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Many-body vertex corrections in a one-dimensional electron system interacting
with a long-range Coulomb potential

B. Tanatar and E. Demirel
Department of Physics, Bilkent University, Bilkent, 06533 Ankara, Turkey

~Received 16 February 2000!

We study the quasiparticle properties of a one-dimensional electron gas interacting with a long-range
electron-electron interaction. The electron self-energy is calculated using the leading-order dynamical-
screening approximation with (GWG approximation! and without the vertex corrections (GW approximation!.
The calculated one-electron properties such as the spectral function, damping rate, and also the momentum
distribution indicate the significance of vertex corrections at low densities.
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I. INTRODUCTION

Models of one-dimensional~1D! electron systems1 are of
increasing interest because of their applicability to realis
systems such as naturally occurring organic conductors,
ficially fabricated semiconductor structures, and certain m
terials exhibiting superconductivity. Quantum-wire stru
tures made out of semiconducting materials using hig
developed processing techniques provide a testing groun
the many-body theories describing the dynamics of inter
ing electrons in restricted geometries. A one-dimensio
system of electrons interacting via a long-range Coulo
potential in configuration space is a model being used
understand various properties of many realistic systems.

In this work we study the quasiparticle properties of a
electron system interacting with a long-range Coulomb
tential. We calculate the wave vector and frequen
dependent self-energy within theGW andGWG approxima-
tions from which all one-electron properties can be obtain
There are several motivations for our investigation. First,
explore the extent the Fermi liquid theory can be employ
in the description of this model system. It has been shown
Hu and Das Sarma2 that disorder and finite-temperature e
fects render the Fermi liquid picture meaningful in 1D ele
tron gas, and we adopt this viewpoint with application
semiconducting quantum wires in mind. Numero
studies3–7 were devoted to the ground-state energy and c
relation functions of quasi-one-dimensional electron gas
teracting via long-range Coulomb interaction, but relative
less attention is paid to the quasiparticle properties of th
models.2,8 On the other hand, models of 1D interacting ele
trons on a lattice are actively being pursued to underst
various phenomena, most notable being quantum phase
sitions. Second, we investigate the effects of vertex cor
tions. The extension of the random-phase approxima
~RPA! GW approach is formulated by theGWG approxima-
tion, whereG stands for the vertex corrections. In the pres
model we use the previously obtained4 local-field factors to
describe the vertex corrections and assess their importan
the quasiparticle properties at low densities.

Within the Tomonaga-Luttinger model of 1D electro
having a linear dispersion relation, the RPA is argued to
exact because the vertex corrections to the irreducible po
PRB 620163-1829/2000/62~3!/1787~6!/$15.00
c
ti-
-

-
y
for
t-
al
b
o

-
-

d.
e
d
y

-

r-
-

se
-
d

an-
c-
n

t

in

e
r-

izability vanish.9 This fact has been used to explain th
agreement between the experimentally observed10 plasmon
dispersions in quantum wires and the model calculation11

In a system with long-range Coulomb interactions and q
dratic energy dispersion, the vertex corrections are not
quired to vanish identically, rather they should become m
significant as the interaction strength between the electron
increased. The evidence for this comes from the approxim
ground-state energy calculations3–7 in comparison to the
RPA, and also from the recent quantum Monte Ca
simulations.12 Thus, it seems reasonable to calculate the q
siparticle properties including the vertex corrections that
consistent with the ground-state energy calculations, sim
to the analysis given for 2D systems.13,14 We use theGWG
approximation in the calculation of electron self-ener
where the vertex function is approximated by the local-fie
factors calculated in the self-consistent-field approximatio

The rest of this paper is organized as follows. In the n
section we provide the theoretical background forGW and
GWG approximations to the electron self-energy. In Sec.
we present our numerical results of the self-energy and
lated quantities calculated from it. We conclude with a br
summary of our results.

II. MODEL AND THEORY

We consider a system of electrons in 1D interacting w
a long-range Coulomb potential, embedded in a unifo
background of positive charges insuring overall charge n
trality. The bare interaction potentialV(q) is modeled as
obtained from the zero-thickness 2D electron gas unde
harmonic confining potential.15 This yields V(q)
5(e2/e0)exK0(x) for the interaction between the electron
assumed to be in the lowest subband. Herex5(bq/2)2,
whereb is the lateral width of the quantum wire determine
by the confining oscillator frequency ande0 is the back-
ground dielectric constant. The system is characterized
the dimensionless density parameterr s5a/aB* , wherea is
the average interparticle distance~i.e., n51/2a in terms of
the linear number densityn) andaB* 5e0 /(m* e2) is the ef-
fective Bohr radius~we take\51). The single-subband ap
proximation, which implies that the Fermi energy remai
smaller than the intersubband energy difference, is justi
1787 ©2000 The American Physical Society
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1788 PRB 62B. TANATAR AND E. DEMIREL
for r s.(p/25/2)(b/aB* ). The Fermi wave vector is related t
the linear density byn52kF /p, in an unpolarized system.

The self-energy of the one-dimensional~1D! electron sys-
tem within theGW approximation~excluding the vertex cor-
rections! at T50 is given by16

S~k,v!5 i E dqdv8

~2p!2
W~q,v8!G0~k2q,v2v8!, ~1!

whereG0(k,v) is the Green’s function for the noninterac
ing electron gas, with single-particle energiesjk5k2/2m
2m (m is the chemical potential or the Fermi energyEF

5kF
2/2m at T50). W(q,v) is the dynamically screened in

teraction, which is given byW(q,v)5V(q)/«(q,v). In the
effective interaction above«(q,v) is the dielectric function
describing the dynamical screening properties of the elec
gas. We employ the usual practice of separating the dyna
cally screened interactionW(q,v) into a frequency-
independent term which gives the exchange part of the s
energy and a frequency-dependent term which gives
correlation part of the self-energyW(q,v)5V(q)1V(q)
3@1/«(q,v)21#. The exchange part is given bySex(k)5
2*2`

` (dq/2p)nF(k1q)V(q), where nF(k)5u(kF2k) is
the Fermi distribution function atT50. In theGW approxi-
mation, the correlation part of the self-energy can be dec
posed into two parts,16 Scor(k,v)5S line(k,v)1Spole(k,v).
Since«(q,iv) is a real and even function with respect tov,
the S line(k,v) term is completely real. The self-energy ca
culation which includes vertex corrections is called t
GWG approximation.17 The importance of vertex correction
in strongly correlated systems was recently emphasized
number of works.18 In the GWG approximation,Scor(k) is
again split into two parts,S line(k,v) andSpole(k,v), which
are given, respectively, by

S line~k,v!52E
2`

` dv8

2p E
2`

` dq

2p
V~q!

3
1

~jk1q2v!2 iv8
FG~q,iv8!

«~q,iv8!
21G ~2a!

and

Spole~k,v!5E
2`

` dq

2p
V~q!FG~q,jk1q2v!

«~q,jk1q2v!
21G

3@u~w2jk1q!2u~2jk1q!#. ~2b!

In these expressionsG(q,v) is called the vertex function an
we use the local approximation19

G~q,v!5
1

11V~q!G~q!x0~q,v!
. ~3!

The dielectric function«(q,v) to be used in the above for
mulation with the vertex correction is given by«(q,v)51
2V(q)x0(q,v)G(q,v), where x0(q,v) is the density-
density response function for noninteracting electrons.20 The
function G(q) is called the local-field correction factor. W
employ theG(q) calculated within the Singwi-Tosi-Land
Sjölander ~STLS! approach21 by Gold and Calmels.4 We
note that the above expressions reduce to the familiarGW
n
i-

lf-
e

-

a

approximation forms when the vertex corrections are
glected, i.e.,G(q)50 or equivalentlyG(q,v)51.

In this work, we calculate the self-energy in leading-ord
perturbation theory. Our expressions for theGW andGWG
self-energies contain noninteracting Green’s functions.
have not attempted to perform a self-consiste
calculation22,23 but surmise that our results would rema
qualitatively the same.

III. RESULTS AND DISCUSSION

In the numerical calculations to be presented below,
specialize to a quantum wire made out of GaAs material. T
material parameters of relevance to us are the dielectric c
stant e0512.9 and the electron effective massm*
50.07 m. We study the quasiparticle properties for a giv
density of electrons characterized byr s and lateral quantum-
wire sizeb. In the examples below, we tookb5aB* ~which
corresponds to;100 Å for GaAs! but did not perform a
systematic study of different wire widths, partly because
local-field correction data4 were available only for this value
of b. However, we believe that our results should be rep
sentative, and in principle may be extended to oth
quantum-wire widths.

In Fig. 1 we show the frequency dependence of the r
and imaginary parts of the self-energy calculated in two d
ferent approximations: the RPA-GW and theGWG schemes.
The self-energies atk5kF are depicted in Figs. 1~a! and 1~c!,
for r s51 andr s53, respectively. As expected, the results
the GW approximation are closer to those of theGWG ap-
proximation for higher densities, indicating that vertex co
rections are of lesser importance. However, for lower den
ties ~large r s) there are significant differences between t
results of theGW and GWG approximations. Similar con-
clusions may be drawn from the self-energy results illu
trated in Figs. 1~b! and 1~d!, where we consider the ban
edgek50. The imaginary partuIm S(k,v)u as a function of
v has finite discontinuities aroundv56vq(k1kF) within
the GW approximation, where vq is the plasmon
dispersion.20 Since Re@S# and Im@S# are related to each
other through the Kramers-Kronig relations, a finite disco
tinuity in Im@S# gives rise to a logarithmic singularity in
Re@S#. In theGWG calculation of the self-energy, the finit
discontinuities in Im@S# occur also aroundv56vq(k
1kF), where this timevq includes the local-field effects. Fo
r s51 andk5kF , Im@S# is continuous but its derivative is
discontinuous at the same point. In theGWG approximation
calculation of the self-energy, the discontinuities in Im@S#
occur at largeruvu values thanv5uvq(k1kF)u for largerr s
values. There are considerable differences between theGW
andGWG approximation results. The main reason for this
that with increasing interaction strength the RPA does
provide a good description of the ground-state energy
yond r s*1. The local-field corrections restore the quality
approximation in the intermediate coupling region (1&r s
&5), thus the quasiparticle properties calculated within
GWG approximation are expected to give a better accou

Once the self-energyS(k,v) is known, other quasiparti-
cle properties can be readily evaluated. We now examine
single-particle spectral functionA(k,v) defined as
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FIG. 1. The self-energyS(k,v) as a function of the frequencyv for ~a! and~b! r s51 and~c! and~d! r s53, for the wave vector values
k5kF ~a! and ~c! andk50 ~b! and ~d!. The solid and dashed lines correspond to theGW ~RPA! andGWG approximations, respectively
The upper and lower set of curves show theuIm S(k,v)u and ReS(k,v), respectively.
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A~k,v!5
2uIm S~k,v!u

@v2jk2ReS~k,v!#21@ Im S~k,v!#2
. ~4!

The spectral functionA(k,v) can be observed experimen
tally with photoemission spectroscopy,24 thus it is important
to investigate some of its properties. In Figs. 2~a! and 2~b!
we showA(k,v) as a function of the frequency atk50 and
k5kF , respectively, forr s51. We note that the differenc
between theGW and GWG approximation results is mor
prominent at the band edgek50 than atk5kF . For k50,
there are two sharp peaks inA(k50,v), of which the loca-
tion of the first one is different in respective approximati
schemes. The intersections of Re@S# and the straight line
v2j(k)2m indicate the solutions to Dyson’s equation. F
thek5kF case, there is only one solution atv50, and there-
fore, a strong peak inA(k,v). This peak is not of a
d-function type, since ImS(kF ,v)→0 as v→0. At the
band edge (k50), we find three solutions to Dyson’s equ
tion, the first one of which corresponds to the regular qua
particle peak. It is slightly shifted from the noninteractin
single-particle energyv5j(k) and produces a shar
d-function peak. The second solution has a broad incohe
structure indicating finite damping in the spectral functi
and does not produce a peak. The third solution is o
weakly damped and produces a second sharpd-function
peak inA(k,v). This solution has been termed a plasmar
and interpreted as a hole coupled to a cloud of real plasm
In general, the spectral weight of the plasmaron peak
smaller than the quasiparticle peak, and it produces a sate
peak below the edge of the one-particle density of sta
which is experimentally observed in 3D metallic system
i-

nt

ly

n
s.

is
ite
s,
.

We have not carried out a detailed calculation of the plasm
ron excitation energies, but in qualitative terms it should
similar to the 2D case25 where plasmarons give rise to
staircaselike structure.

The single-particle spectral density also satisfies the s
rule *dv/(2p) A(k,v)51, which we verify numerically to
a very high accuracy. The first frequency sum rule yield23

*dv/(2p)vA(k,v)5Ek
HF, where Ek

HF5jk1Sex(k) is the
quasiparticle energy in the Hartree-Fock approximation a
the spectral functionA(k,v) is evaluated in theGW ap-
proximation. As an illustration, we compare the right- a
left-hand sides of this sum rule in Fig. 3, and find that it
also satisfied within our approximation scheme for the ver
function. The momentum distribution of particlesn(k)
5*2`

0 A(k,v)dv/2p is shown in Fig. 4 forr s51 and r s

53. The expected behavior of a jump discontinuity atk
5kF decreases with increasingr s , as in a normal Fermi
liquid.2 We observe that the differences between theGW and
GWG approximations become more significant asr s in-
creases.

The quasiparticle broadening or the damping rateG(k) is
given by the imaginary part of the self-energy,

G~k!52Im S~k,jk!. ~5!

From the damping rate, we can calculate the quasipart
scattering rate 2G(k), the inelastic lifetime t(k)
5@2G(k)#21, and the inelastic mean free pathl (k)
5v(k)t(k), wherev(k) is the electron velocity. Figure 5
showsG(k) for r s51 andr s53 in the RPA-GW andGWG
approximations. The damping rate calculated within t
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FIG. 2. The single-particle spectral functionA(k,v) as a function of frequency for~a! and~b! r S51 and~c! and~d! r s53, for the wave
vector valuesk5kF ~a! and ~c! andk50 ~b! and ~d!.
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GWG approximation is not drastically different in its overa
shape than the one calculated within theGW ~RPA!. How-
ever,G(k) within the GWG is in general smaller in magni
tude than that in the RPA-GW. This is consistent with the
earlier results shown in Fig. 1. A similar comparison for 2
electron systems was made by Marmorkos and Das Sarm14

There, it was found that the vertex corrections were o
10–30% smaller than the RPA results. The large decreas
G(k) ~especially at largerr s values! may be partly due to the
dimensionality and partly due to the relative strength of
interaction. In any case, our results indicate the significa
of vertex corrections or correlation effects beyond the RP
For wave vectors away fromkF , but less than some thresh
old wave vectorkc (kc'2.7 kF for r s51 andkc'4.9 kF
for r s53 in the RPA!, damping rates including the verte
corrections are higher than those in the RPA. In the la
wave-vector regime, indicated by the sharp increase inG(k)
in Fig. 5, the plasmon excitation mechanism becomes imp
tant. Here the effects of vertex corrections are observe
decrease the damping rate. Furthermore, the threshold w
vector kc for the onset of plasmons decreases compare
the RPA values (kc'2.3 kF for r s51 andkc'3.1 kF for
r s53 in theGWG approximation!. As is known, the vertex
corrections~local-field corrections! in general lower the plas
mon energies.3–6 As argued before, for larger values ofr s the
RPA breaks down, and the results which include the loc
field corrections~i.e., GWG approximation! should be more
trustworthy.

The above examples of quasiparticle properties sug
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e

r-
to
ve
to

l-
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that as far as the Fermi liquid concept is applicable, the v
tex corrections are significant at larger s values. Since the
various ground-state energy calculations and quantum Mo
Carlo simulations suggest the inclusion of correlation effe
beyond the RPA forr s*1, our investigation of the quasipar
ticle properties provides a consistent picture with the ab
framework. Various results presented in this work may
principle be compared to the experiments when they beco
available. Our vertex functionG(q,v) is limited by the
local-field corrections obtained within the self-consiste

FIG. 3. The Hartree-Fock energyEk
HF for within theGW ~upper

curves! and GWG ~lower curves! schemes atr s53. The results
from the first moment ofA(k,v) are indicated by triangles which
are joined by thin lines to guide the eye.
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field scheme. Better approximations to theG(q), in particu-
lar those satisfying the exact limiting forms and various s
rules, may be constructed for improvement.13 The frequency
dependence ofG(q,v) may be improved at the STLS ap
proximation level by considering a dynamical local-fie
factor7 G(q,v). It would be interesting to useG(q,v) when
constructingG(q,v) and study its effects on the quasipar
cle properties. Such a calculation is beyond the scope of
present study, but we can guess that dynamical eff
should somewhat modify the frequency dependence of
self-energy and the spectral function. More specifically,
location of singularities inS(k,v) will be shifted, since the
plasmon frequencyvq will be different in the dynamical
approach.

For quantum wires with long-range Coulomb interactio
Das Sarma, Hwang, and Zheng8 developed a plasmon-pol
approximation which turns out to be very accurate in
calculation of quasiparticle properties. Here, we genera
their account to include the local-field effects. We first no
that in the GWG approximation when a local-field facto
G(q) is used in the description of the vertex functio
G(q,v), the various cancelations render the self-energy
pression the same as in theGW approximation, except tha
the screening function becomes«(q,v)512V(q)@1
2G(q)#x0(q,v). Using the plasmon-pole approximation11

for the density-density correlation functionx0(q,v), we ob-
tain

FIG. 4. The momentum distributionn(k) of interacting elec-
trons within theGW andGWG schemes atr s51 andr s53.

FIG. 5. The damping rateG(k) as a function ofk for r s51 and
r s53 in theGW andGWG approximations.
he
ts
e

e

,

e
e

x-

«~q,v!512
@12G~q!#v0

v22vq1v0
21 ih

, ~6!

where the pole strengthv0
25(n/m)V(q)q2 is determined by

the f-sum rule andvq is the 1D plasmon dispersion.20 In the
above form of«(q,v), the RPA is recovered whenG(q)
50. With these modifications, the calculation of the se
energy within the plasmon-pole approximation~including
the vertex corrections! proceeds along the lines given by Da
Sarma, Hwang, and Zheng.8 We have selectively tested th
plasmon-pole approximation in the presence of vertex c
rections and found reasonable agreement with the fully
merical results. The level of agreement is essentially
same as that obtained by Das Sarma, Hwang, and Zheng8 for
the GW approximation. Finally, we mention that our calc
lations including the vertex corrections may be extended
include the phonon effects to describe the quantum w
made of weakly polar materials~such as GaAs! similarly to
the previous related works.26

As mentioned before, our self-energy calculations are p
formed for the quantum-wire width ofb5aB* only, because
of the availability of the local-field-factor data. It would b
of interest to systematically study the dependence of the q
siparticle properties on increasingb, to observe the change
from a Q1D behavior to that of 2D. There are definite p
dictions given by Hu and Das Sarma,2 for instance, for the
behavior ofuIm S(kF ,v)u asv→0, due to the plasmon an
single-particle contributions in Q1D and 2D system
Although the Coulomb interaction V(q)
5(e2/e0)e(bq/2)2K0@(bq/2)2# approaches;1/q for large b
as in 2D systems, it is not clear that the dielectric functi
«(q,v) which describes the plasmon and single-particle
citations would display a 2D-like behavior. With th
asymptotic form ofV(q) and 1D dielectric function, we wen
through the analysis of Hu and Das Sarma2 to roughly find
uIm S(kF ,v)u;v2/3 as v→0, which is different from the
limit predicted for a pure 2D calculation, viz.,;v2. It ap-
pears that a crossover behavior within the present model
not be observed. More detailed calculations would be
quired to determine the precise conditions and search f
crossover behavior. For illustration purposes, we show
Fig. 6 uIm S(kF ,v)u as a function ofv, for various values of

FIG. 6. The imaginary part of the self-energy at the Fermi s
face uIm S(kF ,v)u as a function ofv, for various values of the
quantum-wire width parameter.
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1792 PRB 62B. TANATAR AND E. DEMIREL
the width parameter within the RPA~i.e., theGW approxi-
mation!. We do not find any conclusive evidence for a cro
over behavior in our sketchy analysis.

To summarize, we have calculated the quasiparticle pr
erties of a 1D electron gas interacting with a long-range
pulsive Coulomb potential. We have used the RPA-ba
GW approximation and theGWG approximation, which in-
cludes the local-field corrections to calculate the elect
self-energy. We found that a number of quasiparticle pr
erties are strongly affected by the inclusion of vertex corr
tions as the electron density is decreased. The plasmon-
ys

is,
-

p-
-
d

n
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-

ole

approximation to the dielectric function in the self-ener
calculations including the vertex corrections seems to ag
with the full GWG approximation, which may be utilized in
more demanding calculations.
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