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Many-body vertex corrections in a one-dimensional electron system interacting
with a long-range Coulomb potential
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We study the quasiparticle properties of a one-dimensional electron gas interacting with a long-range
electron-electron interaction. The electron self-energy is calculated using the leading-order dynamical-
screening approximation witltQWI" approximation and without the vertex correction&{V approximation.

The calculated one-electron properties such as the spectral function, damping rate, and also the momentum
distribution indicate the significance of vertex corrections at low densities.

[. INTRODUCTION izability vanish? This fact has been used to explain the
agreement between the experimentally obséf/gthsmon

Models of one-dimensiondlLD) electron systenisare of ~ dispersions in quantum wires and the model calculattons.
increasing interest because of their applicability to realistidn a system with long-range Coulomb interactions and qua-
systems such as naturally occurring organic conductors, artfratic energy dispersion, the vertex corrections are not re-
ficially fabricated semiconductor structures, and certain maguired to vanish identically, rather they should become more
terials exhibiting superconductivity. Quantum-wire struc-Significant as the interaction strength between the electrons is
tures made out of semiconducting materials using highwncreased. The evidence for this comes from the approximate

developed processing techniques provide a testing ground f@ound-state energy calculation$ in comparison to the

the many-body theories describing the dynamics of interact—R_P'A"I t"_md SlzalTSf(]) fr(_)tm the recent %‘ljart‘tuml MIOPth{hcaHO
ing electrons in restricted geometries. A one-dimensionap mu'ations.— 1hus, it Seems reasonable to calculate the qua-

system of electrons interacting via a long-range Coulombs"par.tICIe properties including the vertex corrections th"’.“ are

otential in configuration space is a model being used tconS|stent Wl_th the ground-state energy calculations, similar
b . : -  the analysis given for 2D systerhis'* We use theGWI®
understand various properties of many realistic systems.

In thi K tudv th ivarticl i f 1Dapproximation in the calculation of electron self-energy
n this work we study the quasiparticle properties ot a 1Dy, here the vertex function is approximated by the local-field

electron system interacting with a long-range Coulomb pOz,ctors calculated in the self-consistent-field approximation.
tential. We calculate the wave vector and frequency- The rest of this paper is organized as follows. In the next
dependent self-energy within ti@W andGWI" approxima-  gection we provide the theoretical background W and
tions from which all one-electron properties can be obtainedgwr approximations to the electron self-energy. In Sec. Il
There are several motivations for our investigation. First, W8ye present our numerical results of the Se|f-energy and re-
explore the extent the Fermi liquid theory can be employedated quantities calculated from it. We conclude with a brief
in the description of this model system. It has been shown bgummary of our results.

Hu and Das Sarnfahat disorder and finite-temperature ef-

fects render the Fermi liquid picture meaningful in 1D elec-

tron gas, and we adopt this viewpoint with application to II. MODEL AND THEORY

semiconducting quantum wires in mind. Numerous ) ) ] ) )
studied~" were devoted to the ground-state energy and cor- We consider a system of electrons in 1D interacting with

relation functions of quasi-one-dimensional electron gas in@ 10ng-range Coulomb potential, embedded in a uniform
teracting via long-range Coulomb interaction, but relativelyPackground of positive charges insuring overall charge neu-
less attention is paid to the quasiparticle properties of thesiality. The bare interaction potentidl(q) is modeled as
models?® On the other hand, models of 1D interacting elec-obtained from the zero-thickness 2D electron gas under a
trons on a lattice are actively being pursued to understanﬂa”gon'c confining p_otentléff. This vyields V(q)
various phenomena, most notable being quantum phase trai-(€7/ €0)€"Ko(x) for the interaction between the electrons
sitions. Second, we investigate the effects of vertex correc@ssumed to be in the lowest subband. Here(bg/2)?,
tions. The extension of the random-phase approximatioHVhereb is the lateral width of the quantum wire determined
(RPA) GW approach is formulated by tf@WI" approxima- Py the confining oscillator frequency ang is the back-
tion, wherel™ stands for the vertex corrections. In the presen@round dielectric constant. The system is characterized by
model we use the previously obtaiffddcal-field factors to  the dimensionless density parametgra/ag , wherea is
describe the vertex corrections and assess their importance tihe average interparticle distan@ee., n=1/2a in terms of
the quasiparticle properties at low densities. the linear number density) andaj = e,/(m*e?) is the ef-
Within the Tomonaga-Luttinger model of 1D electrons fective Bohr radiugwe takes =1). The single-subband ap-
having a linear dispersion relation, the RPA is argued to bg@roximation, which implies that the Fermi energy remains
exact because the vertex corrections to the irreducible polasmaller than the intersubband energy difference, is justified
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for rg>(w/2°?) (b/ag). The Fermi wave vector is related to approximation forms when the vertex corrections are ne-
the linear density byi=2kg /7, in an unpolarized system. glected, i.e.G(q)=0 or equivalentlyl'(q,w)=1.

The self-energy of the one-dimensioiiaD) electron sys- In this work, we calculate the self-energy in leading-order
tem within theG W approximation(excluding the vertex cor- perturbation theory. Our expressions for B& and GWI’
rectiong at T=0 is given by® self-energies contain noninteracting Green'’s functions. We

have not attempted to perform a self-consistent
dqde’ , , calculatiof??® but surmise that our results would remain
(27)2 W(Q,0")Go(k=g,0=a"), (D qualitatively the same.

E(k,w)zif

whereGy(k,w) is the Green’s function for the noninteract-

ing electron gas, with single-particle energigs=k?/2m Il. RESULTS AND DISCUSSION
—u (u is the chemical potential or the Fermi enerBy ) )
=k2/2m at T=0). W(q, ) is the dynamically screened in- [N the numerical calculations to be presented below, we

teraction, which is given byV(g,»)=V(q)/e(q,w). In the specialize to a quantum wire made out of GaAs material. The
effective interaction above(q, ) is the dielectric function material parameters of relevance to us are t_he dielectric con-
describing the dynamical screening properties of the electroftant_€0=12.9 and the electron effective mass™

gas. We employ the usual practice of separating the dynami= 0-07 m. We study the quasiparticle properties for a given
cally screened interactionV(q,w) into a frequency- density of electrons characterized hyand lateral quantum-
independent term which gives the exchange part of the selfire sizeb. In the examples below, we todk=ag (which
energy and a frequency-dependent term which gives thgorresponds to~100 A for GaA$ but did not perform a

correlation part of the self-energW(q,»)=V(q)+V(q) systematic study of different wire widths, partly because the
X[1/e(q,w)—1]. The exchange part is given By (k)= local-field correction dafawere available only for this value

— [7_(da2m)ne(k+q)V(q), where ne(k)=0(k-—k) is  Of b. However, we believe that our results should be repre-

the Fermi distribution function af=0. In theGW approxi- ~ Sentative, and in principle may be extended to other
mation, the correlation part of the self-energy can be decom@uantum-wire widths.

posed into two parts 3 ol K, ©) =2 jne(K, ) + 2 o K, ). In_ F|g._1 we show the frequency dependence _of the r(_aal
Sincee(q,iw) is a real and even function with respectdo and imaginary pa_rts of the self-energy calculated in two dif-
the 3 (K, @) term is completely real. The self-energy cal- ferent approximations: the RP&W and theGWI" schemes.
culation which includes vertex corrections is called thehe self-energies &=k are depicted in Figs.(&) and Xc),

GWI approximatiort’ The importance of vertex corrections O 's=1 andrs=3, respectively. As expected, the results of

in strongly correlated systems was recently emphasized in f€ GW approximation are closer to those of t@aVI" ap-
number of works® In the GWI' approximation.S. ., (K) is proximation for higher densities, indicating that vertex cor-

again split into two partss je(k, ) and=S ek, ), which rgctions are of lesser imp.ortglnce. prever, for lower densi-
are given, respectively, by ties (largerg) there are significant differences between the

results of theGW and GWI' approximations. Similar con-
» do' (= dq clusions may be drawn from the self-energy results illus-
Eline(k:w)z_f_wﬁf_wﬂv(m trated in Figs. tb) and Xd), where we consider the band
edgek=0. The imaginary partim 3 (k, )| as a function of

1 T(qiw') o has finite discontinuities around= * wq(k+kg) within
— — (28  the GW approximation, where w, is the plasmon
(brq—w)—lo’ [ e(q,i0) dispersior?® Since RES] and Inf3] are related to each
and other through the Kramers-Kronig relations, a finite discon-
tinuity in Im[3] gives rise to a logarithmic singularity in
= dq I'(q,ékq— @) R > ]. In the GWI" calculation of the self-energy, the finite
Epole(k’“’):f_mﬂv(@ m_ discontinuities in IMX] occur also aroundw= * wq(k

+Kkg), where this timev includes the local-field effects. For
X[OW— &)= 0(— &y o) ]- (2b) rs=1 andk=kg, Im[2] is continuous but its derivative is
discontinuous at the same point. In {B&VI" approximation
calculation of the self-energy, the discontinuities in[ B
occur at largefw| values tharmw=|w(k+kg)| for largerry
1 @ values. There are considerable differences betweeGihe
I'(q,w)= : andGWI" approximation results. The main reason for this is
L+V(@G(@xo(a,@) that with inlgfeasing interaction strength the RPA does not
The dielectric functiore(q,w) to be used in the above for- provide a good description of the ground-state energy be-
mulation with the vertex correction is given y{q,w)=1  yondrs=1. The local-field corrections restore the quality of
—V(9)xo(q,w)I'(g,w), where xo(q,w) is the density- approximation in the intermediate coupling region<{(t
density response function for noninteracting electrSiithe  <5), thus the quasiparticle properties calculated within the
function G(q) is called the local-field correction factor. We GWI' approximation are expected to give a better account.
employ theG(q) calculated within the Singwi-Tosi-Land- Once the self-energy. (k,w) is known, other quasiparti-
Sjolander (STLS approach' by Gold and Calmel.We  cle properties can be readily evaluated. We now examine the
note that the above expressions reduce to the fan@¥@f  single-particle spectral functioA(k,w) defined as

In these expressiod3(q, w) is called the vertex function and
we use the local approximatith
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FIG. 1. The self-energ} (k,w) as a function of the frequency for (a) and(b) r¢=1 and(c) and(d) r=3, for the wave vector values
k=kg (a) and(c) andk=0 (b) and(d). The solid and dashed lines correspond to@& (RPA) and GWI" approximations, respectively.
The upper and lower set of curves show tha 3 (k,»)| and Re2 (k,w), respectively.

2|Im3(k,0)] We have not carried out a detailed calculation of the plasma-
Alk,w)= 2 - (4 ron excitation energies, but in qualitative terms it should be
[w—é&—ReX(k o) ]*+[ImZ(kw)] similar to the 2D cas@ where plasmarons give rise to a

The spectral functiom(k,») can be observed experimen- Staircaselike structure. _ o

tally with photoemission spectroscofthus it is important The single-particle spectra! density a_Iso satlsflgs the sum
to investigate some of its properties. In Figéa)2and 2b) ~ rule Jdw/(2m) A(k,w)=1, which we verify numerically to
we showA(k,w) as a function of the frequency k=0 and & Very high accuracy. J;he first freﬂyency sum rulle yields
k=Kg, respectively, fors=1. We note that the difference Jd@/(2m)0A(k,w)=E;", where E," =+ (k) is the
between theGW and GWI' approximation results is more quasiparticle energy in the Hartree-Fock Qpprommatlon and
prominent at the band edde=0 than atk=kg. For k=0, the spectral functiorA(k,) is evaluated in theGW ap-
there are two sharp peaks A(k=0,w), of which the loca- proximation. As an illustration, we compare the right- and
tion of the first one is different in respective approximation!€ft-hand sides of this sum rule in Fig. 3, and find that it is
schemes. The intersections of [R&] and the straight line also satisfied within our approximation scheme for the vertex

w—&(K)— p indicate the solutions to Dyson’s equation. For function. The momentum distribution of particles(k)

thek=kg. case, there is only one solutionat=0, and there-  =J *=A(K,w)dw/27 is shown in Fig. 4 forr;=1 andr,
fore, a strong peak iMA(k,w). This peak is not of a =3. The expected behavior of a jump discontinuity kat
s-function type, since InX(ks,w)—0 as w—0. At the =Kr decreases with increasing, as in a normal Fermi

band edge K=0), we find three solutions to Dyson’s equa- liquid.? We observe that the differences between@w and

tion, the first one of which corresponds to the regular quasiGWI' approximations become more significant @&sin-
particle peak. It is slightly shifted from the noninteracting creases.

single-particle energyw=£(k) and produces a sharp  The quasiparticle broadening or the damping ia¢e) is
5-function peak. The second solution has a broad incohereftiven by the imaginary part of the self-energy,

structure indicating finite damping in the spectral function

and does not produce a peak. The third solution is only I'k)=—-ImX(k,&). (5)
weakly damped and produces a second sh&ifpnction

peak inA(k,w). This solution has been termed a plasmaronFrom the damping rate, we can calculate the quasiparticle
and interpreted as a hole coupled to a cloud of real plasmonscattering rate P(k), the inelastic lifetime 7(k)

In general, the spectral weight of the plasmaron peak is=[2I'(k)]~%, and the inelastic mean free path(k)
smaller than the quasiparticle peak, and it produces a satellite v (k) 7(k), wherev (k) is the electron velocity. Figure 5
peak below the edge of the one-particle density of stateshowsI'(k) for rg=1 andrs=3 in the RPAGW andGWI"
which is experimentally observed in 3D metallic systems.approximations. The damping rate calculated within the
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FIG. 2. The single-particle spectral functiditk, ) as a function of frequency fdr) and(b) rs=1 and(c) and(d) rs= 3, for the wave
vector valuek=kg (a) and(c) andk=0 (b) and (d).

GWI" approximation is not drastically different in its overall that as far as the Fermi liquid concept is applicable, the ver-
shape than the one calculated within B&/ (RPA). How-  tex corrections are significant at large values. Since the
ever,I'(k) within the GWI" is in general smaller in magni- various ground-state energy calculations and quantum Monte
tude than that in the RP&W. This is consistent with the Carlo simulations suggest the inclusion of correlation effects
earlier results shown in Fig. 1. A similar comparison for 2D beyond the RPA forg=1, our investigation of the quasipar-
electron systems was made by Marmorkos and Das SHrmaticle properties provides a consistent picture with the above
There, it was found that the vertex corrections were onlyframework. Various results presented in this work may in
10-30% smaller than the RPA results. The large decrease principle be compared to the experiments when they become
I'(k) (especially at largerg values may be partly due to the available. Our vertex functiod’(q,w) is limited by the
dimensionality and partly due to the relative strength of thdocal-field corrections obtained within the self-consistent-
interaction. In any case, our results indicate the significance
of vertex corrections or correlation effects beyond the RPA.
For wave vectors away froke, but less than some thresh-
old wave vectork, (k.~2.7 kg for r¢=1 andk.~4.9 kg
for rg=3 in the RPA, damping rates including the vertex
corrections are higher than those in the RPA. In the large
wave-vector regime, indicated by the sharp increade(k) )
in Fig. 5, the plasmon excitation mechanism becomes impor- Li
tant. Here the effects of vertex corrections are observed to
decrease the damping rate. Furthermore, the threshold wave
vector k, for the onset of plasmons decreases compared to
the RPA valuesK.~2.3 kg for rg&=1 andk.~3.1 kg for
r<=3 in the GWI" approximation. As is known, the vertex 50 ) ) )
correctionglocal-field correctionsin general lower the plas- 0.0 05 10 15 20
mon energies$® As argued before, for larger valuesmfthe e
RPA breaks down, and the results which include the local- F|G. 3. The Hartree-Fock enerdﬁEF for within the GW (upper
field correctiondi.e., GWI" approximation should be more curve$ and GWI' (lower curve$ schemes at =3. The results
trustworthy. from the first moment ofA(k,w) are indicated by triangles which
The above examples of quasiparticle properties suggeste joined by thin lines to guide the eye.

15.0
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FIG. 6. The imaginary part of the self-energy at the Fermi sur-
face |Im 3 (kg ,0)| as a function ofw, for various values of the
guantum-wire width parameter.

FIG. 4. The momentum distribution(k) of interacting elec-
trons within theGW andGWI' schemes at;=1 andr = 3.

field scheme. Better approximations to {8€éq), in particu-
lar those satisfying the exact limiting forms and various sum [1-G(q)]wg
rules, may be constructed for improvemé&hthe frequency e(Qo)=1-———"5 .
dependence of' (q,w) may be improved at the STLS ap- @ T @aT @01
proximation level by considering a dynamical local-field

I:?)Cr:(s)ti igiﬂ&)(. It V\)'():rl%t;eujgteiré Sg?fggtos Li)sfgr?éw)u\;vgiegrti- the f-sum rule ando is the 1D plasmon dispersidfiin the
g, y 9 b above form ofe(q,w), the RPA is recovered whe@&(q)

cle properties. Such a calculation is beyond the scope of thg0. With these maodifications, the calculation of the self-

present study, but we can guess that dynamical effects - L )
should somewhat modify the frequency dependence of th nergy within the plasmon-pole approximatiéincluding
e vertex correctiongroceeds along the lines given by Das

self-energy and the spectral function. More specifically, theSarma Hwang, and Zheflge have selectively tested the
location of singularities ir¥ (k,w) will be shifted, since the Iasmo'n— ole é roximation in the presence of vertex cor-
plasmon frequencyw, will be different in the dynamical plas P bproximation i P - o1 veriex
approach. rections and found reasonable agreement.wnh the fully nu-
merical results. The level of agreement is essentially the

Dazoégrl:r?gtul—w/v ;vr:resavr\ighzlﬁnssg-!ravneglg Ceguéorqgs'rr:]tg;?cgfen’same as that obtained by Das Sarma, Hwang, and Zlieng
' 9 P P P the GW approximation. Finally, we mention that our calcu-

approximation Wh'c.h turns out to _be very accurate in thelations including the vertex corrections may be extended to
calculation of quasiparticle properties. Here, we generalize

their account to include the local-field effects. We first note'r:ggg%ftcveeggOn%rl‘arefr]?;::rizsiiicgg%tar:gsgrﬁr;tﬁmtOW'reS
that in the GWI" approximation when a local-field factor yp y

. . o " the previous related works.
G(q) is used In the descr|_pt|on of the vertex function As mentioned before, our self-energy calculations are per-
I'(g,w), the various cancelations render the self-energy ex:

ression the same as in tW approximation, except that [ormed for the quantum-wire width di=ag only, because
f’he sercening function becoprges q w):'l_v(g)[l of the availability of the local-field-factor data. It would be

—6(q)]xo(a,®). Using the plasmon-pole approximatin of interest to systematically study the dependence of the qua-
o\ . -

. . : : siparticle properties on increasiigy to observe the changes

Igirnthe density-density correlation functiof(q, ), we ob- from a Q1D behavior to that of 2D. There are definite pre-
dictions given by Hu and Das Sarrhdor instance, for the
250.0 ' ' - ' ' - behavior of Im X (kg ,0)| asw— 0, due to the plasmon and
single-particle contributions in Q1D and 2D systems.
0000 | ] Although the Coulomb interaction  V(q)
— W13 = (%l &) e®¥D°K o[ (bg/2)2] approaches-1/q for large b
1500 1 - gw;:j ] as in 2D systems, it is not clear that the dielectric function
—-— GWI, 11 &(q,w) which describes the plasmon and single-particle ex-
citations would display a 2D-like behavior. With the
100.0 | T asymptotic form o(q) and 1D dielectric function, we went
through the analysis of Hu and Das Safra roughly find
500 | i ] [Im = (Kg ,0)|~w??® as w—0, which is different from the
,'"\_\ limit predicted for a pure 2D calculation, vizy w?. It ap-

00 . T S S R = pears that a crossover behavior within the present model may
b0 1020 80 40 80 60 7O not be observed. More detailed calculations would be re-
quired to determine the precise conditions and search for a
FIG. 5. The damping ratE(k) as a function ok forrs=1 and  crossover behavior. For illustration purposes, we show in

rs=3 in theGW and GWI" approximations. Fig. 6|Im > (kg ,w)| as a function ofw, for various values of

6

where the pole strengtdaéz(n/m)V(q)q2 is determined by

T(k)/E,
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the width parameter within the RP@Ae., theGW approxi-  approximation to the dielectric function in the self-energy
mation. We do not find any conclusive evidence for a cross-calculations including the vertex corrections seems to agree
over behavior in our sketchy analysis. with the full GWI" approximation, which may be utilized in
To summarize, we have calculated the quasiparticle propmore demanding calculations.
erties of a 1D electron gas interacting with a long-range re-
pulsive Coulomb potential. We have used the RPA-based
GW approximation and th&WI" approximation, which in-
cludes the local-field corrections to calculate the electron This work was partially supported by the Scientific and
self-energy. We found that a number of quasiparticle propTechnical Research Council of Turk€JUBITAK ) (TBAG-
erties are strongly affected by the inclusion of vertex correc1662, by NATO (SfP971970, and by the Turkish Depart-
tions as the electron density is decreased. The plasmon-pofeent of Defensé KOBRA-001).

ACKNOWLEDGMENTS

1D.C. Mattis, The Many Body ProblentWorld Scientific, Sin- Mahan,Many Particle PhysicgPlenum, New York, 1990
gapore, 1993 7. Hedin, Phys. Rev139 796(1965. For a recent review of the
2B.Y-K. Hu and S. Das Sarma, Phys. Rev4B, 5469(1993. method and applications, see, for instance, F. Aryasetiawan and
SW.I. Friesen and B. Bergersen, J. Phys1& 6627 (1980. O. Gunnarsson, Rep. Prog. Phgd, 237 (1998; L. Hedin, J.
4A. Gold and L. Calmels, Solid State Commuir0, 137 (1996. Phys.: Condens. Mattelrl, 489 (1999.
ZJ-S- Thakur and D. Neilson, Phys. Rev5B, 4679(1997). . 18gee, for instance, A. Schindimayr and R.W. Godby, Phys. Rev.
D. Agosti, F. Pederiva, E. Lipparini, and K. Takayanagi, Phys. | et 80, 1702(1999: A. Virosztek and J. Ruvalds, Phys. Rev. B
Rev. B57, 14 869(1998 59, 1324(1999

"B. Tanatar and C. Bulutay, Phys. Rev.5B, 15 019(1999.

8S. Das Sarma, E.H. Hwang, and L. Zheng, Phys. Re¥4,BB057
(1996. )

%1.E. Dzyaloshinskii and A.l. Larkin, Zh. I&p. Teor. Fiz65, 411
(1973 [JETP Lett.38, 202(1974)].

0AR. Goni, A. Pinczuk, J.S. Weiner, J.M. Calleja, B.S. Dennis,
L.N. Pfeiffer, and K.W. West, Phys. Rev. Le@7, 3298(1991).

19G.D. Mahan and B.E. Sernelius, Phys. Rev. L&#.2718(1989.

20p F. williams and A.N. Bloch, Phys. Rev. B), 1097 (1974.

21K.S. Singwi, M.P. Tosi, R.H. Land, and A. Smder, Phys. Rev.
176, 589(1968.

22H.J. de Groot, P.A. Bobbert, and W. van Haeringen, Phys. Rev. B
52, 11000 (1995; S. Schéer and P. Schuck, ibid59, 1712

Q.P. Li, S. Das Sarma, and R. Joynt, Phys. Rew13713 . (1999
(1992 U. von Barth and B. Holm, Phys. Rev. B}, 8411(1996.
) 24 ; oL
127, Malatesta and G. Senatore, J. Phys. 10, 341 (2000; A. C. Klm, A.Y. Matsuura, Z.-X. Shen, N. Motoyama, H. Eisaki, S.
Malatesta, Ph. D. thesis, University of TriegtE999 (unpub- Uchida, T. Tohyama, and S. Maekawa, Phys. Rev. LEtL.
lished. 4054 (1996.

13G.E. Santoro and G.F. Giuliani, Phys. Rev3g 12818(1989. - P.von Allmen, Phys. Rev. B6, 13 345(1992.

14] K. Marmorkos and S. Das Sarma, Phys. RewB3451(1991).  “°E.H. Hwang, B. Y.-K. Hu, and S. Das Sarma, Phys. Re\643
15G.Y. Hu and R.F. O’Connell, Phys. Rev. 42, 1290(1990. 4996 (1996; R. Jalabert and S. Das Sarmiajd. 40, 9723
163.J. Quinn and R.A. Ferrell, Phys. ReM2, 812 (1958; G. D. (1989.



