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We show with a direct numerical analysis that a dilute Bose gas in an external potential—which
is chosen for simplicity as a radial parabolic well—undergoes at a certain temperatureTc a
phase transition to a state supporting a macroscopic fraction of particles at the origin of the phase
space~r50, p50!. Quantization of particle motion in a well wipes out the sharp transition
but supports a distribution of a radial particle densityr(r ) peaked atr 50 ~a real-space
condensate! as well as a phase-space Wigner distribution densityW(r,p) peaked atr50
andp50 below a crossover temperatureTc* of order ofTc . A fixed-particle-number canonical
ensemble, which is a combination of the fixed-N condensate part and the fixed-m excitation
part, is suggested to resolve the difficulty of large fluctuation of the particle number (dN;N) in
the Bose-Einstein condensation problem treated within the orthodox grand canonical
ensemble formalism. ©2001 American Institute of Physics.@DOI: 10.1063/1.1414580#

The phenomenon of Bose-Einstein~BE! condensation
~see textbooks, e.g., Refs. 1–3! manifests itself in the forma-
tion of macroscopic fraction of zero-momentum particles
uniformly distributed in a coordinate space. Such transition
was recently observed in laser-trapped, evaporation-cooled
atomic vapors4–6 in magnetic traps~see recent reviews7–9!.
We will show by a direct numerical analysis, partly similar to
and sometimes overlapping with the previous theoretical
works on the subject,10–13 that a Bose gas in an external
confining potential condenses at low temperature to a posi-
tion of minimum potential energy; the particles of that ‘‘con-
densate’’ also have zero kinetic energy. Quantization of par-
ticle states in a well makes the real-space condensation a
continuous transition rather than a phase transition but still
supports a macroscopic fraction of particles near the origin
of the coordinate space below a crossover temperatureTc*
which is of the order of Bose-condensation temperatureTc .

Experimental realization of BE condensation implies
confinement of a dilute gas within some region of space in a
‘‘trap’’ cooled by its interaction with an ‘‘optical molasses’’
created by laser irradiation14 and finally cooled to
microwave-range temperature by evaporative cooling.11

Bose gas in a trap may be considered to be interacting with
two thermal reservoirs, the first one representing the thermal
environment~walls, blackbody radiation at temperatureT1!
and the second one the optical molasses at temperatureT2

!T1 . The equilibrium distribution of particlesf (p, r, t) can
be obtained by solving the Boltzmann kinetic equation

d f

dt
5 Î 1$ f %1 Î 2$ f %, ~1!

where Î 1 is the interaction term~Stoss integral! correspond-
ing to coupling with a media 1, andÎ 2, respectively, with
media 2. If we choose for simplicity the relaxation time ap-
proximation for Î 1,2,

Î i52
f 2 f i

t i
, ~2!

then the solution for the equilibrium state will be
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The relaxation ratet2
21 is proportional to the laser intensity

P. At large intensity, assumingt2
21@t1

21, Eq. ~3! gives f
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In a semiclassical approximation, the particle energy is
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where the thermodynamic potentialV52T ln Z, Z is the
grand partition function~assuming zero spin of particles!

Z5E dpdr

~2p\!3 ln~12e~m2«!/T!, ~5!

where \ is Planck’s constant. The chemical potentialm is
determined from~5! to satisfy an equation
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whereN is the number of particles. After integration over the
directions ofr andp we obtain
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wherez,0 is the chemical potential in appropriate dimen-
sionless units.

At low temperature, no nonzero value ofz can satisfy
Eq. ~7!. It therefore vanishes at a temperatureT5Tc0 deter-
mined from the conditionz50, thus giving

Tc05\V~N/z~3!!1/350.94\VN1/3, ~8!
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wherez(z) is the Riemann zeta function. BelowTc0 , z re-
mains equal to zero with the total number of particlesN0

having bothr50 andp50 values, determined from

N05S 12
T3

Tc0
3 DN. ~9!

Of course, ther50, p50 state is not allowed quantum-
mechanically, and the derivation leading to Eqs.~6!, ~7!
needs modification. The energy of a particle in a parabolic
well, Eq. ~4!, is

«5\V~n11n21n313/2!, ni50,1... .

Then the normalization condition, Eq.~6!, reduces to

N5 (
n50

`
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henx21
~10!

with

Sn5 (
n1 ,n2 ,n350

n

dn11n21n3 ,n5
1

2
~n11!~n12!

and h5exp((m02m)/T), x5\V/T; m0 is the value of the
chemical potential atT50 (m053/2\V).

The solution of Eq.~10! shows the dependencem(T)
~Fig. 1! with a crossover between almost linear dependence
above the crossover temperatureTc* and a practically zero
value below that temperature. The value ofTc* is very near to
Tc0 at large number of particles,N@1.

The particle density distribution is expressed through the
sum of Hermite polynomials.15 Employing the identity for
these polynomials
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wherer m51 for m even andr m50 for m odd, we receive by
putting r 53
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Figure 2 shows the radial density distributionr(r )
54pr2n(r) at various temperatures. BelowTc* , r(r ) displays
a second maximum at smallr, which grows in amplitude as
the temperature decreases: the real-space condensate. The
formation of such a condensate is even more explicit in the
evolution of thez-projected density distribution, Fig. 3, as
the temperature is decreased from above to belowTc0 .

At zero temperature, all excited particles above the con-
densate vanish. The joint momentum–coordinate distribution
function ~the Wigner distribution function16! takes a value

W~p,r !5
N0

pr 0
e2p2r 0

2
e2r 2/r 0

2
, ~13!

wherer 05(\/mV)1/2 is the zero-point oscillation amplitude
in a parabolic well.

The question remains, how to reconcile the above results
with the free-space Bose-Einstein condensation. The BE con-
densation temperature equals1

T053.31
\2

m
n2/3. ~14!

The average density of particles in a well above the con-
densation temperature is

n̄;N/T3, where r̄ 5S T

mV D 1/2

;r 0N1/6~T/T0!1/2, ~15!

FIG. 1. Chemical potential versus temperature for various values ofN:102

~1!, 103 ~2!, 104 ~3!, 105 ~4!, 106 ~5!.
FIG. 2. Radial density distributionr(r )54pr 2n(r ) for N51000 and vari-
ous temperatures:T/Tc050.2 ~1!, 0.8 ~2!, 1.4 ~3!, 2.0 ~4!.

FIG. 3. Side view of particle distribution:1—T50.2Tc0 , 2—T50.8Tc0 ,
3—T51.4Tc0 , 4—T52.0Tc0 .
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wherer̄ is a confinement radius~mean radius of the gaseous
cloud!. It is related to the minimal quantum radiusr 0 as r̄
;r 0N1/6(T/Tc)

1/2. By putting T;Tc* as defined above, we
obtain T of the order of the BE condensation temperature
~14!. Therefore, the phenomenon we discussed is just the BE
condensation mechanism,1 except that in a trap the conden-
sation occurs in both the momentum and coordinate spaces
or, if we choose to explore the behavior of a dilute low-
temperature Bose gas in real space, it will condense there,
making up a high-density globular fraction coexisting with
the spatially dispersed ‘‘excitations’’ in a region of size com-
parable to the thermal confinement radiusr̄ .

In the grand canonical ensemble which we so far have
been considering, the number of particles is not fixed. The
mean square fluctuation of particle number in a statea is
^dna

2&5na(na11). In a condensate, by puttinĝna50&
5N0 we getm.«02T/N0 and^dn0

2&1/2.N0 . This means a
huge fluctuation of particle numberdN;N at T!T0 , an
unrealistic property of the model.17

In a canonical ensemble, which better fits to experiments
with dilute gases in traps, the average value of the conden-
sate population is given by

^n0&5
(n050

N n0($na%8e
2b(a.0~«a2«0!nad(a.0na , N2n0

(n050
N ($na%8e

2b(a.0~«a2«0!nad(a.0na , N2n0

, ~16!

where$na%8 stands for a collection of all state numbers ex-
ceptn0 , andb51/T. The average over such states does not
fluctuate strongly and therefore can be replaced by its grand
canonical value corresponding to an appropriate choice of
chemical potentialm5mN2n0

. We thus get

^n0&>
(n050

N n0ZN2n0

(n050
N Z N2n0

, ~17!

whereZn5e2bVn, andVn is the thermodynamic potential of
the grand canonical ensemble.1

The quantityZn5e2bN is not exponentially small for a
number of particlesn smaller than the Bose-condensate frac-
tion, n,N0 . Therefore, we can change expression~17! to

^n0&>
(n05N0

N n0e2bVN2n0

(n05N0

N e2bVN2n0
. ~18!

The quantityVn is strongly peaked atn5N0 , thus giving
^n0&.N0 and, similarly, ^dn0

2&1/2;AN0 rather than
^dn0

2&1/2;N0 as in the orthodox grand canonical ensemble.
Indeed, atN!N0 ~corresponding toT@T0! we obtain for the
thermodynamic potentialVN a valueVN.2NT, and ZN

.eN. This agrees with the conclusion, reached in a different
way in Ref. 12, that the thermodynamic properties of a Bose
condensate in a trap with fixed total number of particles are
very similar to those in the orthodox grand canonical en-
semble with a fixed average number of particles. The above
results are consistent with a known statement that the Bose-
Einstein condensation temperatureT0 is the same in the ca-
nonical and in the grand canonical ensembles.2

In conclusion, I hope I have met the goal of elucidating
in a direct way the properties of the low-temperature state of
an ideal Bose gas of finite-size, finite-particle-number sys-
tems. I express my deep gratitude to Prof. B. Tanatar for
stimulating discussions and help.
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