5 D̂~ pi , qi!

5 E
R

da i

2p
E

R

db i

2p
exp@i~a iqi 2 b i pi!#D̂ai ,bi

,

D̂ai ,bi
5 exp@i~a iq̂ i 1 b i p̂ i!#, (4)

where q̂ i , p̂ i are the canonical linear coordinate and mo-
mentum operators satisfying @ q̂ i , p̂ j# 5 id i, j and a i , b i ;
qi , pi P R for i 5 x, y. The properties of the standard
Wigner function in two degrees of freedom given by Eq.
(3) are well known and have been examined in great de-
tail in a large number of publications.5

Our aim is to develop a covariant formalism for the 2D
Wigner function represented in terms of the polar canoni-
cal momentum and coordinates pr , vr ; pu , vu , where,
respectively, pr ,vr are the radial and pu , vu are the an-
gular canonical momentum and coordinate pairs. In our
case the domain of the radial phase-space variables is
2` , vr , pr , ,`, and the angular ones are pu P Z and
2p < vu , p. The formalism will be based on a direct
product form similar to that of Eq. (2) but in terms of the
radial D̂r( pr , vr) and angular D̂u( pu , vu) operator bases.

1. Radial Part
A log-radial Wigner function based on the idea of Dirac’s
self-adjoint radial momentum operator6 p̂r was recently
proposed.7 In these studies the radial momentum opera-
tor p̂r in the radial (r) coordinate representation is writ-
ten by

p̂r → 2iS r
]

]r
1 h D , h P R. (5)

We will see below that h is related to the dimensionality
of the space. For the radial representations in a
d-dimensional space, we have h 5 d/2.

If we write the radial position operator v̂r 5 ln r̂, where
v̂r → ln r, in the radial coordinate representation, the Di-
rac commutator of v̂r and p̂r yields

@ v̂r , p̂r# 5 i. (6)

The eigenspace of p̂r is spanned by

wl~r ! 5 ~1/A2p!ril2h, (7)

where l is the radial momentum eigenvalue and, for
l P R, wl(r) is a complete and orthogonal basis for the
harmonic analysis on the positive half-plane, viz., gener-
alized positive Mellin transform.8,9 The function space is
a Hilbert space defined by the inner product

^c, f&r [ E
0

`

drr2h21c* ~r !f~r !, c, f P L2
~h!~R1!

(8)

and by the dual orthogonality relations
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^ wl8 , wl&r 5 E
0

`

drr2h21wl8* ~r !wl~r ! 5 d ~l8 2 l!, (9)

E
2`

`

dlwl* ~r !wl~r8! 5 d ~r 2 r8!r22h11. (10)

In Eq. (8), L2
(h)(R1) denotes the Hilbert space of functions

with a finite norm, i.e., ici2 [ ^ c, c&r , `. It can be di-
rectly verified that p̂r is self-adjoint in L2

(h)(R1) over the
inner product defined by Eq. (8). In other words,

^c, p̂rf&r 5 ^ p̂rc, f&r 2 ic* ~r !r2hf~r !u0
` , (11)

where, for all functions in L2
(h)(R1), the last term in Eq.

(11) vanishes, and hence p̂r is self-adjoint. A specific
case of Eqs. (9) and (10) is h 5 1/2, which corresponds to
the one-dimensional case in which the weight factors due
to r → ln r vanish and the basis in Eq. (7) becomes an iso-
morphic map between R and its nonnegative part R1,
which is a more standard version of the Mellin
transformation.9 Using the inner product in Eq. (8) and
the orthogonality relations in Eqs. (9) and (10), we can ex-
pand an arbitrary function c (r) in L2

(h)(R1) in the Mellin
basis as

c ~r ! 5 E
2`

`

dlA~l!wl~r !, A~l! 5 ^wl , c&r . (12)

The inner product defined by Eq. (8) can be expressed in
the radial momentum-l representation as

^c, f&r 5 E
2`

`

dlA* ~l!B~l!, A~l!, B~l! P L2~R!,

(13)

where L2(R) is the usual Hilbert space of square-
integrable functions on the real line. In close analogy
with Eqs. (4), the radial canonical operator basis can now
be established as

D̂r~ pr , vr! 5 E
2`

` dar

2p
E

2`

` dbr

2p

3 exp@2i~arvr 1 brpr!#D̂r~ar , br!,

D̂r~ar , br! 5 exp@i~arv̂r 1 brp̂r!#, (14)

where vr , pr P R are the log-radial phase-space vari-
ables. The properties of the log-radial canonical basis
D̂r( pr , vr) follow from those of D̂r(ar , br), which are

D̂r~0, 0 ! 5 Î, (15)

D̂r
†~ar , br! 5 D̂r

21~ar , br! 5 D̂r~2ar ,2br!, (16)

Tr$D̂r~ar , br!% 5 2pd ~ar!d ~br!, (17)

D̂r~ar , br!D̂r~ar8 , br8!

5 exp@2i~arbr8 2 brar8!/2#

3 D̂r~ar 1 ar8 , br 1 br8!. (18)

Equation (15) defines the unit element. Equation (16) is
the statement of unitarity and inversion guaranteed by
the self-adjointness of p̂r and v̂r over the inner product in
Eqs. (9) and (10). The orthogonality of the basis is guar-
anteed by Eq. (17), where Tr stands for the trace as ob-
tained by

Tr$D̂r~ar , br!% [ E
2`

`

dl^ wl , D̂r~ar , br!wl&r . (19)

The composition law is stated by Eq. (18). These proper-
ties are translated for D̂r( pr , vr) as

D̂r
†~ pr , vr! 5 D̂r~ pr , vr!, (20)

Tr$D̂r~ pr , vr!% 5
1

2p
, (21)

Tr$D̂r~ pr , vr!D̂r~ pr8 , vr8!% 5
1

2p
d ~ pr 2 pr8!d ~vr 2 vr8!,

(22)

E
2`

`

dvrE
2`

`

dprD̂r~ pr , vr! 5 Î, (23)

E
2`

`

dvrD̂r~ pr , vr! 5 P̃ˆr~ pr!, (24)

E
2`

`

dprD̂r~ pr , vr! 5 P̂r~vr!, (25)

where P̂r and P̃ˆr are the radial projection operators as de-
fined by

P̂r~vr!P̂r~vr8! 5 d ~vr 2 vr8!P̂r~vr!,

E dvrP̂r~vr! 5 Î,

P̂r~ pr!P̂r~ pr8! 5 d ~ pr 2 pr8!P̂r~ pr!,

E dprP̃ˆr~ pr! 5 Î, (26)

with

^c, P̂r~vr!f&r [ exp~2hvr!c* ~exp vr!f~exp vr!, (27)

^c, P̃ˆr~ pr!f&l [ A* ~ pr!B~ pr!, (28)

where A( pr) and B( pr) are the Mellin transforms of c (r)
and f(r) as calculated by Eq. (12).

Log-radial Wigner function and its properties. The
representation-independent form of the log-radial Wigner
function for a state c will be defined as

Wc~ pr , vr! 5 ^ c, D̂r~ pr , vr!c&r. (29)

Equation (29) is represented in the radial coordinate ba-
sis as

Wc~ pr , vr! 5
1

2p
E

2`

`

dbr exp~2ibrpr!exp~2hvr!

3 c* @exp~vr 1 br/2!#c@exp~vr 2 br/2!#

(30)

and in the radial momentum basis as
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WAc
~ pr , vr! 5

1

2p
E

2`

`

dar exp~iarvr!A*

3 ~ pr 1 ar/2!A~ pr 2 ar/2!. (31)

The static properties of the radial Wigner function fol-
low directly from Eqs. (29)–(31). These are

(1) Wc( pr , vr) is real, namely,

Wc~ pr , vr! 5 Wc* ~ pr , vr!, (32)

which follows directly from Eq. (20).
(2) The integral of Wc( pr , vr) with respect to one of

the phase-space variables yields the marginal probability
with respect to the other variable:

E
2`

`

dvrWc~ pr , vr! 5 ^c, P̃ˆ~ pr!c&r 5 uA~ pr!u2, (33)

E
2`

`

dprWc~ pr , vr! 5 ^c, P̂~vr!c&r

5 exp~2hvr!u c ~exp vr!u2, (34)

which follow directly from Eqs. (24) and (25).
(3) Static covariance properties: The standard p, q

Wigner function is known to be covariant under ACT’s.
For a system with one degree of freedom, the ACT is a five
parameter group of which three are the parameters of the
group of linear canonical transformations (LCT’s). The
remaining two are the parameters of the Galilean trans-
formations. A similar construction can also be made for
the log-radial Wigner function. Below we will examine
the covariance under ACT’s within each subgroup inde-
pendently. In paragraphs (a) and (b) the log-radial ana-
logs of the Galilean transformations will be studied; in
paragraphs (c)–(e) the LCT’s will be studied.

Radial analogs of the Galilean transformations. These
are as follows.

(a) Covariance under radial dilations. We define a
map from a wave function c (r) to c8(r) by

c8~r ! [ exp~ibr8p̂r!c ~r ! 5 exp~hbr8!c@exp~br8!r#. (35)

Inserting Eq. (33) into Eqs. (29) and (30), we find that

Wc~ pr , vr! 5 Wc8~ pr , vr 1 br8!, (36)

which states the covariance of the Wigner function under
radial dilations in Eq. (35).

(b) Covariance under local phase shifts. We now de-
fine a map from c (r) to c8(r) as

c8~r ! [ exp~2iar8v̂r!c ~r ! 5 r2iar8c ~r !. (37)

Inserting Eq. (37) into Eqs. (29) and (30), we find that

Wc~ pr , vr! 5 Wc8~ pr 2 ar8 , vr!, (38)

which states the covariance of the Wigner function under
Galilean transformations on radial momentum pr .

(c) Covariance under radial linear canonical transfor-
mations. A general LCT acting on the radial phase space
pr ,vr will be defined by the map

S pr8

vr8
D 5 gS pr

vr
D , g 5 S a b

c d D , det g 5 1, (39)
where g is in the group Sp(2, R) of 2 3 2 symplectic ma-
trices. The three one-parameter subgroups will be iden-
tified in the conventional way by

g1 5 F cos s 2sin s

sin s cos s
G , g2 5 F cosh t 2sinh t

2sinh t cosh t
G ,

g3 5 Fexp~2x! 0

0 exp~x!
G , (40)

with 2p < s , p, 2` , t , `, and 2` , x , `. We
now examine the action of each subgroup by considering
g 5 gi for i 5 1, 2, 3 independently. The representation
T̂g of the transformation in the operator basis D̂r is given
by

T̂g : D̂r~ pr , vr! 5 T̂gD̂r~ pr , vr!T̂g
21 [ D̂r~ pr8 , vr8!.

(41)

We expand T̂g in the complete and orthogonal radial
WH basis as

T̂g 5 E
2`

`

dgrE
2`

`

ddrCr
~ g !~gr , dr!D̂r~gr , dr!, (42)

where the coefficients Cr
( g) characterize the transforma-

tion. More generally, D̂r (or, alternatively, its Fourier
transform D̂r) is an operator basis for any Hilbert–
Schmidt operator. Using the unitarity of D̂r’s as stated
in Eq. (16) and demanding the unitarity of T̂g’s we can de-
rive a condition on the coefficients as @Cr

( g)(gr , dr)#*

5 Cr
( g21)(gr , dr). Through Eq. (41) the coefficients also

satisfy

Cr
~ g !~e 2 ar , v 2 br!

5 exp$i@e~br 1 br8! 2 v~ar 1 ar8!#/2%

3 Cg
~r !~e 2 ar8 , v 2 br8! (43)

for all e, v, ar , br , where

S ar8

br8
D 5 gS ar

br
D . (44)

Although a general solution to Eq. (44) can be given as

Cr
~ g !~ar , br! 5 N exp@i~Uar

2 1 Vbr
2 1 Warbr!#, (45)

where U, V, W, and N are functions of the parameters of
g, it is more illuminating to give the solutions for each
subgroup in Eqs. (40) separately. Using Eqs. (39) in Eq.
(43), we find that

Cr
~ g1!

~ar , br! 5
exp~ip/2!

4p
@sin~ s/2!#21

3 exp@2~i/4!cot~ s/2!~ar
2 1 br

2!#,

Cr
~ g2!

~ar , br! 5
1

4p
usinh~t/2!u21

3 exp@2~i/4!coth~t/2!~ar
2 2 br

2!#,

Cr
~ g3!

~ar , br! 5
1

4p
usinh~x/2!u21

3 exp@2~i/2!coth~x/2!arbr#, (46)
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where the normalizations are determined by the identity
transformation limit such that

lim
gi→I

Cr
~ gi!~ar , br! 5 d ~ar!d ~br!,

lim
gi→I

T̂gi
5 Î, i 5 1, 2, 3. (47)

It is also possible to show that a general group element
can be obtained through T̂g [ T̂g3

T̂g2
T̂g1

, where Tg is not
exactly a group representation but a projective (ray) one9

satisfying T̂gT̂g8 5 LT̂gg8 , where L is an overall phase
factor that depends on the parameters of g, g8.

Tg acts in the function space as a linear canonical inte-
gral transform. The expressions in the radial momen-
tum representation are much simpler than those in the
radial coordinate representations, which are defined by

T̂gA~l1! 5 E
2`

`

dl2cr
~ g !~l1 , l2!A~l2!, (48)

where the kernel of the integral transform cr
( g) can be

found, for each subgroup gi (i 5 1, 2, 3), to be

cr
~ g1!

~l1 , l2! 5
exp~ip/4!

A2p sin s
expH 2

i

2 sin s

3 @cos s~l1
2 1 l2

2! 2 2l1l2#J , (49)

cr
~ g2!

~l1 , l2! 5
exp~ip/4!

A2p sinh t
expH 2

i

2 sinh t

3 @cosh t~l1
2 1 l2

2! 2 2l1l2#J , (50)

cr
~ g3!

~l1 , l2! 5 exp~2x/2!d@l2 2 exp~2x!l1#. (51)

In Eqs. (49)–(51) the identity transformation is recovered
in the appropriate limit as shown in Eq. (52).
resentations of p̂r and derive the infinitesimal generators
in terms of v̂r , p̂r . Kernels such as those in Eqs. (49)–
(51) were studied in detail in Ref. 9. The generators of
infinitesimal LCT are given by

T̂g1
5 exp~i2sK̂1!, K̂1 5

1
4 ~ p̂r

2 1 v̂r
2!,

T̂g2
5 exp~i2tK̂2!, K̂2 5

1
4 ~ p̂r

2 2 v̂r
2!,

T̂g3
5 exp~i2xK̂3!, K̂3 5

1
4 ~ p̂rv̂r 1 v̂rp̂r!. (53)

The action of the group elements T̂gi
on the functions in

L2(R1) can now be very easily found, since the log-radial
coordinate representations of the operators K̂i are known.
Their counterparts in terms of the linear momentum and
coordinate are known in the theory of integral
transforms,9 and they define the Sp(2, R) algebra:

@K̂1 , K̂2# 5 iK̂3 , @K̂1 , K̂3# 5 2iK̂2 ,

@K̂2 , K̂3# 5 2iK̂1 , (54)

with the central element in this case being K̂2 5 2K̂1
2

2 K̂2
2 1 K̂3

2 5 3/16. The important observation here is
that the log-radial self-adjoint generators in Eq. (53) are
represented in quadratic functions (in exactly the same
form as their Cartesian ones) of p̂r , v̂r , which themselves
are self-adjoint in L2

(h)(R1). However, their algebraic
counterparts in the radial (nonlogarithmic) Hankel basis
were also identified10 as generators of certain linear opti-
cal transformations induced by thin lenses, magnifiers,
and free-space propagators [i.e., Ĵi (i 5 0, 1, 2) in Eqs.
(26)–(30) in that reference]. However, unlike the case
above, the linear canonical generators (let us denote them
by P̂r , r̂) on the half-line R1 are not self-adjoint, nor do
they have known extensions as such. This implies that
these radial elements P̂r , r̂ do not support unitary WH
representations of the type shown in Eq. (42), which can
be summarized in the following diagram:
lim
gi→I

cr
~ gi!~l1 , l2! 5 d ~l1 2 l2!. (52)

The log-radial coordinate representations can be found
by calculation of the Mellin transform of Eq. (48). But
there is an easier way. We continue to use the eigenrep-
Cx
~ g !D̂x ⇔ cx

~ g !

m m
@Cx

~ g !D̂x#@Cy
~ g !D̂y# ⇔ cx

~ g !cy
~ g !

⇑ ⇑

no! D̂xD̂y Þ % m D̂r
~m !

^ D̂u
~m !

~x, y ! ↔
?

~r, u! yes

⇓ ⇓
? ⇔ % mcr

~ g !~m !
exp~imu!. (55)
On the left-hand side of correspondence (55) we have
what is essentially the unitary representation shown in
Eq. (42). On the corresponding right-hand side we have
the integral operator representation shown in Eq. (48).
On extension of the scheme to two or more Cartesian di-
mensions the correspondence is manifested, as expected,
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by a direct product in the WH basis and an ordinary prod-
uct in the function space. The integral operator repre-
sentations on the right can be written in terms of the he-
licity (m) expansion of the wave field in the non-
logarithmic radial Hankel basis, as shown in Ref. 10.
They are structurally different from the log-radial coordi-
nate representation of those shown in Eqs. (49)–(51).
The former (nonlogarithmic Hankel) ones do not have WH
operator kernels [via correspondence (55)], whereas the
log-radial representations of the WH kernels of Eqs. (49)–
(51) exist and are given by Eqs. (46).

From the optics point of view it is desirable to formu-
late a Wigner function covariant under the action of lin-
ear optical devices. For convenience, let us call the latter
the linear optical covariance. This covariance arises in
the Spx(2, R) ^ Spy(2, R) subgroup decomposition of the
group of LCT in two Cartesian dimensions. This sub-
group further decomposes10 into an infinite helicity (m)
sum of the actions of Spr

(m)(2, R1), each acting irreducibly
in the definite helicity (m) subspace for integer m. More-
general ones for Sp(4, R) have also been reported.11

What the diagram in correspondence (55) then says is
that, within a logarithmic or nonlogarithmic radial coor-
dinate representation achieving linear optical covariance
and canonicality simultaneously—in the context of WH
representations—may be difficult.

However, in the log-radial representation, it is still pos-
sible to approximate the effective action of some optical
elements in certain regions of the radial space by use of
the combinations of the log-radial Galilean and the
Sp(2, R) generators. The first example is exp(ibp̂r) as
a dilation generator, whose effect is a magnification
of the initial wave field as exp(i ln sp̂r): c (r)/Arh21/2

→ Asc (sr)/Arh21/2 after one accounts for the appropriate
weight factor in the denominators. The second example
is the multiplication by a Gaussian phase, whose effect is
generated by thin lenses. By direct inspection of Eq. (37)
in the range u12ru ! 1 (remember that r is in units of the
optical wavelength |), we can observe that the local phase
shift is effectively approximated by a Gaussian and is ex-
pressed in terms of the generators K̂1 , K̂2 and v̂r as

exp@ia~r2 2 1 !#c ~r ! . $exp@i2a~ v̂r 1 v̂r
2!#%c ~r !

5 exp~i2a v̂r!

3 exp@i4a~K̂1 2 K̂2!#c ~r !

(56)

up to terms O@exp(iav̂r
3)# on the right-hand side, provided

that uln ru ! 1.
(4) The inner product property reads as follows:

E
2`

`

dvrE
2`

`

dprWc~ pr , vr!Wf~ pr , vr!

5
1

2p U E
2`

`

dv exp~2hv !c* ~exp v !f~exp v !U2

5
1

2p
u~ c, f!ru2. (57)

Radial Wigner function in a noncovariant form. Our
purpose in this section is to learn whether one can define
a nonlinear canonical transformation12 from Wc( pr , vr)
to another Wigner function vc(Pr , r) on the basis of the
more desirable canonical pair Pr , r without being blocked
by the nonexisting radial (nonlogarithmic) Weyl corre-
spondence. One can partially achieve this by first devis-
ing a canonical transformation generator from pr , vr
5 ln r to Pr 5 exp(2vr)pr , r 5 exp(vr).

Let us now consider the following Fourier–Mellin
transform c̃(vr) of a radial signal c (r) as

c̃~vr! 5 ~FM : c!~vr!

5 E
2`

` dl

A2p
exp~2ilvr!~ wl , c!r

5 exp~hvr!c ~exp vr!. (58)

Equation (58) is a unitary transformation between
functions in the radial r representation and functions in
the radial vr 5 ln r representation. The impulse
response13 corresponding to this coordinate transforma-
tion is

gvr
~r ! 5 exp~2hvr!d ~vr 2 ln r !,

c̃~vr! 5 ~ gvr
, c!r 5 exp~hvr!c ~exp vr!. (59)

Using Eqs. (59), we find that Eq. (30), as expected, adopts
the standard form

Wc~ pr , vr! 5
1

2p
E

2`

`

dbr exp~2ibrpr!c̃* ~vr 1 br/2!

3 c̃~vr 2 br/2!. (60)

Consider a new pseudo Wigner function of the form

vc~Pr , r ! 5
1

2p
E

R1
ds s2irPr21r2hc* ~Asr !c ~r/As !,

c ~r ! P L2
~h!~R1!. (61)

Using Eqs. (58) and (59), we can relate Eqs. (60) and (61)
through

Wc~ pr , vr! 5 E dPrdrT ~ pr , vr ; Pr , r !wc~Pr , r !,

T 5 d ~rPr 2 pr!d ~vr 2 ln r !, (62)

which does correspond to a canonical transformation; i.e.,
( pr , vr) → @Pr 5 exp(2vr)pr , r 5 exp(vr)#. Some of the
properties of the pseudo Wigner function read as follows:

(1) The pseudo Wigner function is real.
(2) Its normalization is given by *dprdvrWc

5 *dPrdrvc 5 1. Essentially,

vc~Pr , r ! 5 Wc~ pr , vr!u
vr5ln r
pr5 r Pr . (63)

(3) The marginal probability for r is obtained, as ex-
pected, as

E dPrvc~Pr , r ! 5 r2h21u c ~r !u2. (64)

(4) Under scale changes induced by the operator
exp(ibp̂r) in Eq. (35), one has
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c →
exp~ibp̂r!

c8 ⇒ vc~Pr , r ! 5 vc8(exp~b!Pr , exp~2b!r).

(65)

Hence the covariance is manifest under radial dilations.
If one considers Ar2h21c (r) P L2

(1/2)(R1), one has the
Hankel-type normalization used in Ref. 10. Expression
(66), then, states the covariance of the pseudo Wigner
function under the scaling generator Ĵ2

(m) therein. By
contrast, the pseudo Wigner function is not covariant un-
der log-radial Sp(2, R) or under any local phase shift in-
duced by the operator exp@iag(r̂)#, where g is any function.
It is also not covariant under SPr

(m)(2, R1) other than un-
der the scaling transformation. It is expected that the
Sp(2, R) covariance would be lost through the transforma-
tion in Eqs. (62). The log-radial conjugate coordinates
can mix under the action of the off-diagonal elements of
the LCT because they have the same domain, which is
simply R. The off-diagonal LCT’s on the other radial pair
(Pr , r) are forbidden. This is because Eq. (62) implies
that Pr P R and that r P R1. Hence the conjugate coor-
dinates in the new pair cannot covariantly mix with each
other. Indeed, the scaling generators K̂3 of the log-radial
Sp(2, R) in Eqs. (53) and the scaling generator Ĵ2

(m) in
Spr

(m)(2, R1) are related to each other by the same canoni-
cal transformation as in Eq. (62). They also have no off-
diagonal elements. Hence they leave both Wigner func-
tions covariant. Similarly, we will observe in Subsection
2.A.2, on the angular part, that the standard LCT covari-
ance is absent in the angular Wigner function inasmuch
as the domains of the angular and the angular-
momentum variables are quite distinct from each other.

With regard to the fact that the Pr distribution is rep-
resented by

E
R1

drvc~Pr , r !, (66)

we can say only that it is real by construction of vc(Pr , r)
and that it is normalized to unity. Beyond this trivial re-
sult, it should also be determined whether it is nonnega-
tive for acceptability as a distribution.

2. Angular Part
The angular phase-space representations have been one
of the long-standing problems since the 1920’s because of
their connection with one of the fundamental anomalies
in quantum mechanics.14,15 The standard canonical co-
ordinates with unbounded (continuous or discrete) spec-
tra are not in the trace class, and their standard commu-
tation rule violates a fundamental trace identity, which
prevents a well-defined unitary phase operator to exist.15

The resolution of this problem requires a different start-
ing point than the standard continuous phase space: a
discrete and finite-dimensional phase space with periodic
boundaries, which is effectively a discrete torus.16 One
then defines the standard quantum-mechanical phase
space in a semidiscrete limit17 in which one increases the
number of discrete points in both directions in the phase
space to infinity in such a way that one of the discrete co-
ordinates approaches a continuous and bounded phase
variable, 2p < vu , p, and the other one remains dis-
crete as its conjugate partner (the angular momentum),
pu P Z. The geometry of the semidiscrete limit is visual-
ized as a cylinder of rings of unit radius. Each ring is
separated from the other by a unit of angular momentum,
with the rings corresponding to the boundaries of the cyl-
inder along the axis located at 6`. A point in the phase
space is then defined by an angular variable (the phase
vu) parameterizing the ring and by a discrete number (the
angular momentum or the helicity factor, 2` , pu , `)
parameterizing which ring, along the axis, that it is re-
ferred to.

The rigorous definition of the angular Wigner function
requires this specific limiting procedure from a fully dis-
crete to a semidiscrete form, as described above. For
clarity here we will start from the semidiscrete formalism
and refer to Refs. 16 and 17 for details.

The semidiscrete angular kernel, as the angular analog
of Eqs. (14), basically amounts to construction of a semi-
discrete WH operator basis D̂u(n, z), with n P Z and z
P @2p, p), whose action on functions F( f) on the unit
circle is defined by

D̂u~n, z!F~ f! [ exp~inz/2!exp~inf!F~ f 1 z!,

2p < f , p. (67)

For construction of the angular Wigner function, it will
also be necessary to know the action of D̂u(n, z) on the
Fourier transform of F. This Fourier transform is de-
fined by

fm 5
1

A2p
E

2`

`

dfF~ f!exp~2imf!, 2` , m , `,

(68)

where m must have the same domain as does n in rela-
tions (67). For fm , we find that

D̂u~n, z!fm 5 exp~2inz!exp~imz!fm2n . (69)

It can be seen that, if F and G are two functions on the
unit circle, D̂u(n, z) is unitary,

^F, D̂u~n, z!G&u 5 ^D̂u
†~n, z!F, G&u

5 ^D̂u
21~n, z!F, G&u , (70)

over the inner product in the angle representation

^F, G&u 5 E
2p

p

dfF* ~ f!G~ f! (71)

or in the discrete angular-momentum representation

^F, G&u 5 (
m52`

`

fm* gm , (72)

and it satisfies

D̂u~0, 0 ! 5 Î, (73)

D̂u
†~n, z! 5 D̂u

21~n, z! 5 D̂u~2n, 2z!, (74)

Tr@D̂u~n, z!# 5 2pd ~z!dn,0 , (75)

D̂u~n, z!D̂u~n8, z8! 5 exp@2i~nz8 2 zn8!/2#

3 D̂u~n 1 n8, z 1 z8! (76)
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Equation (75), where Tr stands for the trace of the matrix
elements of D̂u(n, z), guarantees that the angular WH
basis is orthogonal. To calculate Eq. (75) we consider the
simplest complete and orthonormal basis functions on the
unit circle as the Fourier basis Lm( f) by which the trace
is defined. This definition is written as

Tr@D̂u~n, z!# [ (
m52`

`

^Lm , D̂u~n, z!Lm&u ,

Lm~ f! 5
1

A2p
exp~imf!. (77)

By use of Eqs. (71) and (77) one can derive Eq. (75). The
construction of the angular kernel follows by direct anal-
ogy with Eqs. (14). We introduce the angular kernel
D̂u( pu , vu) as

D̂u~ pu , vu! 5
1

2p (
n52`

` E
2p

p dz

2p

3 exp@2i~nvu 1 zpu!#D̂u~n, z!, (78)

where 2p < vu , p and pu P Z. These properties of D̂u

translate to those of the angular kernel D̂u( pu , vu) as

D̂u~ pu , vu! 5 D̂u
†~ pu , vu!, (79)

Tr$D̂u~ pu , vu!% 5
1

2p
, (80)

Tr$D̂u~ pu , vu!D̂u~ pu8 , vu8!% 5
1

2p
dpu , p

u8
d ~vu 2 vu8!, (81)

E
2p

p

dvu (
pu52`

`

D̂u~ pu , vu! 5 Î, (82)

E
2p

p

dvuD̂u~ pu , vu! 5 P̃ˆu~ pu!, (83)

(
pu52`

`

D̂u~ pu , vu! 5 P̂u~vu!, (84)

where the angular projection operators P̂u(vu) and P̃ˆu( pu)
are defined in a manner similar to that of the radial ones
in Eqs. (26) and (28) as

P̂u~vu!P̂u~vu8! 5 d ~vu 2 vu8!P̂u~vu!, E dvuP̂~vu! 5 Î,

P̃ˆu~ pu!P̃ˆu~ pu8! 5 dpu , p
u8
P̃ˆu~ pu!, (

pu52`

`

P̃ˆu~ pu! 5 Î,

(85)

^F, P̂u~vu!G&u [ F* ~vu!G~vu!, (86)

^F, P̃̂u~ pu!G&u [ fpu
* gpu

. (87)

Angular Wigner Function and Its Properties. The
representation-independent form of the angular Wigner
function can be defined as

WF~ pu , vu! 5 ^F, D̂u~ pu , vu!F&u , (88)

which is represented in the angular coordinate basis as
WF~ pu , vu! 5
1

2p
E

2p

p

dz exp~2izpu!F* ~vu 2 z/2!

3 F~vu 1 z/2!. (89)

The angular-momentum representation of Eq. (88) re-
quires the use of a fractionally shifted angular-
momentum spectrum.16,17 In our discussions here we
shall construct the Wigner function in the angular coordi-
nate representations to avoid this sort of abstraction.
The static properties of the angular Wigner function fol-
low directly from Eq. (89). These are as follows:

(1) WF( pu , vu) is real, namely,

WF~ pu , vu! 5 WF* ~ pu , vu!, (90)

which follows directly from Eq. (79).
(2) The integral (sum) of WF( pu , vu) with respect to

one of the phase-space variables pu ,vu yields the mar-
ginal probability with respect to the other variable:

E
2p

p

dvuWF~ pu , vu! 5 u fpu
u2, (91)

(
pu52`

`

WF~ pu , vu! 5 uF~vu!u2, (92)

which follow directly from Eqs. (79) and (80).
(3) Static covariance properties: Unlike the radial

part, the angular Wigner function is not covariant under
the action of the LCT’s. This is because vu , with a finite
and continuous support $i.e., vu P @2p, p)% and pu , with
an infinite and discrete one (i.e., pu P Z), do not mix.
For this reason, below we consider only the Galilean
transformations for the angular part.

Angular Galilean transformations. These are per-
formed as follows.

(a) Define a new function F8( f) as

F~ f! 5 exp~iz8p̂u!F8~ f! 5 F8~ f 1 z8!, z8 P R.
(93)

Inserting Eq. (93) into Eqs. (88) and (89), we find that

WF~ pu , vu! 5 WF8~ pu , vu 1 z8!. (94)

(b) We now define the new function F8( f) as

F~ f! 5 exp~il û !F8~ f! 5 exp~ilu!F8~ f!, l P Z.
(95)

Inserting Eq. (95) into Eqs. (88) and (89), we find that

WF~ pu , vu! 5 WF8~ pu 2 l, vu!. (96)

Equations (94) and (96) describe the covariance of the an-
gular Wigner function under Galilean transformations in
the angular coordinate space.

(4) The inner product property reads as follows:
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E
2p

p

dvu (
pu52`

`

WF~ pu , vu!WG~ pu , vu!

5
1

2p U E
2p

p

dvF* ~v !G~v !U2

5
1

2p
u^F, G&uu2. (97)

B. Polar Representation of the Wigner Function
We now demand that the 2D kernel D̂(p, q) in the Carte-
sian representation be equivalent to

D̂~p, q! 5 D̂r~ pr , vr! ^ D̂u~ pu , vu! (98)

in the polar representation. We use the log-radial repre-
sentation for the radial part in Eq. (98). It is clear that
the radial and the angular kernels in Eq. (98), as well as
their arguments ( pr , vr) and ( pu , vu), respectively, are
independent of each other. The radial representation of
the 2D Wigner function is then given by

WC~ pr , vr ; pu , vu! 5 ^C, D̂r~ pr , vr! ^ D̂u~ pu , vu!C&r,u ,
(99)

where D̂r and D̂u independently act on the radial and the
angular parts, respectively, of the wave function in Eq.
(1). Using Eq. (1) in Eq. (99), we find that

WC~ pr , vr ; pu , vu! 5 2p (
n,mPZ

^Ln ,D̂u~ pu , vu!Lm&u

3 ^C̃n , D̂r~ pr , vr!C̃m&r , (100)

where C̃n represents the radial part of the wave function
C and Ln is the Fourier basis, as given by Eqs. (77). The
radial and the angular inner products ( , )r and ( , )u in
Eq. (100) are defined in Eqs. (8) and (70), respectively.
Performing the calculations in the angular part, we can
present Eq. (100) in a more explicit form as

WC~ pr , vr ; pu , vu!

5
1

2p (
n,mPZ

exp@2ivu~n 2 m !#

3 XE
2p

p dz

2p
exp$2iz@ pu 2 ~n 1 m !/2#%C

3 ^C̃n , D̂r~ pr , vr!C̃m&r . (101)

We now shift our attention to the radial part in Eq.
(100). An arbitrary wave function C(r) in L2(R) can be
expanded in the polar representation (r, f) of r, as in Eq.
(1). We define an inner product in this space as

^C, F&r,u 5 E
Rd

drC* ~r!F~r!. (102)

Comparing the radial part of Eq. (102) with the radial in-
ner product given in Eq. (8), we find that h 5 d/2, where
d is the dimension of the space. Here we are interested
in d 5 2 only; hence h 5 1.

Here the most natural representation of the radial part
is the Mellin basis wl(r), given in Eq. (7), in which we ex-
pand C̃m(r) as
C̃m~r ! 5 E
2`

`

dl Am~l!wl~r !, An~l! 5 ^wl ,C̃n&r ,

(103)

where we have used the orthogonality relations (9) and
(10). From Eqs. (103) the radial part in Eq. (100) be-
comes

^C̃n , D̂r~ pr , vr!C̃m&r 5 E
2`

`

dl An* ~l!E
2`

`

dl8Am~l8!

3 ^ wl ,D̂r~ pr , vr!wl8&r . (104)

The radial part in Eq. (104) is given in the radial coor-
dinate representation by

^ wl , D̂r~ pr , vr!wl8&r

5
1

2p E
2`

`

dbr exp~2ibrpr!

3 exp~nvr!wl* ~vr 2 br/2!wl8~vr 1 br/2!

5
1

2p
exp@2ivr~l 2 l8!#dS pr 2

l 1 l8

2 D . (105)

Inserting Eq. (105) into Eq. (104), we find that

^C̃n , D̂r~ pr , vr!C̃m&r

5
1

2p E
2`

`

dl exp~2ilvr!An* ~ pr 1 l/2!Am~ pr 2 l/2!,

(106)

which we use in Eq. (101). Finally, an explicit form can
be given by

WC~ pr , vr ; pu , vu!

5
1

~2p!3 (
n,mPZ

exp@2ivu~n 2 m !#

3 XE
2p

p

dz exp$2iz @ pu 2 ~n 1 m !/2#%C
3 E

2`

`

dl exp~2ilvr!An* ~ pr 1 l/2!Am~ pr 2 l/2!.

(107)

3. APPLICATION
Although some very specific results exist, an explicitly ca-
nonical formulation of the polar (hence radial) Wigner
function has not, to the author’s knowledge, previously
been tackled. The study that has most closely ap-
proached this goal is the recent work of Bastiaans and
van de Mortel,18 whose research on the Wigner function of
a circular aperture was based on an approximate Carte-
sian method specific to the model that they used. How-
ever, it has been shown here that it is possible to con-
struct a generalized Wigner function formalism directly,
starting from the radial (log or nonlog) coordinates for
wave functions, which can be represented in a polar ex-
pansion of the form given in Eq. (1). Although it has
been shown here that a Weyl correspondence for this
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transformation, relating the right-hand sides of Eqs. (2)
and (98), may not exist, the question whether a coordinate
transformer can be found in the phase space within the
general context of Eq. (62) is very relevant from both the
linear optics and the quantum mechanics points of view.
The advantage of the Cartesian method, if it can be
handled exactly and with sufficient generality, over the
radial one is that the transformation under the action of
linear optical systems coincides with the covariance
transformations of the Wigner function. This is not the
case in the direct radial (logarithmic or nonlogarithmic)
situation, as we have already seen. In contrast, the ad-
vantage of the radial Wigner function is that it becomes
favorable if the initial wave field is more appropriately
represented in the angular-momentum (m) expansion, as
in Eq. (1). If the action of a linear optical device is rep-
resented by the function r(r) multiplying the radial field
c (r), the corresponding Wigner function goes through a
convolution similar to that of the Cartesian one,18 which
can be written in one of the four equivalent ways between
radial and angular coordinates and momenta as

Wc8~ pr8 , vr8 ; pu , vu8! 5 E dpr(
pu

Wr~ pr8 2 pr , vr8 ; pu8

2 pu , vu8!Wc~ pr , vr8 ; pu , vu8!

5 E dvr(
pu

Wr~ pr8 , vr8 2 vr ; pu8

2 pu , vu8!Wc~ pr8 , vr ; pu , vu8!

5 ..., etc. (108)

Below we calculate the Wigner function of the circular
aperture, using the polar formalism developed here. We
describe the wave function r (CA)(r) of the circular aper-
ture as18

r~CA!~r! 5
1

Apa2
U~r 2 a !

5 H 1/Apa2 if r < a

0 elsewhere
⇒ r̃m

~CA!~r !

5
A2

a
U~r 2 a !dm,0 , (109)

where we have used Eq. (1). Inserting relation (109) into
Eq. (101), we find that

Wr~CA!~ pr , vr ; pu , vu! 5
1

2p
dpu,0W r̃~CA!~ pr , vr!. (110)

Using Eq. (30), we calculate the radial part in Eq. (110)
from

W r̃~CA!~ pr , vr!

5
1

pa2 E
2`

`

dbr exp~2ibrpr!exp~2vr!

3 U@a 2 exp~vr 2 br/2!#U@a 2 exp~vr 1 br/2!#,
(111)
where we have used h 5 1. Clearly, the radial Wigner
function above vanishes if ln a < vr . A simple calcula-
tion yields

Wr~CA!~ pr , vr ; pu , vu!

5
1

p2a2 dpu,0 exp~2vr!
1

pr

3 sin@2pr~ ln a 2 vr!# if vr < ln a (112)
and zero elsewhere. Equation (112) is depicted in Fig. 1
for the unit aperture radius a 5 1.

One can obtain the marginal probability distributions
for the phase-space variables by integrating (summing)
all other variables as

Dr
~CA!~vr! 5 (

pu52`

` E
2p

p

dvuE
2`

`

dprWr~CA!~ pr , vr ; pu , vu!

5
2

a2 exp~2vr!U@a 2 exp~vr!#, (113)

Dr
~CA!~ pr! 5 (

pu52`

` E
2p

p

dvuE
2`

`

dvrWr~CA!~ pr , vr ; pu , vu!

5
1

p

1

1 1 pr
2 , (114)

Du
~CA!~vu! 5 (

pu52`

` E
2`

`

dvrE
2`

`

dprWrCA~ pr , vr ; pu , vu!

5
1

2p
, (115)

Du
~CA!~ pu! 5 E

2p

p

dvuE
2`

`

dvrE
2`

`

dprWr~CA!~ pr , vr ; pu , vu!

5 dpu,0 , (116)

Fig. 1. Radial part of the Wigner function [WC̃(CA)( pr , vr) in re-
lations (112)] for the circular aperture of unit radius versus the
phase-space variables pr , vr . The Wigner function vanishes for
vr < 0.



T. Hakioğlu Vol. 17, No. 12 /December 2000 /J. Opt. Soc. Am. A 2421
where all marginal distributions are normalized to unity.
One can also equivalently represent Eq. (111) in terms of
the pseudo Wigner function given in Eq. (61), using Eq.
(63).

4. CONCLUSIONS
Formulation of physical systems in the phase space by
use of Wigner functions has become a powerful tool in the
application of the fundamental phase-space concepts,5

particularly to signal processing19 and to classical18,20 as
well as quantum optics.21 The existence of a complete or-
thogonal and unitary Weyl–Heisenberg operator basis,
given, for example, by the expressions presented in Eqs.
(4), for the Cartesian basis, or by those presented in Eqs.
(14), for the radial one, is the crucial element for the
Wigner function formulation of the phase space.

It is desirable to adopt the symmetries of the physical
system in its representations on the phase space. Per-
haps the action-angle basis, as built on the idea of repre-
senting a physical system by its maximum number of
symmetry generators, does this in the most natural
way.16,17 The polar canonical phase-space representa-
tions adopted in this study are expected to be important
for paraxial optical systems as well as other systems in
which a rotational symmetry around a particular axis is
present. A simple example from classical electromagne-
tism is presented in Section 3.

Other immediate areas of application of the polar
Wigner function are expected to be in the field of atomic
and condensed-matter physics. Specifically, studies on
quantum wires and dots, as well as studies on Bose–
Einstein phase-space condensation of atomic systems un-
der external potentials with certain rotational symmetry
properties, can be facilitated by use of the polar Wigner
function formalism.
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