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Strongly interacting one-dimensional Bose-Einstein condensates in harmonic traps
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We study the interaction effects on the condensates by considering a model of one-dimensional bosons. The
harmonic external potential allows for the formation of a condensate in these systems. Using a density-
functional theory-type formalism we obtain an equation describing the condensate wave function in the limit of
very strong interactions between the bosons. We then consider a model of strongly interacting two-component
system of bosons and study its stability conditions. Similar to the weakly interacting case, the two-component
system exhibits coexisting and segregated phases depending on system parameters.

PACS numbe(s): 03.75.Fi, 05.30.Jp, 32.80.Pj

I. INTRODUCTION rameters within the GP descripti¢@]. In the strongly inter-
acting limit, 1D bosons are described by a new type of non-
The observation of Bose-Einstein condensati®EC)  linear Schrdinger equatior{with a fifth order nonlinearity

phenomena in trapped atomic gagikhas led to a surge of as discussed by Tanaf@] and Kolomeiskyet al. [10]. The
research activity. The thermodynamic, ground-state stati§trong interaction limit corresponds to the infinite hard-core
and dynamic properties of condensates are thoroughly rd2roblem envisaged by Girardeqli5]. The correspondence
viewed [2] As the number of atoms in the condensates |n_W|th noninteracting SpinleSS fermions are noted and solitonic
creases the deviations from the weak coupling description dproperties are investigatd®,10]. Recently, Girardeau and
the effects beyond the mean-field description will be moreWright [16], by studying the time evolution of the conden-
and more important, and this fact has been recognized earliéates when the external potential is turned off, found that
on [3,4] and emphasized recent§,6]. Another interesting coherence in strongly interacting bosons is lost. We also con-
direction in the recent studies of the BEC is the interp'aysider in th|S Work the miXtUI’e Of 1D Bose Condensates and
between the dimensionality and interaction effects. The prosstudy their phase segregation properties. In our model calcu-
pects of Creating an effective|y one- or two-dimensiona| Conjations We inVeStigate the effe(.:t of the external pOtentIal on
densates appears to be very optimistic. the stability of the overlapping condensates in a two-
Our aim in this work is to study some properties of acomponent system.
strongly interacting one-dimension@D) boson condensates ~ The rest of this paper is organized as follows. In Sec. II,
in harmonic trap potentials. There are several motivations foyve obtain the nonlinear Scldimger equation for 1D con-
undertaking such a study. First, in highly anisotropic trapdensates in the strong coupling limit, and discuss the main
potentia|s as used in the present experimentsl the Cigé?&tures of the Condensatelwave f_unCtlon. In Sec. “I, we
shaped condensates are formed which may be modeled bysiidy a model of a strongly interacting two-component sys-
1D equation[7]. It is also suggested8] that thin atom tem and study its stability conditions. We conclude in Sec.
waveguides may be used to realize 1D gas of impenetrable/ With a brief summary of our results.
bosons. Second, the role of strong interaction effects may be
studied in a model system where an exact solution to the
homogeneous problem is known. We use the local-density
approximation to describe the interaction effects on the con- \we consider a system of interacting bosons in 1D con-
densate and obtain a new equation valid in the strong intefined in a harmonic potentialq(x) = mw?x2. To describe
action limit[9,10]. Bose condensates with strong interactionsthe dynamics of the condensate in both the weak and the
have attracted considerable attention, and our calculationsrong coupling regimes we use the method developed by
are intended to describe some of the ground-state properti@funes[6]. In this approach the energy functional for the
of these systems. _ _ _condensate is written in the spirit of local-density approxi-
The 1D bosons have been the subject of various works ifhation in terms of the ground-state energy of the homoge-
recent year$7—12. Pearson, Pang, and Chgt8] studied  neous system. The nonlinear equation for the condensate
the interacting Bose gas in 1D subject to power-law potenyave function then follows as the Kohn-Sham equation.
tials employing the path-integral Monte Carlo method. Theystarting from the energy functional
found that a macroscopically large number of particles oc-
cupy the lowest single-particle state in a finite system of
hard-core bosons at some critical temperature. The validity * h?
of the Gross-PitaevskiiGP) [14] equation even at zero tem- :f dx om
perature when the interactions are strong is an important
guestion in our understanding of the boson condensates. The
1D condensates are usually modeled by a suitable averagimghere p=|y|? is the density and(p) is the ground-state
over the cross section and identifying the renormalized paenergy(per particle of the homogeneous syste(ite., in the

II. ONE-DIMENSIONAL BOSE CONDENSATES
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absence of an external potentialinimization of the total
energy functional subject to the normalization condition
yields

)

where u is the chemical potential. The problem of 1D
bosons interacting via a short rang&f{inction) potential of

arbitrary strength has been solved exactly by Lieb and Lini-

ger[17]. In particular, the ground-state energy is given by
e(p)=gpl2+ ..., whereg is the dimensionless coupling
strength. The expression fe(p) is also known as the Bo-
goliubov result valid at smalf. Thus, Eq.(2) with weak
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coupling expression for the energy of the homogeneous sys
tem becomes the well-known Gross-Pitaevskii equation with
a cubic nonlinear term. The properties of 1D condensates

20

Hay,

have been the subject of many workg in the weak cou-
pling regime, where the coupling strengghis treated as a
parameter. The calculations show that a condensate cloud
a certain size depending @pandN exists at zero tempera-
ture because of the external potential.

FIG. 1. Condensate wave functidin dimensionless unijsin
the infinite coupling limit forN=100, N=500, andN= 1000 par-
tigles. The corresponding Thomas-Fermi results are indicated by
dotted lines.

Thomas-Fermi(TF) approximation to Eq(3), straightfor-

We now turn to the limit of very strong coupling between \yarqly obtained by neglecting the kinetic energy term, is
the interacting bosons. For large coupling strengths the engso plotted in Fig. 1, and we observe that it is quite accurate

ergy density is given by = (72/6)g%/(g/p+2)?, and in par-
ticular, wheng is infinite, it simply reduces ta= w2p?/6.

for a range ofx values except at the edge of the condensate.
Using the argumer(tl9] that the balance between the inter-

Using the above Kohn-Sham form of the equation of motionaction energy %2/2m)7?(N/R)?, and the confinement en-

we obtain

h? d? 2o T
~om g T aMeX oYl = nd ()

ergy mo?R?, to determine the size of the condensBtave
estimate it to beR/ayo=(7N)¥? which is in good agree-
ment with the numerical results shown in Fig. 1.

The strong coupling effects in condensed Bose systems
have been addressed by a number of authors. Ziegler and

for the condensate wave function in the strongly coupled®hukla[20], using the slave-boson technique, found that the

limit. Interestingly, the new nonlinear equation contains

fifth order term, and the cubic term is altogether missing.

The above fifth order nonlinear Schiinger equation was
also obtained by Kolomeiskgt al. [10]. In an earlier work
Kolomeisky and Straley18] argue from a renormalization
group analysis that the correct local-density theory predict
Eq. (2) for 1D impenetrable bosons. It was notglD] that
because of the boson-fermion equivaleht®, 17| exact den-

aeffective potential grows only linearly in the asymptotic limit

in contrast to they* behavior in the GP functional. Thus, the
condensate becomes weaker and is easily destroyed by fluc-
tuation effects. Cherny and ShanerjRd] proposed a strong
coupling generalization of the Bogoliubov model. Our re-
sults indicate that a condensate exists even for an infinitely

%trongly interacting 1D model system. It is interesting to note

that recently Dodcet al,, Eleftheriou and Huang, and Gam-
mal et al. [22] have found ay®° correction term to the GP

sity profiles can be obtained and the accuracy of the preseftation by including three-body scattering effects in the 3D
mean-field approach can be tested. The fifth order nonlinegphomogeneous systems. It would also be interesting to
Schralinger equation is found to describe the condensat@heck our results for a strongly interacting bosons with a
density quite well for largeN. We also mention here that short-range potential in 1Calso under an external potenjial
according to Girardeau's theorefit5] an infinitely strong by Monte Carlo calculations to see if the new type of non-
repulsion between bosons in one-dimension effectively turnfinear Schrdinger equation correctly describes the proper-
the particles into noninteracting spinless fermions, as demtes of the condensate. Recent calculations by Giorgini, Bo-
onstrated by Lieb and Linigdrl7]. Girardeau’s theorem is ronat, and Casullerd®3] could easily be extended to study
exactly satisfiedat the Thomas-Fermi approximation level the system considered here.

for infinitely strongly coupled 1D bosons in an external po-
tential, which was shown in the previous woilgs10].

In Fig. 1 we display the numerical solution of E@) for Following the realization of Bose-Einstein condensation
several values ol for the condensate wave function in the i single-component atomic vapors, experimental efforts suc-
Strong COUp|Ing I|m|t. We use the harmonIC OSC"Iator Iengthceeded in Creating Over|apping Condensate m|thE%§
ano= (fi/mw) ™ for scaling, thus the condensate wave func-The phase and density dynamics of two-component boson
tion is rendered dimensionless by(x)—(N/ano)"%4(x).  mixtures have been investigated in a ga$®tb atoms with
Remarkably, a condensate seems to exist in the sense thatv@o hyperfine statef25]. Theoretical work concentrated on
finite cloud extends over a finite length. The correspondinghe study of the various properties of two-species Bose con-

Ill. TWO-COMPONENT SYSTEM
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FIG. 2. Density profilegin dimensionless unijsof a two-component strongly interacting Bose system. Number of particles of each
species and the mass ratie- m; /m, are indicated for each panel. The parameters are so chosen to show mostly overlapping condensates.

densate§26—30. The stability of the boson mixtures against =|¢|* are the densities. In more realistic cases the external
phase separation, the behavior of collective excitations, angotential frequencies may be allowed to be different,
tunneling effects between the condensates are investigateghy effects of gravity may be included. The coupled

In the case of 1D condensates Girardeau and Wit - - ;
considered interference effects when the confining potentiJI].Ommear equations that the Bose condensates satisfy are

is switched off, and found that coherence properties ard'Ven as

largely lost.
To study some properties of strongly interacting boson 52 d2 1 2
mixtures, we consider a simple model of two species with — — —+ =M+ — 72| Yy |*
. i . 2m; dx° 2 2my
different masses, i.em; andm,, respectively. The total en-
ergy functional is expressed as h2 242 S k2 2 .
t o g |l el 5 el =,
2 2 2 2 1 2
e[y sz a2 (A B dos 5
LR )7 2my | dx | T 2my | dx | 2 2 )
he d N 1 20, e,
—=——-——>+=-m =
+VP 2+ VS |2+ e(p1) pa 2m, dx* 2 2 2m27r v
2 277_2 ) ) hZ 772 .
+e€(p2)pat€(p1)pate(pa)paf, (4) +2_sz|'r/fz| | ] "’2_m1?|'/’1| V2= 2.

where V= 1m w?x? are the external harmonic potentials Note that the coupled nonlinear equations describing
(for simplicity we choose the same frequencynd p; strongly interacting condensates are different in structure

053601-3



B. TANATAR AND K. ERKAN PHYSICAL REVIEW A 62 053601

20 T 5
(a)
N,=500
15 \ ¢c2 N,=100
5=0.1
=
=10 1
5 L
0 L L
0 20 40 60
Nay,
15 15
N,=500 N,=500
N,=100 N,=100
= =
=% a

100

X3y

FIG. 3. Density profileqin dimensionless unifsof a two-component strongly interacting Bose system. Number of particles of each
species and the mass ratie=- m; /m, are indicated for each panel. The parameters are so chosen to show mostly segregated condensates.

than their counterparts in the weakly interacting regime. he 72 5 h2 2 5

First, in contrast to the weak interaction limit we do not have Enhom= om. 3914‘% 3 P2

interaction strengths appearing in the nonlinear equations. ! 2

Second, various terms in the energy functional, for instance he om h: owt

the interaction terms for the condensate of the same species +2_ml ?plpfrz_mz 3 Prz|L, ©)

and those for different species, contribute to yield terms with

wherep;= z//i2= N;/L. In the above expression, we have ne-
alected the contribution of kinetic energy ter(i$- approxi-

only one coupling term in the coupled nonlinear equations, oy and we have assumed that the trap potential is in the
In the various panels of Figs. 2 and 3, we display the conto.m of an infinite square well with size. The homoge-
densate density profiles of the two species for different compeqys solution would be stable provided

binations ofN;, N,, and the mass rati6=m, /m,. We have
used the steepest descent method to solve numerically the
coupled nonlinear equations faf; and ¢,. Depending on —
the parameters chosen we find that the condensates either dp1 Ip3
overlap in the same region of space, or show a segregated

behavior. To better understand the stability of the homogewhich yields 1/3< §<3. Outside this range of values féy

neous phase of the two-component system, overlapping the condensates are in the phase separated state. The density
condensatgswe write down the total energy of the system profiles depicted in Figs. 2 and 3 illustrate these coexisting
as and segregated phases for various values of the masssratio

J°E 9°E PPE \2
e o

dp19p>
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Similar qualitative stability bounds also follow by consider- temperature. Although it is a matter of debate that, the inter-
ing the total energy of the inhomogeneous state action effects do not destroy the condensate immediately ac-
52 o2 52 o2 cording to the Monte Carlo simulations perform_ed at finite
Einhom=>— W_piLlJr _’T_ngZ, (8) temperature of Pearson, Pang, and CHeS]. A finite tem-
2m; 3 2m; 3 perature analysiéfinding a nonzero critical temperatufe)
is necessary to establish the occurrence of a true BEC. Our
study was at zero temperature; thus, it does not address the
transition to a Bose-Einstein condensed phase. The solutions
of the 1D-GP equation, however, indicate the formation of

whereL; is the spatial extent of each condensate. Minimizing
Einnom With respect toL; andL,, under the constraint
+L,=L, we obtain

Ly/L=[1+8""N,/N,]7 L, spatial distribution of bosons of a finite size which may be
(9) construed as a condensate cloud. Using the exact solution of
Lo/L=[1+ & ¥3N;/N,] 1. the 1D homogeneous system of interacting bosons, we con-

) o struct a new nonlinear equation to describe the condensate
Although the numerical results presented in Figs. 2 and 3 argaye function in the strong coupling regime. The mixture of
for harmonic confining wells, our approximate mean-fieldyyg sych condensates in the strongly interacting regime
treatment results are consistent with the observed behaviagie|ys stapility conditions similar to the weakly interacting
Our results are qualitatively similar to those found in 3tho—component 3D condensates. It would be interesting to

conden_sate mixtures, but the shape of the density prof_lles aBxtend our ideas to strongly interacting binary boson-fermion
deterr_mned by t_he strong coupling equations. Ano_ther IMPOMyixtures. From an experimental point of view, it would be
tant difference is that in 3D condensates the relative strengt seful to probe the strong interaction regime,in the 1D or

of the interparticle interactions among the species are reSPOR: ~si-1D condensates.
sible for the occurrence of different phases, whereas in th
present case only the mass ratio is capable of producing
similar results. The model of a strongly interacting two-
component Bose condensate, thus, provides a useful example
to study the different phases of condensate mixtures.
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