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Convergence of a “discrete” operator to a “continuum” operator is defined. As
examples, the circular rotor, the one-dimensional box, the harmonic oscillator, and
the fractional Fourier transform are realized as limits of finite-dimensional quantum
systems. Limits, thus defined, preserve algebraic structure. The results prepare for a
sequel in which some affine canonical transforms will be “discretized.” 2@D1
American Institute of Physics[DOI: 10.1063/1.1398582

[. INTRODUCTION

The continuum fractional Fourier transform of Nanti@sthe limit of two discrete fractional
Fourier transforms, namely, the Kravchuk function FRFT and the Harper function FERETRefs.
2 and 3. Some very straightforward continuum quantum systems, such as the circular rotor, the
one-dimensional box and the harmonic oscillator, can easily be realized as limits of equally
straightforward finite-dimensional systems whose Hamiltonians are difference operators. For
many purposes, the above assertions are clear enough without “limit” being understood to have
any abstract meaning; nevertheless, the goal of this article is to assign an appropriate general
meaning to “limit,” to state the above assertions precisely, and to prove them. It is not that we
object to the usual common sense techniques—on the contrary, we shall validate them—but
subsequently, in a sequtkome ideas pioneered by Atakishiyev—Chumakov—®effl be de-
veloped: continuum affine canonical transforms and continuum complex-order Fourier transforms
will be realized as limits of analogous finite-dimensional transforms. In that application, common
sense would not suffice.

Consider a Hilbert spac€.,, and Hilbert space<’,,, where the indexh runs over some
infinite set of positive integers. In Sec. Il, we shall interfatewith the space<,,, and we shall
assign a meaning to equations of the form

whereK_, is a bounded operator af,, and eactK, is a bounded operator afy, . In Sec. Ill, we
shall assign a meaning to equations of the form

K..=lim K,

n

where/C,, and IC, are quantum systems ah, and L, , respectively. Convergence of vectors has
already been discussed in two prequels to the present article. The first frexplains howZ.,
is to be interfaced with the spac€g, and gives meaning to equations of the form

o =lim iy,
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where . L., and ¢, L,. Some of the main definitions and results from Ref. 6 are briefly
recalled later in Sec. Il. The second predughiows that widely used limiting techniques are in
accordance with the definition of convergence.

With a view to applications, we might think of,, as a “continuum” space, perhaps the
Hilbert space formed from the space of square-integrable functions on a differentiable manifold.
We might think of each spacg, as a “discrete” space, perhaps a Hilbert space with a coordinate
system such that the coefficients of a vector may be interpreted as sample-point values of a
function on the manifold. In the case where the manifol& j9igernes—Varadajan—Varadhah
established a continuum-discrete correspondence—characterized in terms of limits—by embed-
ding eachZ, in £,. Our approach is more concerned with preservation of algebraic structure
(linearity, inner products, composition, tensor product§e interfacel., with the space<,, by
realizing the sequencelf), as an inductive resolution of... The definition of an inductive
resolution(recalled in Sec. )lis entirely algebraic, and, by this virtue, it relieves us of any need
to assign any abstract meaning to the jargon “continuum” and “discretas’ every physicist
knows, these two terms often refer to different sides of the same) coin.

The preservation of algebraic structure will be crucial in Ref. 4, where we shall be considering
some Lie groups with several degrees of freedom. In subsequent work, we shall present a more
systematic study of a way in which “continuunttisually infinite-dimensionalrepresentations of
Lie groups may be realized as limits of “discret@isually finite-dimensionalrepresentations.

(Part of the motive for this is to seek criteria for a system of numerically calculated transforms to
respect “continuum” composition lawsThe results we give later, in Sec. lll, and the applications

we note in Sec. IV, all concern the special case of one-parameter groups. This special case is
helpful as a stepping-stone because some of the concerns that arise in the general case reduce to
trivialities here.

However, one-parameter systems are of interest in their own right, and can naturally be
regarded as quantum dynamical systems, or, to use the language of Parthdsquethiym
stochastic processdé.et us not quibble about the flexible definitions of these terifisus, we are
led back to a question addressed by Digernes—Varguerlaradhaff. To what extent are spectra
in the “continuum” scenario related to spectra in the “discrete” scenario? This question is ex-
plored in Sec. V. The author would like to thank the referee for some useful suggestions concern-
ing Sec. V. Although the material there is still only an initial foray into the matter, it was absent
from the previous version of this article.

General motives for a continuum-discrete correspondence—characterized in terms of limits,
and preserving algebraic structure—are noted in the prequels, Refs. 6 and 7. Some more extensive
references for applications may be found in those two papersGBEaankenexperimeirt Ref. 7,

Sec. 2, gives a heuristic introduction to our line of approach.

II. INDUCTION OF BOUNDED OPERATORS

By an operator on a Hilbert space, we mean a linear map— £, where the domairD is
a dense subspace 6f Every bounded operator ofi extends uniquely to a bounded operator on
L with domain£. Henceforth, all our bounded operators on a Hilbert spashall be deemed to
have domainC. We write U(£) for the group of unitary operators afx

We must briefly review some of the definitions and results of Ref. 6. Consider a Hilbert space
L., a dense subspackof L., an infinite set of positive integers, Hilbert spaces, for each
ne N, and linear maps resS— L,,. (The results below may easily be extended to the case where
Nis any directed set, as in Ref.)6.

The linear maps rgs called therestriction maps, are required to satisfy the reciprocity
condition

(olx)= quf(resnw)lresn(x»
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for all ¢,x e S. The sequenced,),, equipped with the sequence (ygs is called annductive
resolution of L., .

Given a vectory e L., , and vectors), e £, for sufficiently largen € ' (not necessarily for all
neN), we say that the sequencé), convergesto .. provided the normg,| are bounded
and

(@l i) = lim (res,(¢)[4n)
neN

for all ¢ € S. The Riesz representation theorem guarantees that, (converges to at most one
vector in £.,,. When (), converges tay.,, we call ¢, the limit of (¢,),, and we writey,,
=lim,cn ¥, . Note thatp=I1im, .\ res(¢) for all e S.

Let us recall some results that we shall need from Ref. 6.

Theorem 2.1:(Ref. 6, Theorem 2)}Any vectory,. € L., is the limit of some sequen¢é,,),,
and, furthermore, the vector, € £, may be chosen such thiap..| = || for all n.

Let B..={B; .. j € J..} be any enumerated orthonormal basis for. Here,J.=N if L., is
infinite-dimensional, while),.={0,1,...,d—1} if £, has finite dimensiod. By Ref. 6, Theorem
3.1, there exist3,,, indexed byne N, where eachB, is an enumerated orthonormal 8
={Bjn:i€dn} in L,, and

Bj = lim B,
neN

for all j € J... Note that, for each basis vectgyf .. in L.., a corresponding basis vecty , in L,
need not exist for alh, but theg; , must exist for sufficiently large.

As explained in Ref. 6, Sec. 3, th#&, cannot always be chosen such that eBghs a basis.
(In all our applications in Sec. IV, each of our chosgpis a basis. We also mention that, in all
these applications;.. is infinite-dimensional)V'is a set of positive integers, and eaghhas finite
dimensionn.) We let £, denote the subspace 6f, orthogonally complementary to the span of
B, . Given a vecton), € L,,, we write

Y= 2 Cj B
]=0

with the understanding that ,=0 for all j e N—J... Given ¢, e L,,, we write

Yn= ’70#""]2::0 Cj,nﬁj,n

wherey, e L, andc; ,=0 for all j e N—J,,. (Of course, if3, is a basis, theny,, =0.) For later
convenience, we defing; ..:=0 whenjeN-J., and g;,=0 whenjeN-J,. Thusc; .

:<Bj|w|'ﬂw> andcj,n:<ﬂj,n|¢n> forall jeN.
Theorem 2.2:(Ref. 6, Theorem 3)4Using the notation abovey..=lim, \ ¢, if and only if
the norms| ¢, are bounded, and;c.=lim,_,-c; , for all j € J...

We can now turn to convergence of operators. Ketbe a bounded operator ah,, and for
sufficiently largene N, let Rn be a bounded operataf,,. We say that the sequencd'f(r()n

convergesto K., provided the normﬁRnH are bounded, and for al}..e £.., and all sequences
(n)n wWith e £, and ., =lim, .- (,), we have

Roc'vbw: lim (Rn‘/’n)
neN

Theorem 2.1 ensures that the sequerl%,e)r( converges to at most one bounded operato£on
When (K,), converges tK.,, we callK,. thelimit of (K,),, and we writeK.,=lim,_ K.
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Remark 2.3: Given bounded operators, Klim, K, and K.=lim,_ K/, and given
M e, then K, + N KL =lim, o v (NK,+ 1K) and K.K.=lim, KK}

Proof: This is obvious. (I

Theorem 2.4:Given any bounded Kon £.., then there exist bounded operatoArg &n each
L, such that K,=lim,_ K, and||K,|=|K.| for all ne .

Proof: Let B,, and B, be as above. We define

K k= (B, Ko Br o)
for all j,ke N. (Note thatk; =0 unlesg andk both belong tal., .) On each spacg,,, we define
an operatoKK;, annihilating£, and such that

K = {(Bj nlKhBin)

for all j,ke J,,. Consider vectorg., e L., andy,, e L, such thaty,.,=lim,, ¢, . Let the coefficients
Cj . andc; , be as above. Then

o

IR~

©

> Kj kCk,n
k=0

2
<[IRll gl

So the normdK /| are bounded byK.,|. Given e>0, then there exists a positive intedérand
complex numbersg, ... ,cy_1 such that

2 N—-1

E = (|[K.]—€)? E |cil2.

j.kCk

For sufficiently largene N, we have{0,... N—1}NJ..CJ,, whereupon|K/||=|K.|— e.
Therefore |K..||=lim,_ v K/||.

We claim thatk.,=lim, K/ . Let ¢ e S. For eachn, let ¢,:=res,(#). To prove the claim, it
suffices to show that

(DIR e =lim (ol K ip).
n
For eachj e N, leta; ..:=(B; ..|#) anda; n:=(Bj n|¢n). Thus
ZjZO aj'wﬁjyx and ¢n= (f)#-f—]zo aj'nﬁjyn,
wherey, € L, . We have
<¢n|ké¢n>:jéogj,nKj,kck,n

and a similar equation holds f(()rb|f<x¢n). (By absolute convergence properties, all the sums we
consider can be rearranggtive have

— ) n)K;j kCk.n| -

[(D|K e o) = { bl K )| < j%o ) oK k(Cre—Cyn) |+

(Using the boundedness &f.., it is easy to check that these sums are absolutely convergent.
Letting C be an upper bound for the norrg,||, then
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o

>

i=0

o

> K| kCkn
=)

2
<CK.|I?

for sufficiently largen. Part of Ref. 6, Lemma 3.3, says tt%]?f:0|aj,w—aj,n|2s € for sufficiently
largen. Hence

oo

2 (Ej,x_aj,n)r(j,kck,n <€C|K.l.
j,k=0
We may insist thaC=||..||. Thereupon,
o] oo 2
2 | 2 K (e Cin)| <4CTR.?
i=0 |k=0

for sufficiently largen. The seriesS{" |a; ..|* convergesto || #||?), so there exists a positive
integerM such thatsi_ |a; ..|*< €. We have

<2eC|K.|

> k§=:O @) oK k(Ch e = Cin)

i=m

for largen. To prove the claim, it now suffices to show that

M—-1 o

> k§=:0 8 K k(Cy e = Cin)

i=o

—0(e).

Let j e N. Suppose there exists somie-0 such that, for every positive integer there exist
complex numberg, ,c, 4, ... satisfying

> led?<1 and | X Ko >4
k=L k=L
Then there exist complex numbegg,cq, . . . andintegers G=Lo<L,<--- such that eacK; ,cy
is a non-negative real, and
L,—1 L—1
1 : o
2
¢/°<— and Ki kC>5—
k:§,1| k| n2 k:§71 J,k k 2n

for all positive integers. The seriesS;_|c,|? converges while the serig;_K; ycy diverges.
This contradicts the boundednesskof . We deduce that, for any positive re there exists a
positive integelL such that, for all complex numbecs ,c, , 1, ... satisfying=;_, |c,|?<B, we
have|Sy_ K| «Ci/<e/M. For largen, we haveS;_o|cy . —Cx o|><4C?. So there exists a posi-
tive integerL such that, for large, and for allj <M, we have

oo

> K (Co—Cin)| <€/M.
k=L
Each|a; ..|<||¢l|, so
M—-1 o
> D &K (O )| <€l ]
j=0 k=L

for largen. The claim will follow when we have shown that
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M—-11L-1
> 2 &K (G Cin)| =O(€)
j=0 k=0
for largen. By Theorem 2.2¢, ..=lim,_,Cy ,. The claim is established.
To finish the argument, we must replace the operaﬁrsvith operatorsf(n on L,, such that
IKqI= K| for all ne N. We may assume thdK..|=1. From the first paragraph of the argu-
ment,||K/| converges to 1. SK,#0 for largen. WhenK/ #0, we putk ,=K//||K/|, otherwise
we putK,=1. Then each|K,|=1, and||K,—K/|—0. Since the normdy,|| are bounded,
IK nthn— K ih] — 0. It was shown in Ref. 6, Remark 2.3, that, fore £.. and 6, , x, € £, satis-
fying 6.=lim,_\ 6, and lim,.x||6,— xs|=0, we have 6,.=lim,_\x,. Therefore K.,
:IimneN’\Kn'rl/n- u
Corollary 2.5: Given any bounded Hermitian operato, kn £.., then there exist bounded
Hermitian operators H on eachf, such that H.=lim,_,H, and |A,=]HA.| for each n
eN.
Proof: In the proof of Theorem 2.4, iK., is Hermitian, then so is eadk, . O
In order to accommodate the possibility of working with a compound of several quantum
stochastic processdfor example, a quantum system with several partjclege must discuss
tensor products of inductive resolutions, and we must show how the limits of vectors and operators
are compatible with the tensor product. L&t be a Hilbert space, and & be a dense subspace
of £.,. For eachne N, let £ be a Hilbert space, and let fess’ — L, be restriction maps. Then
L.® L, has an inductive resolution with restriction maps,teeeg,:S®S'— L,® L,,. Given
limits of vectorsy..=lim,, ¢, andy.,=lim, ¢, in L., andL.,, respectively, it is clear that we have
a limit of vectorsy..® ¢, =lim, ¢,,® /. By considering orthonormal coordinates and applying
Ref. 6, Theorem 3.4, it is easy to check that limits of bounded operators preserve tensor products
in the same way(Warning: we are not invoking Ref. 6, Theorem 3.4, gratuitously. Not every
sequence inC,® L, converging toy..® i, has terms of the forny,,® ¢, .) These(rather trivia)
remarks show that the limits behave well in ttrather banal case of a fixed finite number of
noninteracting processes. Presumably, they also behave well with respect to symmetric and anti-
symmetric tensor products, and with respect to the construction of free, symmetric, and antisym-
metric Fock spacetsee Ref. 9, Chap. )l We leave that matter for further research.

[lI. CONVERGENCE OF QUANTUM SYSTEMS

Recall that a family{K (t):te R} of operators on a Hilbert spac@ is said to bestrongly
continuous provided eacHA<(t) has domainl and, for all¢e £, the functionR— L given by
t—K(t)¢ is continuous. If, furthermoreK(0)=1 and eachK(t) is bounded, then we call

{K(t):te R} a quantum systemon L. In that case, we sometimes consider a family of vectors
{y(t):te R} such that

P(1) =K (1) $(0).

A quantum systeW={U(t):teH} on £ is said to beunitary provided each operatdd(t) is
unitary. If, furthermore,

OOt )=0(t+t")

for all t,t" e R, then we say thal is conservative

The boundedness condition in our general definition of a quantum system is somewhat arti-
ficial, but convenient for our purposes. Our main concern is with conservative systems, and these
have been thoroughly studied in various contexts and from various perspectives. For a detailed
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introduction to conservative systems as quantum stochastic systems, see Ref. 9, Chap. 1. Let us
recall some well-known properties of conservative systénteoducing some notation that will be
convenient in the proof of Theorem 3.5

Suppose thal/ is conservative. Stone’s theorem asserts that there exists a unique Hermitian

operatorH on £ such that
U(t)=exp(—iHt).

We callH the Hamiltonian for Z/. Conversely, every Hermitian operator gris the Hamiltonian

of a conservative quantum system. The bijective correspond%mé( allows us to characterize
conservative quantum systems by the Sdhrger equation

d
| g O =Ru().

For the sake of rigor, we must mention that, as a definition,

©

exp(—iHt) ==f e SdE(s),

—oo

whereE is the spectral family foH. The notation on the right-hand side is as in Ref. 10, Chap.
7. It may be worth explaining what this equation tells us. Introducing some notation that will be of

use in the proof of Theorem 3.5, let us consider an integeand writeIAErn for the orthogonal
projection on/£ associated witlE and the half-open intervdlm,m+1). [Intuitively, we might

think of E,, as the projection to the subspaggL of £ spanned by those “eigenvectors” whose
“eigenvalues” are at leash and less tham+ 1. The operatoﬂ restricts to an operator on each
subspaceE L. Vaguely, we might think ofE, as a kind of “eigenspace,” whose associated

“eigenvalue” is spread across the intervah,m+1).] Any vector in £ is a sum of vectors
belonging to the spaces,,C, so the unitary operator exp{Ht) is determined by the condition
that it restricts to an operator <‘E1m£ given by
. 2 (—iHY
exp(—th)«p:lZO (l—,)l//

for all e E, L. (The series converges becauseestricts to a bounded operator &r,L.)

Stone’s theorem may be found in Ref. 10, Theorem 7.38. The bijectivity of the correspon-
denceH </ is given in Ref. 15, Theorem 7.37. See also Ref. 9, Theorem 13.1.

Given a quantum systerit..={K..(t):te R} on L., and quantum systemks,={K,(t):t
e R} on L, for sufficiently largen e NV, we say that ), convergesto K., provided

K..(t)= lim K,(t)
neN

for all te R. Obviously, (C,), converges to at most one quantum systemZgn When (C,),
converges tdC,,, we call I, thelimit of (), and we writefC,=lim, o\ /Cp .

Remark 3.1: LefC..={K..(t):t e R} and K, ={K(t):t e R}, respectively, be quantum systems
on L., and on eachC,,. Write i..(t) = K..(t) ..(0) andy,(t) =K,(t) #,(0). Then we have a limit
of quantum systenis..=lim, . - /C,, if and only if, given any initial state vectois,.(0) in £.. and
¥n(0) in each £, with ¢..(0)=Ilim,_x(¢,(0)), and writing Po(t) =K. (1) .(0) and (1)
= Rn(t) ¥n(0), we havey..(t) =lim,c v n(t) for all t e R.

Proof: This is obvious. O
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In particular, Remark 3.1 tells us that if the limit holds for the quantum systems and for the
initial vectors, then the limit holds for all the time-evolved vectors. In case this seems counter-
intuitive, we point out that, if/,(t) is to be a “good approximation” tas..(t), one should first fix
t, and then choosg.

Theorem 3.2:Any quantum system db, is the limit of a sequence of quantum systems on the
spaces’, .

Proof: Let Km={Rm(t):teH} be a quantum system af, . For eacht e R, andj,ke N, we
define

Kj k(1) :=(Bj ol Koo (1) By o) -

Let K,(t) be the operator irC,, constructed from the matrix entrids; (t) as in the proof of
Theorem 2.4. Lek,,={K,(t):t e R}. Using the condition that.. is strongly continuous, it is easy
to check that eacliC,, is strongly continuous. O

Proposition 3.3: Let H., and each AI—,L be bounded Hermitian operators of., and £,
respectively, and suppose that the noffff,| are bounded. Lets, and each/, be the conser-
vative systems with Hamiltonians..Hand H,, respectively. Thedt,,=lim, U, if and only if
Ho,=lim,_ v H,.

Proof: Write ¢4, ={U0..(t):te R} andif,={U,(t):te R}. FormeN, let

m

K1) = >,

k=0

(=it . T (—iH DK
— g and Km'n(t)zzkgoT.

ThenU..(t) =1imp_ .. Kpo(t) and U, (t) =limp, .. Kiy o(1).

Let e>0. Consider vectorgpe S and ¢.. € L., and ¢, L,, such thaty..=lim, ¢,. Write
dn=res,(¢). LetA be an upper bound fdlip|| and| #,||. Let B be an upper bound fdiH..| and
|H,||. Let C be an upper bound fdk/..| and| ,|. Choosem such that

2ACY, |Bt|¥/kl<e.
k=m

Then[[U..(t) = K (1)< e/2AC=| U (1) — K,y o(1) | for sufficiently largen. Hence

|<¢| Om(t) - l’{m,co(t)| ‘/’w>_<¢n| ljn_ lA<m,n(t)| ‘//n>| Se.

If A..=lim,H,, then, by Remark 2.3, ..=lim, K, ,, henceU..(t) ¢..=lim, U, (t) ¢,
Conversely, suppose that,(t) z//wzlimnENUn(t) ¥, . Givent, we can pute=t2/2 (and then
choosem), where

[{ DK o1 ) = (| K (1) e} | = O(t?)

for sufficiently largen. Equating coefficients df (the sums=;L | I:int|"/k! and the similar sum for
H.. are bounded bg®!l), we obtainA..i..=lim, H i, . O
Corollary 3.4: Letl,, be a conservative system @, with bounded Hamiltonian K. Then
there exist conservative systert on £, with bounded Hamiltonians H such thati.,
=lim,. U, andH_.=lim,_\H,.
Proof: This is immediate from Corollary 2.5 and Proposition 3.3. O
Theorem 3.5: Any conservative system ab, is the limit of a sequence of conservative
systems on the spacé&s .
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Proof: Let L{wz{ﬂm(t):t e R} be a conservative system dh , let H.. be the Hamiltonian for
U.., and letE be the spectral family foH.. . For eachme 7, let E,,, be the orthogonal projection
as above, and lef,,, ..= E,£... The Hermitian operatdf.. restricts to a Hermitian operatét, ..

onLy - Letum,mz{Um,w(t) ‘te R} be the conservative system g, .. with Hamiltonianl:lm,m .
Any vector ¢, € L., has a unique decomposition as a sum

= 2 Y,
meZ

where each/p, .. € L ... We haveH.. ¢y .= H o . and

0m<t>z/f@=gz U moe (1) e -

Itis easy to see that there exists an enumerated orthonormalhasiss, .. :j € J..} such that
eachg; .. belongs to one of the subspadgs ... The enumerated orthonormal s&s, as in Sec.
Il, may be chosen such that eaghc J.,. For eachme Z, let

Jo(m):={jed,:Bj-eLlm; and J,(m):=J,NJ.(m).

Let L, , be the subspace af, spanned by the vectog; ,, such thatj e J,(m). Any vector x,
e L,, has a unique decomposition as a sum

Xn:)(#—’— E Xm,ns
meZ
wherex, € L5, and eachyyne L. Forj,ked., let

Hj k= {Bj A B )

Note thatHJ-,k=H_kyj, andH; =0 unless,k e J..(m) for someme Z. Let|:|m’n be the Hermitian
operator on’, , such that

Hj,k:<ﬁj,n|ﬂm,n:3k,n>

for j,ked (m) LetlUy {Um n(t):te R} be the conservative system dh, , with Hamiltonian
Hmn Let A, be the Hermitian operator ofi, such thalHan 0 andHnan Hmn)(m,n Let
U,={U,(t):te R} be the conservative system gy with HamiltonianH,. Then

Un(t)Xn:XJﬁ + mEZ LAJm,n(t)Xm,n .

We are to show thalt)...(t) =lim,_ U () for all teR.
For eachne \V, let i, e L,,, and suppose that.,.=lim, .\ i, . Write

:jzo Cj'ooﬁjyoc and lﬂ'n: lﬂ#‘l‘jzo Cj,nﬁj,n

as in Sec. Il. FixteR, and let 6’0(,=lAJO<,(t)¢oc and 0n=0nwn. We are to show that,,
=lim, 6,. Write
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engodjymﬁj,x and 9nzgﬁ+;0dj,n3j'n

as we did fory,, and ¢, . The normg|8,/|=|4,| are bounded. So, by Theorem 2.2, we are to
show thatd; ..=lim,d; , for all jeJ... Fix j e J.., and letm be such thaf € J..(m). We have

dj .= > <:8j,oc|0m,oo(t),8k,oc>ck,m-

keJL(m)
The equation still holds with the symbal instead of the symbot. ReplacingH., with the
Hermitian operatoE,H..=H..E,, does not changBl,,.. or H, ,, so it does not changé,y, .. or
Un,m. So it does not changs .. or d; . Therefore, we may assume tm/,xzo for all integers
m’#m. HenceH,, ,=0 for all m’#m and allne . But now H.. is bounded, indeediH.|
<|m|+ 1. Furthermore, the operatoﬂsn are constructed frorhl,. just as the operat0|1§,’1 were
constructed fronK .. in the proof of Theorem 2.4. Sd..=lim,,_-H,,. Thanks to Proposition 3.3,
the argument is now complete. O

Corollary 3.6: Any unitary operator oif,, is the limit of a sequence of unitary operators on
the space<,.

Proof: Given a unitary operatot,. on £.., then by Ref. 10 Exercise 7.50, there exists a
conservative syster{rﬂm(t) :te R} such that),.= U, (1). Theorem 3.5 now gives the assertian.

A more direct way to demonstrate Corollary 3.6 is to adapt the proof of Theorem 2.4, using
the Gram—Schmidt process to modify the columns of the matriK@y@)(,keJn. The argument is
fairly routine, although it is complicated by the need to make some arbitrary choices when the
Gram-Schmidt process terminates prematurely.

The existence results above can be interpreted as saying that, in principle, any “continuum”
system(of a particular kindl is the limit of a sequence of “discrete” systenfsf the same king
The next result provides one way of actually recognizing that a given “continuum” system is the
limit of a given sequence of “discrete” systems.

Proposition 3.7: LeWOC:{Uw(t):teR} be a conservative system dh,, and for each n
eN, letid,={U(t):te R} be a conservative system d. Let H.. and H,, respectively, be the
Hamiltonians. Let3,, and 53, be as in Sec. Il. Suppose that, for eachJj., there exists a real
;.. such that

H:X:Bj'oo: )\J Yooﬁj o0 -

Suppose also that, for sufficiently large there exist reals\; , such that

|qnlgj,n:)\j,nlgj,n-
Thenl,=limy U, if and only if\j .=lim,_\\j, forall jeJ.,.
Proof: This follows quickly from Theorem 2.2. O

Proposition 3.7 yields an alternativand very easyproof of Theorem 3.5 in the special case
of a conservative system ofy, with a diagonalizable Hamiltonian.

IV. SOME EXAMPLES OF CONTINUUM LIMITS OF DISCRETE SYSTEMS

In all the examples to follow, we shall apply Proposition 3.7 to show that the given “con-
tinuum” system is the limit of the given sequence of “discrete” systems. Each of the inductive
resolutions is a sample-point inductive resolution, as in Ref. 6, Examples 2.A—2.F. Sample-point
inductive resolutions are examined also in Ref. 7.

Example 4.A: The circular rotofThe rotor, in one dimension, is a model for a particle moving
freely on a circle. Classically, the energy is proportional to the square of the angular momentum.
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Let S be the space of smooth functiogs R— C such that¢ has period unity and is square-
integrable on a bounded domain. The inner productas given by integration over an interval

of length unity. Making a suitable choice of units, the Hamiltori&n of the rotor has domais
and satisfies

H..(x) = — d2p(x)/dx?
for ¢ € Sandxe R. The completionZ., of S has an orthonormal bask.={8; .. :j € N} given by

v2cogmijx) if j is even,
Bj=(x)= v2sin(@(j+1)x) if j is odd.

It is easy to check thas,, diagonalizes.., indeed,H..3; .=\ ..3; .., where

w?j? if | is even,
= #2(j+1)2 if j is odd.

Let A be the set of positive odd integers. For each)\, let £,, be then-dimensional inner
product space consisting of the functidfis: C with periodn. The inner product oif,, is given by
summation ovem consecutive integers. We replace the differential operatdf/dx? with a

difference operatoH,, where

Hagh () =n?(— (X = 1)+ 2(X) — (X + 1))
for e L, andX eZ. Given an integej with O0<j=<n-—1, we put

v2IncogwjX/n) if j is even,

Bj,n(x):[ﬁsm(w(jﬂ)xm) if j is odd.

It is easy to check tha{B; ,:0<j<n—1} is an orthonormal basis fof, diagonalizingH,, .
Writing H,8; =X\ nBj.n, then

2n%(1—cog2mjX/n)) if j is even,
I 2n2(1—cog2m(j+1)X/n)) if j is odd.

Let 4, be the conservative system gn with HamiltonianA., . For eacm e\, leti, be the
conservative system ofi, with HamiltonianH,,. Of course, it is heuristically “obvious” thatt..
is some kind of “limit” of U,,, but in order to formulate this observation mathematically, we must
realize (£,), as an inductive resolution of.,. We define res.S— L, such that

res\(¢)(X)=$(X/n)/yn

for ¢ S and X e Z with —n/2<X<n/2. It is easy to check that the sequendg®)(,, equipped
with the sequence (rgk,, is indeed an inductive resolution @f, . (In fact, this is the precisely
the one-dimensional case of Ref. 6, Example)X3tvenj e N, then, for alln>j, we haveg; ,
=res(Bj,»). Therefore,B; .=lim,.xBjn. Since\,.=lim .\ ,, Proposition 3.7 tells us
that

U= lim U,.
neN

Example 4.B: The one-dimensional b&or eachj e N andx e[ — 3,3], we write
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v2cogm(j+1)x) if j is even,

Bj(X)= V2sin(m(j+1)x) if j is odd.

Let L., be the Hilbert space with orthonormal ba§; .. :j € N}. Let S be the dense subspace of

L.. consisting of the smooth functiofis- 3,3]— C. The box, in one dimension, is the conservative

systemit,, whose HamiltoniarH., has domainS and is given by
H..p(x) = — d?¢(x)/dx?

for ¢ € S. EvidentlyH..3; ..=\; ..3; .. where\; .= m2(j+1)2.

Again, let A/ be the set of positive odd integers. L&t be then-dimensional inner product
space consisting of the complex-valued functions on the inte§dssng in the interval —n/2
<X<n/2. As in the previous example, we replace the differential operatdf/dx?> with a

difference operatoH ,, but this time the sample-points indexed by-(t)/2 and (1—1)/2 are to
be interpreted as end-pointthey are no longer interpreted as being adjaceémriting n=2I
+1, we put

N2(2¢(—1)—y(1-1)) if X=-1,
A p(X)=1 NA(—#(X=1)+24(X)— p(X+1)) if —1<X<I,
n2(—y(l—1)+2y(l)) if X=I.

The operatot,, is diagonalized by the orthonormal bafis={B; ,:0<j<n—1} of L,, where

[ 2 a(j+1)X\ . ..

n—lco{ 1 if j is even,
R e

n+1sm( 1 if j is odd.

In fact, ) n =\ nBj.n Where; ,=2(1— cosr(j+1)/(n+1))).

We realize (,), as an inductive resolution of. by defining res:S— L, by the same
formula as in Example 4.A. A straightforward calculation yields, forjalN, all xe[—3,3] and
all sequencesX,),, of integers such that= Iimnean/\/ﬁ, the point-wise convergence condition

B o(X)= IimNﬁﬁj,n<xn/n>.

The normg|B; || are all unity, and, in particular, they are bounded. In Ref. 7, Theorem 3.1, it was
proved that point-wise convergence of vectors with bounded norms implies convergence; in par-
ticular,

ﬁj,m: lim ,Bj’n .
neN

Observing that each; ..=lim,_ -\ ,, we again conclude from Proposition 3.7 that

U= lim U, .
neN

Example 4.C: The Harper function harmonic oscillatdn this example and the next, we
review some results from Refs. 11 and 12, and we show how that material can be streamlined
using Proposition 3.7. Recall thaf(R) has an orthonormal basf$; ..:j € N} consisting of the
functionsh; .. :R—C, called theHermite—Gaussians which are given by
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hj -(X)=C;e H;(x),

whereH; is the Hermite polynomial of degrge andC; is a positive real normalization constant.
The continuum harmonic oscillator is defined to be the conservative systém={0m(t):t

e R} whose HamiltonianH., is given by H..y(x)=(—d%dx?*+x?)¢(x), or equivalently,
H.h; .= (2k+1)h; ... Thus

U.(t)h; .= @Dty

Let A be an infinite set of positive integers such that,/n;eZ for all n;,n,e N with n;
=<n,. (At one point in the discussion, we shall make use of this peculiar hypothegi§ but the
assertions probably hold for any infinite s€tof positive integer$.Given an element e V, let
L,, be then-dimensional inner product space consisting of the functibrg’ with periodn. We
realize (£,), as an inductive resolution df?(R) by defining restriction maps rgsS(R)— £,
such that

res,(¢)(X)=(n/2m) " Yp((n/2m) ~12X)

for ¢ e S(R) and X e Z. After Harper® Namias® Pei—YeR and others, we define thdarper

function harmonic oscillator to be the conservative system on £,, with HamiltonianH,, such
that

Hap(X)= %(— Y(X—1)+(4—2 cog2miX/n)) (X)) — (X +1))

for e L, andX e Z. The definition and enumeration of the Harper functi@gg,S1,, ... may
be found in Ref. 3; see also Refs. 11 and 12. The Harper functions comprise an orthonormal basis

for L,,, they are eigenvectors d;fn, and by Ref. 12, Theorem 2.5,
hj’oo: lim :8j,n
neN

for all j e V. (It is here that the peculiar hypothesis Afis used. Combining this result with Ref.

12, Lemmas 3.1 and 3.9, it is easy to show that the eigenvglyeof H,, associated withB;
satisfies

2j+1=1im \j,.
neN
Proposition 3.7 now yields
U= lim U,.
neN

As suggested in Ref. 7, Sec. 3, the peculiar hypothesi§’@an perhaps be relaxed using results
that were not available when Ref. 12 was written.

Example 4.D: The Harper function fractional Fourier transfarm/e continue to use the
notation from Example 4.C. After Namias, tbentinuum FRFT is defined to be the conservative

systemF,,={F"! :te R} such that
'EEth oozezﬂijthj .

As Namias observed, the continuum FRFT and the continuum harmonic oscillator are related by
the equality
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Ow(t) — e—itfi;t/ﬂ' ]

Note thatF'is the usual Fourier transform. Tharper function FRFT comes in two versions,

theimport versionZ,={i,:te R} and thedomesticversionD,={D" :t e R}. The import version,
defined by

- o
Inlgj,n_e 7T”t,Bj,n’

is perhaps rather artificidits eigenvalues being “imported” from the continuum FREFBut it has
the virtue thatt2* is the usual discrete Fourier transform. The domestic version, defined by

On(t):e*itf);t/ﬁ,
has the virtue that it has an explicit Hamiltonian, nameHy, ¢ 1)/2. By Proposition 3.7,

F.=1lim Z,=lim D,.
neN neN

Example 4.E: The Kravchuk function harmonic oscillatdfe retain the notation from Ex-
amples 4.C and 4.D, except that we now/Aébe any set of positive integers. Givare V, let us
write n=2|+ 1, and letX,, be the set consisting of thé such thal + X andl — X are both natural
numbers. We writeL (X,,) to denote then-dimensional inner product space consisting of the
complex-valued functions of, . As in Ref. 7, Secs. 4 and 5, we realizg({,)),, as an inductive
resolution ofL2(R) by defining reg:S(R)—L(X,) such that

res,(4)(X)=1"¢(172X)

for ¢ € S(R) andX e &;,. Recall(or see Ref. 7, Sec,) $hat the Kravchuk functionk; , comprise

an orthonormal basigh; ,:0<j<n—1} for L(&,). The Kravchuk functions are discrete analog

of the Hermite—Gaussians, and arise from a binomial weight function in place of a Gaussian
weight function. By Ref. 7, Theorem 5.1,

hj’m: lim hj,n
neN

for all jeN. After Ref. 14, theKravchuk function harmonic oscillator is defined to be the
conservative systerd,={K,(t):te R} on £, such that

Hn(t)h; = @+ ity .
By Proposition 3.7,

U= lim ICy.
neN

Example 4.F: The Kravchuk function fractional Fourier transforide retain the notation
from the previous three examples, being any infinite set of positive integers. After Ref. 2, the

Kravchuk function FRFT is defined to be the conservative syst@im={F" :te R} such that
'E;hj’n: eZﬂ'ijtijn .
Equivalently, 7, may be defined by

Kn(t)y=e "F V7.
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By Proposition 3.7,

Fo=lim F,.
neN

Comment: Advantages of the Kravchuk function FRFT over the Harper function .HRFT
applications of the Harper function FRFT, one must select either the import version, whose
eigenvalues are integer powersef', but whose Hamiltonian is not known explicitly, or else
one must select the domestic version, whose HamiItoniaIﬁ,;s—(l)/Z, but whose eigenvalues are
not known explicitly. Either way, the eigenvectors—the Harper functions—Ilack a known explicit
formula, and have to be calculated numerically. The eigenvectors of the Kravchuk function FRFT
F, are integer powers @™, As can be gleaned from Refs. 2 and 5, the HamiltonianAphas
a very simple description in terms of thedimensional irreducible representation of the Lie
algebra su(2)see also Ref. ¥ The eigenvectors af,,—the Kravchuk functions—are given by a
complicated but explicit formula.

V. SOME QUESTIONS AND REMARKS ON CONVERGENCE OF SPECTRA

An alternative description of a conservative system is provided by the spectral measure asso-
ciated with the Hamiltonian. Throughout this section, we consider conservative syétems
={U0.(t):teR} on £, andif,={U,(t):te R} on each’,. LetH., andH, be the Hamiltonians
for U,, andU,,, respectively. iU, =lim, .U, how is the spectral measure for the Hermitian
operatorH,, related to the spectral measure for the operat®y® Or, more simply, how is the
spectruma(H..) (or the essential or residual spectiuralated to the spectra(H,)?

On the one hand, it would be desirable to have techniques for investigating the spémtrum
spectral measuy®f an infinite-dimensional system by examining limiting properties of the spec-
tra of finite-dimensional approximations. On the other hand, finite-dimensional systems are them-
selves of interesi{As a vague principle, any closed system of finite extent in space can have only
finitely many independent nondecaying statésnite-dimensional systems are not always more
amenable than infinite-dimensional systefuifference equations often have richer solutions than
their analogous differential equatiopgn connection with example 4.E, it is worth remembering
that De Moivre, having established the correspondence between the Gaussian distribution and the
binomial distribution, then employed the Gaussian as an approximation to the binomial. Con-
tinuum approximation to discrete phenomena has pervaded statistical techniques ever since. Itis to
be expected that results relatingH..) and o(H,) could be usefully applied in either direction.

As regards practical methods for relating the spectra of discrete and continuum systems, the
results in this article are simply not in competition with those in Ref. 8. We do not know whether
or not their results can be extended to our more general coritegzhould be mentioned that the
examples considered in Sec. 4 are all, essentially, in the situation they congidémdbllowing
result indictates that the questions above do have answers, and that our approach can be developed
to yield alternative and more general methods.

Proposition 5.1: Suppose that, = lim, 4, . Suppose also that Hand each’H are bounded,
and that the normgH,| are bounded. Then every pointe o(H,) is the limit A\=lim,\, of
pointsh, e a(l3|n).

Proof: The condition\ € o(H..) is equivalent to the condition that there exists a sequence
() Of vectors inL.. such that|¢|=1 and|(H.—\)@|—0 asm—ow (see, for instance,

Ref. 15, Theorem 5.10SinceS is dense inC.., we may insist that eacth,,e S. Let e>0, and fix

m such thaf|(H..— \) ¢,,||< e/2. By Proposition 3.3, the convergence hypothesia{oiis equiva-
lent to the condition thatd..=lim,H,. Noting that lim,|res,(¢m)|=1, and putting ¢,
=res,(dm)/|Ires(bm)ll, we have|(H,—\),||<e for sufficiently largen. By a well-known

criterion for existence of spectral points in an intersée Ref. 12, Theorem 5,9%(H,) N[\
—eNte]#T. O
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Corollary 5.2: In the situation of Proposition 5.1, suppose that the lirits, »,, of points
une o(H,) comprise a discrete subset Bf Then H, is diagonalizable O

It seems probable that the boundedness condition in Proposition 5.1 can be removed by using
a refinement of the argumerdnd the rider to Stone’s theorem as recorded in Ref. 9, Theorem
13.1). A more systematic option would be to wait for that to become a corollary of a result
expressing the conditiotd,,=lim, 4, in terms of the spectral measures. We end with a few

comments in this direction. Consider an intervah R. Write | and° for the closure and the
interior. LetE, .. andE, , be the corresponding projectionsfo and £, associated withd., and
‘H, . To see that convergence of the sequerﬂt@),( does not imply convergence of the sequence
(Ein)n, leta be an end-point of, and letH,=(a+(—2)"1.

Question 5.A: Are the following conditions equivalent?

1) U.=lim,U,.
(2) If yo=limp ¢y with ¢, € E| 1L, theny. e E| L.,
) If g.=limy o, with .. € EI",an and H‘pocnzlimn ”lﬂn”v thenlim, ||(1_El,n) lﬁn”:O.
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