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We show with a direct numerical analysis that a dilute Bose gas in an external potential—which
is chosen for simplicity as a radial parabolic well—undergoes at a certain temperatare

phase transition to a state supporting a macroscopic fraction of particles at the origin of the phase
space(r =0, p=0). Quantization of particle motion in a well wipes out the sharp transition

but supports a distribution of a radial particle densitfr) peaked atr=0 (a real-space
condensateas well as a phase-space Wigner distribution densifyp) peaked at =0

andp=0 below a crossover temperatufé of order of T;. A fixed-particle-number canonical
ensemble, which is a combination of the fixdzondensate part and the fixgdexcitation

part, is suggested to resolve the difficulty of large fluctuation of the particle nunaiber () in

the Bose-Einstein condensation problem treated within the orthodox grand canonical

ensemble formalism. €001 American Institute of Physic§DOI: 10.1063/1.1414580

The phenomenon of Bose-Einste{BE) condensation then the solution for the equilibrium state will be
(see textbooks, e.g., Refs. IJ+Banifests itself in the forma- 1.0 1.0
tion of macroscopic fraction of zero-momentum particles _Nn fitm s
uniformly distributed in a coordinate space. Such transition Tt
was recently observed in laser-trapped, evaporation-cooled . 1 ) ) )
atomic vapor§™ in magnetic trapgsee recent reviewsd). The relaxatlpn rat_e-2 is proport_lclmal _tc1> the laser |.nten5|ty
We will show by a direct numerical analysis, partly similar to P- Qt large intensity, assuming, “> 7 *, Eq. (3) gives f
and sometimes overlapping with the previous theoreticaf f2-

()

works on the subjed®13that a Bose gas in an external In a semiclassical approximation, the particle energy is

confining potential condenses at low temperature to a posi- P2 1

tion of minimum potential energy; the particles of that “con- e=——+ -mQ?r? (4)
2m 2

densate” also have zero kinetic energy. Quantization of par-
ticle states in a well makes the real-space condensation ghere the thermodynamic potentid=—TInZ, Z is the

continuous transition rather than a phase transition but stilrand partition functiofassuming zero spin of particles
supports a macroscopic fraction of particles near the origin

of the coordinate space below a crossover temperaffire B dpdr

which is of the order of Bose-condensation temperaiyre ] 27h)3
Experimental realization of BE condensation implies . ) o

confinement of a dilute gas within some region of space in 4/nere is Planck’s constant. The chemical potentialis

“trap” cooled by its interaction with an “optical molasses” determined fron(5) to satisfy an equation

created by laser irradiatich and finally cooled to dodr 1

microwave-range temperature by evaporative codling. N= P 3 AT (6)

Bose gas in a trap may be considered to be interacting with (2mh)” e #T =1

two thermal reservoirs, the first one representing the therma{nereN is the number of particles. After integration over the

environment(walls, blackbody radiation at temperature) directions ofr andp we obtain

and the second one the optical molasses at temperature

In(1—e»=2)T), 5

<T,. The equilibrium distribution of particle&(p, r, t) can _ (4m)? ool 2T |37
be obtained by solving the Boltzmann kinetic equation T (27h)3 mQ2
S A (1) * ” 1
- = , 2 2
dt * 2 XJOdeJOydyexzwzg_l, @)

wherel, is the interaction ternfStoss integralcorrespond-
ing to coupling with a media 1, anth, respectively, with
media 2. If we choose for simplicity the relaxation time ap-

where (<0 is the chemical potential in appropriate dimen-
sionless units.
At low temperature, no nonzero value dfcan satisfy

proximation forly 5, Eq. (7). It therefore vanishes at a temperatiire T, deter-
. f—f, mined from the conditiod =0, thus giving
li=— : 2
' 7 @ Too=hQ(N/{(3))¥3=0.941 QN3 (8)
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FIG. 1. Chemical potential versus temperature for various valud& bi? FIG. 2. Radial density distributiop(r)=4mr2n(r) for N=1000 and vari-
(1), 16 (2), 10* (3), 1¢° (4), 1CF (5). ous temperature§/To,=0.2 (1), 0.8 (2), 1.4(3), 2.0(4).

Figure 2 shows the radial density distributigi(r)
=47r?n(r) at various temperatures. BeldW , p(r) displays
a second maximum at smaill which grows in amplitude as
the temperature decreases: the real-space condensate. The
formation of such a condensate is even more explicit in the
evolution of thez-projected density distribution, Fig. 3, as
, the temperature is decreased from above to bdlgy

Of course, the =0, p=0' sta}te IS not. allowed quantum- At zero temperature, all excited particles above the con-
mechanically, and the derivation leading to E¢8), (7) densate vanish. The joint momentum-coordinate distribution
needs modification. The energy of a particle in a paraboll(i‘uncuon (the Wigner distribution functioff) takes a value

where{(z) is the Riemann zeta function. BeloW,, ¢ re-
mains equal to zero with the total number of partichg
having bothr =0 andp=0 values, determined from

T3

NO:(]-_T
TCO

N. 9

well, Eq. (4), is
No _ 22 22
e=hQ(n;+n,+n3+3/2), nj=0,1.... W(p,r)= _re PTTog= /Mo, (13
o
Then the normalization condition, EB), reduces to wherer = (%/mQ)*? is the zero-point oscillation amplitude
* in a parabolic well.
=n§0 m (10 The question remains, how to reconcile the above results
with the free-space Bose-Einstein condensation. The BE con-
with densation temperature equals
n 1 ﬁZ
— 2/3
Sn:n nzn o 5nl+n2+n3,n:§(n+1)(n+2) T0_3'31Hn : (14
1.12.113
and 7= exp((uo—w)/T), X=AQIT; uo is the value of the The average density of particles in a well above the con-
chemical potential aT =0 (o= 3/24Q). densation temperature is

The solution of Eq.(10) shows the dependenqge(T) T \12
(Fig. 1) with a crossover between almost linear dependence N~N/T?, whereT= (m) ~roNY(T/T)2, (15
above the crossover temperatdfg and a practically zero
value below that temperature. The valu€eTgfis very near to
T.o at large number of particlety>1.

The particle density distribution is expressed through the
sum of Hermite polynomial®> Employing the identity for
these polynomials

o |
ny+no+...+n,=n k=1 2 knl

E - mzmm, ((2 xk>m>, (11

wherer ,=1 for meven and,=0 for modd, we receive by
puttingr=3

3 4

2 o

n(r)= — z ;‘(r) z m+1-k)x . (12) FIG. 3. Side view of particle distributiort—T=0.2T,q, 2—T=0.8Tg,
2"m! & pe -1 3—T=14T,, 4—T=2.0T.
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wherer is a confinement radiusnean radius of the gaseous =e". This agrees with the conclusion, reached in a different
cloud). It is related to the minimal quantum radiug asr  way in Ref. 12, that the thermodynamic properties of a Bose
~roNYS(T/T)V2 By putting T~T¥ as defined above, we condensate in a trap with fixed total number of particles are
obtain T of the order of the BE condensation temperaturevery similar to those in the orthodox grand canonical en-
(14). Therefore, the phenomenon we discussed is just the BEemble with a fixed average number of particles. The above
condensation mechanishexcept that in a trap the conden- results are consistent with a known statement that the Bose-
sation occurs in both the momentum and coordinate spacdsinstein condensation temperatdrg is the same in the ca-
or, if we choose to explore the behavior of a dilute low- nonical and in the grand canonical ensemBles.
temperature Bose gas in real space, it will condense there, In conclusion, | hope | have met the goal of elucidating
making up a high-density globular fraction coexisting with in a direct way the properties of the low-temperature state of
the spatially dispersed “excitations” in a region of size com-an ideal Bose gas of finite-size, finite-particle-number sys-
parable to the thermal confinement radius tems. | express my deep gratitude to Prof. B. Tanatar for
In the grand canonical ensemble which we so far havestimulating discussions and help.

been considering, the number of particles is not fixed. The
mean square fluctuation of particle number in a stats |
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