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Abstract

This paper proposes a model selection methodology for feedforward network models based
on the genetic algorithms and makes a number of distinct but inter-related contributions to the
model selection literature for the feedforward networks. First, we construct a genetic algorithm
which can search for the global optimum of an arbitrary function as the output of a feedforward
network model. Second, we allow the genetic algorithm to evolve the type of inputs, the number
of hidden units and the connection structure between the inputs and the output layers. Third, we
study how introduction of a local elitist procedure which we call the election operator affects the
algorithm’s performance. We conduct a Monte Carlo simulation to study the sensitiveness of the
global approximation properties of the studied genetic algorithm. Finally, we apply the proposed
methodology to the daily foreign exchange returns. (©) 2001 Published by Elsevier Science B.V.
All rights reserved.
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1. Introduction

The design of an artificial network architecture capable of learning from a set of
examples with the property that the knowledge will generalize successfully to other
patterns from the same domain has been widely recognized as an important issue
in the literature. This paper proposes a model selection methodology for feedforward
network models based on the genetic algorithms. At the outset, we would like to point
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out that our framework is entirely unrelated to biological networks and our attempt is
not to emulate an actual neural network.

Artificial neural networks provide a rich, powerful and robust nonparametric mod-
elling framework with proven and potential applications across sciences. Examples of
such applications include Elman [1] for learning and representing temporal structure in
linguistics; Jordan [2] for controlling and learning smooth robot movements; Gengay
and Dechert [3], Gengay [4,5] and Dechert and Gengay [6,7] to decode noisy chaos
and Lyapunov exponent estimations and Kuan and Liu [8] for exchange rate prediction.
Kuan and Liu [8] use the feedforward and recurrent network models to investigate the
out-of-sample predictability of foreign exchange rates. Their results indicate that neural
network models provide significantly lower out-of-sample mean squared prediction er-
rors relative to the random walk model. Swanson and White [9] study the term structure
of the interest rates with feedforward neural networks together with the linear models.
Their results indicate that the premium of the forward rate over the spot rate helps to
predict the sign of the future changes in the interest rate when the conditional mean is
modelled by the feedforward network estimator. Hutchinson et al. [10] employ feed-
forward networks along with other nonparametric networks for estimating the pricing
formula of derivative assets. Their results indicate that although parametric derivative
pricing formulas are preferred when they are available, nonparametric networks can be
useful substitutes when parametric methods fail. Garcia and Gengay [11] utilize feed-
forward networks in modelling option prices by imposing hints originating from the
economic theory. Their results indicate that feedforward networks provide more accu-
rate pricing and hedging performances. They point out that network selection needs to
be done in accordance with the objective function of the problem at hand.

The specification of a typical neural network model requires the choice of the type of
inputs, the number of hidden units, the number of hidden layers and the connection
structure between the inputs and the output layers. The common choice for this specifica-
tion design is to adopt the model-selection approach. In the recent literature, information
based criteria such as the Schwarz information criterion (SIC) and the Akaike infor-
mation criterion (AIC) are used widely. Swanson and White [9] report that the SIC
fails to select sufficiently parsimonious models in terms of being a reliable guide to the
out-of-sample performance. Since the SIC imposes the most severe penalty among the
AIC and the Hannan—Quinn, the results with the two other criteria would give even worse
results for the out-of-sample prediction. Hutchinson et al. [10] indicate the need for
proper statistical inference in the specification of nonparametric networks. This involves
the choices for additional inputs and the number of hidden units in a given network.

The purpose of this paper is to introduce an alternative model selection methodology
for feedforward network models based on the genetic algorithm [12] which can search
for the global optimum of an arbitrary function as the output of a feedforward network
model.! There have been a large number of applications of the genetic algorithm

! For a discussion of the advantages of the genetic algorithm over hill-climbing and simulated annealing in
a simple optimization problem, see Ref. [13].
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for the artificial neural networks. The purpose of using the genetic algorithm has been
twofold. The first one is to use it as a means to learn artificial neural network connection
weights that are coded, as binary or real numbers, in a genetic algorithm string (see,
for example, Refs. [14—17]). The second one is to use the genetic algorithm to evolve
and select the artifical neural network architecture, together or independently from the
evolution of weights. Miller et al. [18] identified two approaches to code the artifical
neural network architecture in a genetic algorithm string. One is the strong specification
scheme (or direct encoding scheme) where a network’s architecture is explicitly coded.
The other is a weak specification scheme (or indirect encoding scheme) where the exact
connectivity pattern is not explicitly represented. Instead it is computed on the basis of
the information encoded in the string by a suitable developmental rule. The examples
of the applications of the strong specification scheme include Miller et al. [18], Whitley
et al. [19], Schaffer et al. [20], Menczer and Parisi [15]. The applications of the weak
specification scheme include Harp et al. [21] and Kitano [22,23].2

Our approach to encoding the neural network architecture is similar to the approach
taken by Schaffer et al. [20] They use the genetic algorithm to evolve the range of
parameter values of the backpropagation algorithm used for neural network training
(learning rate and momentum), the number of hidden units and the range of initial
weights values. The neural network is trained on a standard XOR problem frequently
used in the studies of neural networks’ performance.

In our approach, we use the genetic algorithm to evolve the range of initial neural
network weights, the number of hidden units and the number and the type of inputs.
The neural networks constructed from the information encoded in the genetic algorithm
strings are trained on simulated as well as actual financial time series data. The simu-
lated series are generated from the Henon map as it is a well-known benchmark and
used widely in many studies. The financial time series is the daily foreign exchange
rate on French franc denominated in US dollars.

We employ a local elitist operator, the election operator [25]. The application of
this operator results in the endogenous control of the realized rates of crossover and
mutation. Over the course of a simulation, there is less and less improvement in the
performance of new genetic algorithm strings generated through crossover and mutation.
New strings that encode architectures with inferior performance are prevented from
becoming the members of the actual genetic algorithm populations. Over time, the use
of this operator results in the convergence of the genetic algorithm population to a
single string (architecture).

We conduct a Monte Carlo simulation to study the sensitiveness of the global ap-
proximation properties of our genetic algorithm. The comparison of the effects of using
the genetic algorithm (GA) as a model selection methodology to the other standardly
used criteria, AIC and SIC, has not been done in the literature. We find that the genetic
algorithm selects networks with the out-of-sample mean squared prediction error lower

2 For a survey of the encoding methods in the use of genetic and evolutionary algorithms in neural network
applications, see Ref. [24].
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than the networks selected by SIC and AIC although the GA selected networks have
larger number of hidden units relative to the SIC (AIC) ones.

We also find that allowing the initial weight range to evolve again substantially
reduces the out-of-sample mean squared prediction error. The optimization problems
where neural networks are used are frequently characterized by the ruggedness of the
surface. In these cases, the choice of initial weights becomes extremely important. As
our study shows, letting the genetic algorithm choose the initial weight range greatly
improves the neural network performance.

Moreover, we investigate the impact of the evolvable number and type of inputs and
compare the results of simulations in which the number of inputs was fixed and the
one where it was allowed to vary. The results of our simulations show that in cases
where the number and type of inputs was allowed to evolve, the neural networks had
lower out-of-sample mean-squared prediction error (MSPE).

We also compare the performance of the neural network architectures that were
evolved using the genetic algorithm with the election operator to those that were
evolved using the genetic algorithm without the election operator. Simulations with
the election operator result in much faster convergence and in the selection of net-
works with lower values of the out-of-sample mean squared prediction error.

The rest of the paper is organized as follows. Feedforward neural networks are
described in Section 2. The hybrid genetic algorithm is described in Section 3. The
results of simulations are presented in Section 4. The financial time series application
is presented in Section 5. We conclude thereafter.

2. Feedforward neural network

A typical regression function is written as, f(x, 0), where x stands for the explana-
tory variables, 0 is a vector of parameters and the function f determines how x and
0 interact. This representation is identical to the output function of a feedforward net-
work such that the network inputs are interpreted as the explanatory variables and the
weights in the network are interpreted as the parameters, 0. In a typical feedforward
network, the input units send signals x; across weighted connections to intermediate
or hidden units. Any given hidden unit j sees the sum of all the weighted inputs,
Vjo + Dby vixi =70 + VX1 + - - - 4+ 7;1xp. The first term 7y is an intercept or a bias
term. The weights y; are the weights to the jth hidden unit from the ith input. The
hidden unit j outputs a signal h;=G(y,0+>_.%_, y;ix;) where the activation function G is

Gx) =

E)

I+e ™

a logistic function and it has the property of being a sigmoidal® function. The signals
from the hidden units j=1,...,d are sent to the output unit across weighted connections

3G is a sigmodial function if G : R — [0,1], G(a) — 0 as a — —oo, G(a) — 1 as a — oo and G is
monotonic.
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in a manner similar to what happens between the input and hidden layers. The output
unit sees the sum of the weighted hidden units, fo + Zle B;h;; the hidden to output

weights are fy,..., ;. The output unit then produces a signal fy + Z,d-:l Bjh;. If the

expression for 4; is substituted into the expression fy + ijl Bjh;, it yields the output
of a single layer feedforward network

d »
S0 =@ | po+> BG (“//0 + Z“/ﬁ%)
=1 i-1

as a function of inputs and weights. The expression f(x,0) is convenient short-hand
for network output since this depends only on inputs and weights. In general, @ is
an identity function for the regression function estimation. The symbol x represents a
vector of all the input values, and the symbol 0 represents a vector of all the weights
(p’s and y’s). We call f the network output function.

Many authors have investigated the universal approximation properties of neural net-
works [26-31]. Using a wide variety of proof strategies, all have demonstrated that
under general regularity conditions, a sufficiently complex single hidden layer feed-
forward network can approximate any member of a class of functions to any desired
degree of accuracy where the complexity of a single hidden layer feedforward network
is measured by the number of hidden units in the hidden layer. One of the require-
ments for this universal approximation property is that the activation function has to
be a sigmoidal, such as the logistic function presented above. Because of this uni-
versal approximation property, the feedforward networks are useful for applications in
pattern recognition, classification, forecasting, process control, image compression and
enhancement and many other related tasks. For an excellent survey of the feedforward
and recurrent network models, the reader may refer to Refs. [32,33].

Given a network structure and the chosen functional forms for G and @, a major
empirical issue in the neural networks is to estimate the unknown parameters 6 with
a sample of data values of targets and inputs. The following learning algorithm?* is
commonly used:

0t+l = 0z +nV f(x, OAI)[J’I — f(x, Ot)] )

where V f(x,,0) is the (column) gradient vector of f with respect to 0 and # is a
learning rate. Here, V f(x;, 0)[y: — f(x;, 0)] is the vector of the first-order derivatives
of the squared-error loss: [y, — f(x;, 0)]*. This estimation procedure is characterized by
the recursive updating or the learning of estimated parameters. This algorithm is called
the method of backpropagation. By imposing appropriate conditions on the learning
rate and functional forms of G and @, White [36] derives the statistical properties for
this estimator. He shows that the backpropagation estimator asymptotically converges
to the estimator which locally minimizes the expected squared error loss.

4 The learning rule that we study here is not in biological nature. Heerema and van Leeuwen [34] study
biologically realizable learning rules which comply with Hebb’s [35] neuro-physiological postulate and they
show that these learning rules are not the types proposed in the literature.



J. Arifovic, R. Gengay | Physica A 289 (2001) 574-594 579

A modified version of the backpropagation is the inclusion of the Newton direction
in recursively updating 6, [32]. The form of this recursive Newton algorithm is

~ ~ A1 ~ ~
0t+1 =0,+ ﬂth Vf(xt, Ot)[J’t - f(xb Ot)] 5
ét+1 = Gt + nt[vf(xtaét)vf(xhét)/ - Gt] 5 (1

where G, is an estimated, approximate Newton direction matrix and {#,} is a sequence
of learning rates of order 1/z. The inclusion of Newton direction induces the recursively
updating of G,, which is obtained by considering the outer product of V f (xt,é,). In
practice, an algebraically equivalent form of this algorithm can be employed to avoid
matrix inversion.

These recursive estimation (or on-line) techniques are important for large samples
and real-time applications since they allow for adaptive learning or on-line signal pro-
cessing. However, recursive estimation techniques do not fully utilize the information
in the data sample. White [36] further shows that the recursive estimator is not as
efficient as the nonlinear least-squares (NLS) estimator. We, therefore, use the NLS
estimator by minimizing

LO)=Y (v — f(x1,00)). )
t=1

In Gallant and White [27], it is shown that feedforward networks can be used to con-
sistently estimate both a function and its derivatives. They show that the least-squares
estimates are consistent in Sobolev norm, provided that the number of hidden units
increases with the size of the data set. This would mean that a larger number of data
points would require a larger number of hidden units to avoid overfitting in noisy
environments.

3. Genetic algorithm

The genetic algorithm is a global search algorithm which operates on a population of
rules. Based on the mechanics of selection and natural genetics, it promotes over time
the rules that perform well in a given environment and introduces into the population
new rules to be tried. Rules are coded as binary strings of finite length. The measure
of the rules’ performance is defined by their fitness function.

We use the genetic algorithm to develop an alternative model selection methodol-
ogy for feedforward network models. A genetic algorithm population consists of N
binary strings. Each binary string i, i € [1, N], encodes a neural network architecture i,
i€[1,N]. The binary string consists of /chrom bits. The Ichrom bits are divided into
three parts. The first part of length /w is used to encode the initial weight range. The
second part of length /i is used to encode what inputs will be used and the third part
of length /A is used to encode the number of hidden units.

Given the number of bits /w in the first part of the string, the number of different
intervals that can be represented is 2", Each integer j, j € [0,2/] is interpreted as the
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jth interval. The real value range of each interval is exogenously given. Here is an
example of /w =2 and the interpretation of combinations of bit values. Since /w =2,
four different intervals for initial weights can be encoded:

Encoding of initial weights’ range

bits weight range
00 [ —0.125,0.125]
01 [ —0.25,0.25]
10 [—0.50.5]

11 [—1,1]

Given the number of bits /i in the second part of the string, the number of inputs that
can be encoded is /i. If bit j, j €[1,/i], is equal to 1 then jth input, j €[1,/i], is used
in training. If bit j is equal to 0, input j is not used in training.>

Given the number of bits, /A, in the third part of the string, the maximum number
of hidden units, nk, that a network can have is given by 2/%. Here is an example with
[h =3 with the maximum number of hidden units nk = 8.

Encoding of hidden units

bits # of hidden units bits # of hidden units
000 1 100 5
001 2 101 6
010 3 110 7
011 4 111 8

The following is an example of a string with Ichrom =7, Iw =2, [i=35, and [h =3
and how it is decoded:

10 10100 010.

This string will decode into a neural network whose initial range of weights is between
—0.25 and 0.25, that uses first and third input in its training pattern and has three hidden
units.

Each data set consists of three parts, called the training, test, and prediction samples,
respectively. The training sample is utilized during the local minimization stage, while
the test sample is used to evaluate a fitness value of a given network. Finally, the
prediction sample of a data set is used only for evaluating networks’ predictive power
and is not utilized at any stage of the estimation of a network.

Information decoded from a binary string i, i €[1,N], is used to construct a neural
network architecture i. Then 500 different sets of initial weights are generated within
the initial weight range given by the architecture. These 500 sets of weights are used
to construct 500 neural networks with the architecture i. These networks are then

S1If only the number of inputs need to be encoded, a binary number encoding scheme can be adopted.
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trained using the conjugate gradient method on a set of given input/output patterns
constructed using the training sample of a data set. The network that results in the
lowest mean-squared error in the test sample is used as a starting point in computation
of a fitness value architecture of i.

The fitness value of a binary string i is calculated using the mean squared error
for the test sample, MSE;, of a feedforward network architecture i. A fitness value y;
of the binary string i is then given by
B 1
 (MSE; +1)°
where MSE; is the mean squared error of network i/ from the test sample. Thus, the
smaller the network’s MSE, the closer a fitness value to 1. Once fitness values of
N strings are evaluated, a population of binary strings is updated using four genetic
operators: reproduction, crossover, mutation and election.

Reproduction makes copies of individual strings. The criterion used for copying is
the value of the fitness function. In this paper, the tournament selection method is used
as a reproduction operator. Two binary strings are randomly selected and their fitnesses
are compared. The binary string with a higher fitness is copied and placed into the
mating pool. Again, tournament selection is repeated N times in order to obtain N
copies of chromosomes.

Crossover exchanges parts of randomly selected binary strings. First, two binary

6

Hi

strings are selected from the mating pool at random, without replacement. Secondly, a
number k, k €[1,/— 1], is randomly selected and two new binary strings are obtained
by swapping the bit values to the right of the position k. Thus, one offspring takes the
first part of parent 1, up to k, and the second part of parent 2, from k + 1 to Ichrom,
and the other offspring takes the first part of parent 2, up to k, and the second part of
parent 1, from k + 1 to Ichrom. Here is an example with /chrom =7 and k = 3:

100/1101 parent 1,

011[1000 parent 2 .
The resulting offspring are

1001000 offspring 1,

0111101 offspring 2.

A total of N/2 pairs (where N is an even integer) are selected. A probability that
crossover takes place on a given selected pair i, i € [1,N/2] is given by pcross.

If a two-point crossover is used, two integer numbers / and m in the interval
[1,lchrom — 1], I{ ym are randomly selected. Two offspring are created by swapping
the bits in the interval [/ 4 1,m]. One offspring takes the first part of parent 1, up to /,

6 MSE’s are calculated with one-folded cross-validation (i.e., squared error is calculated on one pattern when
the parameters are chosen by training on the other patterns). For brevity, we simply refer to it as mean
squared error in the text rather than cross-validated mean squared error.
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the second part of parent 2, from /4 1 to m, and the third part from parent 1, from
m+ 1 to Ichrom. The other offspring takes the first part of parent 2, up to /, and the
second part of parent 1, from /41 to m, and the third part from parent 2, from m + 1
to Ichrom. Here is an example with Ichrom =10 and /=3 and m=7:

100/1101]001 parent 1,

011]1000|100 parent 2.
The resulting offspring are

1001000001 offspring 1,

0111101100 offspring 2.

Mutation randomly changes the value of a position within a binary string. Each
position has a probability of pmut of being altered by mutation, independent of other
positions.

During the crossover stage, the pair of strings that are selected to participate in the
recombination of genetic material are recorded as parent strings. Once crossover is
applied, two offspring are recorded for each parent pair. If crossover takes place, the
resulting offspring consist of recombined genetic material. If crossover does not take
place, copies of two parents are made and they are recorded as two offspring. In either
case, offspring may undergo further alterations via mutation. Each new offspring that
did not appear in any previous generation is used to construct a network architecture
in the way described above. The local minimization procedure is applied to select a
network that is used for the fitness evaluation of a newly created offspring. The fitness
of new offspring can be lower or higher than their parents’.

As long as there is diversity in the population of strings, both crossover and mutation
will continue introducing new, different offspring which may be less fit than their
parents. Over time, the effect of crossover is reduced due to reproduction, but mutation
will keep introducing diversity into the population. While the effects of mutation are
beneficial in the initial stages of a simulation, they become disruptive in the later stages,
preventing the convergence of the population.

Some of the applications of evolutionary algorithms deal with this problem by reduc-
ing the rate of mutation exogenously after a given number of iterations. Others employ
some sort of the elitist procedure designed to discard the offspring that are less fit
than their parents. We use the election operator to determine the offspring that will
replace their parent in the population of neural networks’ architectures. It is applied
in the following way. There are N/2 parent pairs in the population and N/2 offspring
pairs associated with each parent pair. Fitness values of a pair of parents and a pair of
their offspring are ranked, and two strings with the highest fitness values are selected.
In case of a tie, a string (two strings) is (are) selected randomly.

A new population of strings consists of selected parents and offspring. Since their
fitness values have already been evaluated, they undergo a new application of reproduc-
tion, crossover, and mutation. Once crossover and mutation have taken place, parents
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and offspring are again subjected to the election operator. The initial population of bi-
nary strings is randomly generated. A simulation is terminated once all the population
converges to a single architecture.

4. Simulations

The long-term behavior of dissipative systems can be expected to settle into simple
patterns of motion such as a fixed point or a limit cycle. In contrast, the long-term
dynamics of some dissipative systems display highly complex, chaotic dynamics in a
strange attactor. Strange attactors has drawn attention from a wide spectrum of disci-
plines inclusive of both natural and social sciences. The interest originates from the
an inter-disciplinary interest such as the understanding of climate, brain activity, eco-
nomic activity, dynamics behind financial markets, turbulence are only a few to list
here. Here, we use the Hénon map [37]), a two-dimensional mapping with a strange
attactor, as a model of our simulations. The Hénon map is given by

X1 =1—14x +z,,
Zi+1 = 0.3)6[ . (3)

The matrix of derivatives of the Hénon map is

28y, 1
[0.3 0]' S

Since the determinant of this matrix is constant, the Lyapunov exponents ’ for this map
satisfy 4; + A, = /n(0.3) = —1.2. The two largest Lyapunov exponents of the Hénon
map are 0.408 and —1.620 so that this map exhibits chaotic behavior.

The observations are generated by

yt:xt+))8t, & ~ U(O,l) (5)

The degree of the measurement noise 7 is set to 0, 0.05 and 0.1 and generated from
a uniform random number generator. Data sets consist of 1100 observations where the
last 10% of the data is used as a prediction sample.

7Let f:R"— R" define a discrete dynamical system and select a point x € R". Let (Df), be the matrix of
partial derivatives of f evaluated at the point x. Suppose that there are subspaces R" = V,1 D Vt2 D Vt’”" =
{0} in the tangent space of R" at f*(x) and 4y =2, > - -- =4, such that (Df* )X(Vf) C Vi/+1’ dimV/: n+l—j
and ; = lim/—, oot~ ! In||(Df")xv]| for all veE Vé \ VO/'H. Then the 4; are called the Lyapunov exponents
of f. For an n—dimensional system as above, there are n exponents which are customarily ranked from
largest to smallest: 1; >4, > -+ >/,. It is a consequence of Oseledec’s Theorem [38], that the Lyapunov
exponents exist for a broad class of functions. Also see Raghunathan [39], Ruelle [40] and Cohen et al. [41]
for precise conditions and proofs of the theorem.

Lyapunov exponents measure the average exponential divergence or convergence of nearby initial points
in the phase space of a dynamical system. A positive Lyapunov exponent is a measure of the average
exponential divergence of two nearby trajectories whereas a negative Lyapunov exponent is a measure of
the average exponential convergence of two nearby trajectories. If a discrete nonlinear system is dissipative,
a positive Lyapunov exponent is an indication that the system is chaotic.
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In order to examine the performance of our algorithm we conducted a number of
simulations with the following parameter settings. The population size was equal to 50.
The number and type of inputs were evolved such that the maximum number of inputs
was set to /i =2 or /i =5. In the case of the Hénon map, the interpretation of /i =2
is that the values of x;, and x,_; can be used as input values in networks’ training and
the interpretation of /i =5 is that the values of x;, x,_1, x;—», x,—3, and x;_4 can be
used in networks’ training. The number of intervals for the initial weight range was
set to /w=4. The four different ranges for the initial weights were: [ — 0.125,0.125],
[—0.25,0.25], [—0.5,0.5], and [ — 1, 1]. The number of bits used to encode the number
of hidden units was set to /A =4. This means that a network could have a maximum
of 16 hidden units. We used the tournament selection and one-point crossover for the
set of simulations reported in this paper. The rate of crossover, pcross, was set to 0.6
and the rate of mutation, pmut, was set to 0.0033.® The election operator was used in
all of the above simulations. In addition, we conducted three simulations without the
election operator.

Simulations are terminated when a genetic algorithm population converges to a single
string. In each generation, only the newly created strings that were not members of
previous generations are decoded and the resulting networks are trained using the local
minimization technique. The performance measurements for strings that were members
of the previous generation are kept and carried over. Over time, as the population starts
convergence towards a single string due to the effects of reproduction and election, a
smaller and smaller number of strings is evaluated. Thus, during the course of evolution,
as the diversity of the genetic algorithm population decreases, the computational time
required for training of the networks substantially decreases as well.

The Schwarz information criteria (SIC) is calculated by
log(n)

o

SIC = log(MSE) + ¢ (6)

where MSE is the mean squared error from the training set, ¢ is the total number of
parameters in the network and » is the number of observations in the training sample.

In order to evaluate the prediction performance of each network, we report the
percentage sign predictions and the mean squared prediction error (MSPE) for the
prediction sample. We also report the values of AIC and SIC. The Akaike information
criteria (AIC) is calculated by

AIC = log(MSE) + 24 (7)
n

where MSE, g and n are as in (6).

We examine the following questions using the results of our simulations. First, how
does the performance of the networks selected by the genetic algorithm compare to the
performance of the networks selected by the standard model selection criteria, such as

8 Three simulations were conducted with the mutation rate of 0.033. These simulations did not converge to a
single network in 30 generations. Populations were characterized by a high degree of population variability
at the end of each of these simulations.
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SIC and AIC? Second, what is the impact of the evolution of initial weight range and
inputs on the algorithm’s performance of selected networks as measured by MSPE?
Third, how does the use of the election operator affect the algorithm’s performance
and its speed of convergence?

4.1. Model selection methodology: Genetic algorithm versus SIC and AIC

The initial genetic algorithm population consisting of 50 strings is randomly gener-
ated. Then, information encoded in each string is used to construct 50 neural network
architechtures. At the stage of the local minimization, 500 sets of starting values are
used to choose the best starting point for each of the 50 architectures. After the local
minimization, the SIC and AIC for each architecture is calculated from these initial 50
networks. The network architectures corresponding to the smallest SIC and AIC values
are chosen as the SIC and AIC selection based network architectures.

The results of the comparison of the networks selected by the genetic algorithm
and the networks selected by the SIC and AIC indicate that the network complexity
selected by the genetic algorithm is larger than the network complexity selected by the
SIC and AIC. At the same time, the genetic algorithm selects the networks with the
value of the MSPE equal to or lower than the value of the MSPE of the networks
selected by the SIC and AIC.

Tables 1 and 2 contain comparison between the networks chosen by the genetic
algorithm and the networks chosen by the SIC and AIC selection criteria. Table 1
shows results with 2 (/i =2) and Table 3 with 5 (/i =5) inputs. Each table consists
of three panels, showing results for three different levels of noise, y = 0.00 (panel a),
1y =0.05 (panel b), and y = 0.1 (panel ¢). For y =0.0 and for y =0.05, GA converges
in 6, and for y=0.1, it converges in 7 generations. There are two common features of
the genetic algorithm selected architectures. The first one is that the genetic algorithm
selects network complexity with a larger number of hidden units than SIC and AIC.
The second is that the genetic algorithm selected networks that have lower MSPE
compared to the networks selected by SIC and AIC. For example, in Table 1(a), the
genetic algorithm selects a network with seven hidden units while the network selected
by SIC and AIC has five hidden units. At the same time, the MSPE ratio shows
that the genetic algorithm improves on MSPE of the SIC and AIC model by 42%.
In Table 1(b) and (c), there is a measurement noise added to the Hénon map which
are y = 0.05 and 0.1, respectively. In both tables, the genetic algorithm chooses larger
number of hidden units but smaller MSPEs. In Table 1(b), the SIC- and AIC-based
network complexities are eight hidden units whereas the GA-based network complexity
is 12. On the other hand, the MSPE of the GA-based network is 16% smaller than that
of the SIC and AIC architectures. In Table 1(c), the difference between the number
of hidden units indicated by AIC (SIC) versus GA are substantially different. AIC and
SIC indicate rather a small and parsimonious network with three hidden units whereas
the GA indicates a network with 14 hidden units. However, the MSPE Ratio is in the
favor of the GA-based network architecture based on the MSPE performance. In all
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Table 1
Flexible number of inputs?
(a) y=0, li =2, selected inputs = x;,x,_, convergence in generation 6

Criteria H.U. Sign MSPE SIC AIC
SIC 5 1.00 1.516e-06 —13.29 —13.40
AIC 5 1.00 1.516e-06 —13.29 —13.40
GA 7 1.00 1.067¢-06 —13.54 —13.69
Criteria MSPE Ratio

SIC/GA 1.42

AIC/GA 1.42

(b) y=0.05, /i =2, selected inputs = x;,x,_1, convergence in generation 6

Criteria H.U. Sign MSPE SIC AIC
SIC 8 0.99 1.120e-03 —6.81 —7.02
AIC 8 0.99 1.120e-03 —6.81 —7.02
GA 12 0.99 9.655¢-04 —6.56 —7.01
Criteria MSPE Ratio

SIC/GA 1.16

AIC/GA 1.16

(¢) y=0.1, li =2, selected inputs = x;,x,_, convergence in generation 7

Criteria H.U. Sign MSPE SIC AIC
SIC 3 0.99 4.938e-03 —4.67 —5.04
AIC 3 0.99 4.938e-03 —4.67 —5.04
GA 14 0.99 4.109e-03 —-2.97 —4.42
Criteria MSPE Ratio

SIC/GA 1.20

AIC/GA 1.20

2H.U. refers to the number of hidden units in a feedforward network. Sign is the sign
predictions. Sign predictions are expressed in percentage and 1.00 refers to 100%. MSPE
is the mean squared prediction error. SIC and AIC refer to the Schwarz and Akaike’s
information criteria. GA refers to genetic algorithm. y is the level of measurement noise
and /i is the number of inputs in a feedforward network.

three panels, the GA-based model selection criteria settles for two inputs (x;,x;_;) as
expected.

In Table 2, the results of simulations with 5 inputs (/i=5) are reported for y=10.00,
0.05, and 0.1. For y=0.00, GA converges in eight generations, for y=0.05, it converges
in 10 generations, and for y=0.1, it converges in eight generations. The results display
the same features as those described for the case with two inputs in Table 1. In Table
2(a), all three methods indicate the same number of hidden units although the network
selected by the GA provides 44% reduction in the MSPE relative to the one selected
by SIC and AIC. The interpretation of this result is that SIC- and AIC-based network
gets stuck in a local optimum as it is directly obtained from the optimization of the
initial 50 network architectures from the starting population. One important point to
make here is that 500 sets of starting values are used to choose the best starting point
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Table 2
Flexible number of inputs?

(a) y=0, li =5, selected inputs = x;,x,_2,X,_3, convergence in generation 8

Criteria H.U. Sign MSPE SIC AIC
SIC 8 1.00 2.573-e06 —1.09 —1.23
AIC 8 1.00 2.573-e06 —1.09 —1.23
GA 8 1.00 1.785-e06 —1.11 —1.23
Criteria MSPE Ratio

SIC/GA 1.44

AIC/GA 1.44

(b) y=0.05, /i =5, selected inputs = x;,x;_1,Xx;—, convergence in generation 10

Criteria H.U. Sign MSPE SIC AlIC
SIC 2 0.991 1.700-e03 —5.52 —6.01
AIC 6 0.982 1.298-¢03 —5.19 —6.02
GA 12 0.991 1.027-e03 —5.52 —5.71
Criteria MSPE Ratio

SIC/GA 1.66

AIC/GA 1.26

(c) y=0.1, /i =5, selected inputs = x4, x,_1,x,—2,X;—3,X,_4, CcOnvergence in generation 8

Criteria H.U. Sign MSPE SIC AIC
SIC 5 0.982 5.121-e03 —4.03 —4.74
AIC 5 0.973 3.986-e03 —4.02 —4.88
GA 12 0.973 3.465-¢03 —1.81 —4.02
Criteria MSPE Ratio

SIC/GA 1.48

AIC/GA 1.15

2H.U. refers to the number of hidden units in a feedforward network. Sign is the sign pre-
dictions. Sign predictions are expressed in percentage and 1.00 refers to 100%. MSPE is the
mean squared prediction error. SIC and AIC refer to the Schwarz and Akaike’s information
criteria. GA refers to genetic algorithm. y is the level of measurement noise and /i is the

number of inputs in a feedforward network.

587

for the optimization of each of the 50 networks for the initial generation. The SIC- and
AIC-based networks are determined from the optimization of these initial 50 networks.
Given the results in Table 2(c), it can be argued that even a large number of starting
points (500 x 50 in our case) may not be enough to reach a global optimum. Hence,

a genetic algorithm may serve as a more robust global search method.

In Table 2(b), the number of hidden units for the GA based network is again sub-
stantially larger than that of the AIC- or SIC-based networks. The MSPEs, though, is
in favor of the GA network which are 66% and 26% gains relative to the SIC and
AIC networks. In Table 2(c), a similar pattern emerges such that the GA chooses a
larger network with a smaller MSPE relative to SIC- and AIC-based model selection

methods.
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Table 3

Fixed number of inputs?
(a) y=0, li=5, convergence in generation 10?

Criteria H.U. Sign MSPE SIC AlC
GA fixed 9 1.000 3.207-06 —9.07 —11.40
Criteria MSPE Ratio

GA fixed/

GA flexible 1.8

(b) y=0.05, /i =5, convergence in generation 12

Criteria H.U. Sign MSPE SIC AIC
GA fixed 6 0.99 1.028e-03 —4.82 —6.00
Criteria MSPE Ratio

GA fixed/

GA flexible 1.00

(¢) y=0.1, li =5, convergence in generation 23

Criteria H.U. Sign MSPE SIC AIC
GA fixed 6 0.972 4.108e-03 —3.44 —4.62
Criteria MSPE Ratio

GA fixed/

GA flexible 1.19

2H.U. refers to the number of hidden units in a feedforward network. Sign is the sign predictions. Sign
predictions are expressed in percentage and 1.00 refers to 100%. MSPE is the mean squared prediction
error. SIC and AIC refer to the Schwarz and Akaike’s information criteria. GA fixed refers to genetic
algorithm with fixed number inputs (Table 2). GA flexible refers to genetic algorithm with flexible number
of inputs. y is the level of measurement noise and /i is the number of inputs in a feedforward network.

In particular, the GA-based network complexity in Tables 1(b) and (c), and 2(b)
and (c) are worth noticing. In all of these four tables, the GA-based networks have
substantially larger number of hidden units and have smaller MSPEs relative to the
networks indicated by SIC and AIC. It is also noticable that GA based networks
have higher SIC and AIC values than the SIC (AIC)-based networks. This is mostly
due to a much larger number of parameters in larger networks in the GA-based net-
works. The penalty factor from the increase in the number of parameters outweigh
the reduction in the mean squared error in the training set. All sign predictions
in Tables 1 and 2 are comparable and no model selection method has significant ad-
vantage over another in terms of sign predictions. Overall, the results indicate that
SIC- and AIC-based network selection criteria over-penalize larger networks, settle for
parsimonious but inferior networks in terms of MSPE performance. If the out of sam-
ple predictability is an important factor from the modelling perspective, then GA-based
model selection methodology provides better forecast accuracy here.
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4.2. Impact of the evolvable number and type of inputs

In Table 3(a)—(c), the results of simulations with a fixed number of inputs are
presented. The number of inputs (/i) is set to 5. In the dynamics of the Hénon map,
there are only two lags and working with a fixed number of five lags as inputs leads
to overparametrization. This overparametrized design is compared to the flexible case
with five inputs from Table 2.

In Table 3(a), the case with no measurement noise is studied with y = 0.00. The
genetic algorithm with fixed number of inputs selects a network that has a mean squared
prediction error that is 1.8 times larger than the mean squared prediction error of the
network selected by the genetic algorithm with flexible number of inputs for the same
level of noise from Table 2(a). The number of hidden units between fixed and the
flexible designs are not significantly different with the fixed design having nine hidden
units relative eight hidden units for the flexible design.

In case of y=0.05, the mean squared error of the genetic algorithm with fixed number
of inputs is equal to the one of the network chosen by the genetic algorithm with flex-
ible number of inputs. The number of hidden units in the fixed design is substantially
smaller with 6 hidden units relative to 12 hidden units in the flexible design case.

Finally, for y=0.1, the network selected by the genetic algorithm with fixed number
of inputs, has a mean squared error 1.18 times larger than the network chosen by the
genetic algorithm with fixed number of inputs. The fixed design case has six hidden
units whereas the flexible design case has 12 hidden units. Although the GA with
fixed number of inputs invariably chooses networks with smaller number of hidden
units, it has a larger number of input units compared with the flexible design case.
As reported in Table 2, the flexible design networks settle for three inputs rather than
opting for the full set of five inputs. One noticable comparison is the Tables 2(c) and
3(c) where flexible and fixed design networks both settle for five inputs with a noise
level of y =0.1. The flexible design selects a network with 12 hidden units whereas,
a fixed design selects a six hidden unit network. Since the MSPE ratio is in favor of
the flexible design model, a less parsimonious model is preferred based on its forecast
accuracy. The sign predictions between the fixed and the flexible design do not exhibit
significant difference.

Finally, simulations with fixed number of inputs took longer to converge, 10 gener-
ations for y=0.0, 12 generations for y=0.05, and 23 generations for y=0.1, compared
to the speed of convergence of simulations with flexible inputs.

4.3. Impact of the evolvable initial weight range
Table 4illustrates the impact of the choice of the initial weight range in a simulation

where the studied example is the Hénon map without the measurement noise (y = 0)
and with two inputs.® In Table 4, the results of two networks are presented. The first

9 Similar findings prevail with measurement noise and larger number of inputs.
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Table 4
Impact of evolving initial weight range® (y =0, /i =2)?
Criteria H.U. Sign MSPE SIC AIC
GA(init) 7 1.00 2.270e-05 —10.53 10.68
GA(fin) 7 1.00 1.067¢-06 —13.45 —13.69
Criteria MSPE Ratio
GA(init)/GA(fin) 227

Weights Inputs H.U.
GA(init) 11 11 0110 4 1,2 7
GA(fin) 10 11 0110 3 1,2 7

2H.U. refers to the number of hidden units in a feedforward network. Sign is the sign predictions. Sign
predictions are expressed in percentage and 1.00 refers to 100 percent. MSPE is the mean squared prediction
error. SIC and AIC refer to the Schwarz and Akaike’s information criteria. GA4 (init) refers to the network
that had the same architecture as the network selected by the genetic algorithm except for the initial weight
range; GA (fin) refers to the network selected by the genetic algorithm.

one, GA(init), is the member of the initial genetic algorithm population. The second
one, GA(fin), is the network architecture to which the genetic algorithm converged.
The two networks are equal in the number of inputs, type of inputs and in the number
of hidden units. They differ in the initial weight range only. The initial weight range
of the first network is equal to 4 while the initial weight range of the second network
is equal to 3. Table 4 indicates that the MSPE of the first network is 21.3 times
larger than the MSPE of the second network. This again indicates the importance of
the global search for the parameter surface in appropriate directions. As the example
demonstrates, the genetic algorithm improves substantially in terms of the MSPE of
the selected network by searching starting parameter regions for the local optimizer.

4.4. The election operator

The role of the election operator is to speed up the genetic algorithm’s convergence.
It prevents offspring whose fitness value is lower than their parents’ to enter into the
genetic algorithm population. On the other hand, if the fitness value of an offspring is
higher than the parents’ fitness values, the offspring is admitted into the population.
Thus, if the evolution finds a superior network architecture, the election operator will
accept it as a new member of the genetic algorithm population. The operator leaves
room for improvements while at the same time it lowers the realized rate of mutation
over time and reduces the amount of noise introduced into the population. Table 5
presents the distribution of a final population in a simulation which was conducted
without the election operator and which was terminated at generation 25. The simula-
tion was conducted with no measurement noise (y = 0) and with 2 inputs (/i = 2).'°
At generation 25, there is significant diversity in the population. The simulation that
was conducted with the same parameter settings, but with the addition of the election

10 Similar findings prevail with measurement noise and larger number of inputs.
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Table 5
Final population without election operator (y =0, /i =2)?
H.U. Total Weights Inputs
1 2 3 4 1 2

9 2 0 0 2 0 0 2
11 20 0 0 20 0 0 20
13 13 0 0 13 0 0 13
14 1 0 0 1 0 0 1
15 14 0 0 13 1 0 13

2y is the level of measurement noise and /i is the number of inputs in a feedforward

network.

operator, converged after 5 generations. In addition, the values of MSPE of the net-
works generated in simulations without the election operator at the time when these
simulations were terminated (generation 25) were higher than the values of MSPE
of the networks selected in the genetic algorithm with the election operator. Overall,
simulations with the election operator converged much faster and resulted in the se-
lected networks with lower values of MSPE. As can be seen from Tables 1 and 2,
convergence was achieved in 10 generations or less in simulations with flexible inputs.

5. An empirical example

In this section, the daily spot rates French franc are studied. The data set is from
the EHRA macro tape of the Federal Reserve Bank for the period of January 3, 1985
to July 7, 1992, for a total of 1886 observations. The daily returns are calculated
as the log differences of the levels. All five series exhibit slight skewness and high
kurtosis which is common in high frequency financial time-series data. The first 10
autocorrelations (py,...,p10) and the Bartlett standard errors from these series exhibit
evidence of autocorrelation. The Ljung—Box—Pierce statistics reject the null hypothesis
of identical and independent observations. The last 10% of a data set is used as the
prediction sample.

The population size was equal to 50. The number and type of inputs were evolved
such that the maximum number of inputs was set to /i = 5. The number of intervals
for the initial weight range was set to /w = 4. The four different ranges for the initial
weights were: [ — 0.125,0.125], [ — 0.25,0.25], [ — 0.5,0.5], and [ — 1, 1]. The number
of bits used to encode the number of hidden units was set to /4 =4. This means that
a network could have a maximum of 16 hidden units. The tournament selection and
one-point crossover are used in the genetic algorithm design. The rate of crossover,
pcross, was set to 0.6 and the rate of mutation, pmut, was set to 0.0033. The election
operator is used in the calculations.

In the implementation of the genetic algorithm, a set of 50 initial strings is gen-
erated. Each string is decoded to obtain the corresponding network structure with an
initial weight range. At the stage of the local minimization, 500 sets of starting values
are used to choose the best starting point for each of the 50 networks. After the local
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Table 6
French franc (/i =5, Selected inputs = x;,x,—1,X;—2,X;—4, convergence in generation 19)*

Criteria H.U. Sign MSPE SIC AIC
SIC 1 0.55 6.94-05 —9.879 —9.895
AIC 1 0.55 6.94-05 —9.879 —9.895
GA 15 0.492 5.875-05 —9.472 —9.777
Criteria MSPE Ratio

SIC/GA 1.18

AIC/GA 1.18

2H.U. refers to the number of hidden units in a feedforward network. Sign is the sign predictions. Sign
predictions are expressed in percentage and 1.00 refers to 100%. MSPE is the mean squared prediction
error. SIC and AIC refer to the Schwarz and Akaike’s information criteria. GA refers to genetic algorithm.
y is the level of measurement noise and /i is the number of inputs in a feedforward network.

minimization, the fitness function for each network is calculated and the genetic op-
erators are used to update the current population network architectures. Finally, the
members of the new population are determined and the local minimization is per-
formed on the members of this population. The calculations are terminated when a
genetic algorithm population converges to a single string.

The results in Table 6 indicate that the GA model performs 18% higher forecast
accuracy relative to the SIC- and AIC-based model selection methods. Although, five
lags are allowed as inputs, the GA converges to a network with four most recent lags.
The convergence is reached in generation 19. The GA model produces a sign prediction
of 49% whereas, the sign predictions of the SIC (AIC)-based models are 55%. One
remarkable observation is the complexities of the networks chosen by the GA versus
SIC (AIC). The GA method settles for a network with 15 hidden units whereas the
SIC (AIC) method chooses a much simpler network with one hidden unit. Although
the forecast accuracy (when measured in terms of the mean squared prediction error) is
higher in the GA-based methodology, the GA-based model is much less parsimonious.
Overall, the results with the foreign exchange returns confirm the simulation findings
that GA models perform better in terms of the forecast performance but it is less
parsimonious.

6. Conclusions

This paper proposes a model selection methodology for choosing optimal feedfor-
ward network complexity from data. The proposed methodology is completely data
driven. The methodology uses the genetic algorithm to search for optimal feedforward
network architectures. The genetic algorithm consists of binary strings such that each
binary string encodes the information about the range of network initial weights, the
number and type of inputs, and the number of hidden units of a feedforward network.
Feedforward networks which are constructed from the decoded information are trained
using a local search technique. The mean squared error of a network is used as the
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measure of performance of a binary string. In general, other types of fitness functions
can also be used and this choice depends on the nature of the problem. For instance,
the fitness function can be chosen such that it corresponds to maximum expected profit
or maximum expected returns in financial applications.

The results of this paper indicate that the genetic algorithm as a model selection
criterion selects networks with lower values of MSPE but a larger number of hidden
units compared to the more traditional model selection methods such as the SIC and the
AIC. In addition, allowing the number and type of inputs to evolve results in networks
with lower MSPE compared to the networks with a fixed number of inputs. Evolution
of the range of initial weights results in a decrease in the values of MSPE of the
network architectures selected by the genetic algorithm. Finally, the election operator
greatly reduces the amount of time required for the genetic algorithm’s convergence.
Simulations in which the election operator was used also resulted in the selection of
networks with lower MSPE than the networks generated in simulations in which the
election operator was not used.
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