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Trapped interacting Bose gas in nonextensive statistical mechanics
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We study the Bose-Einstein condensati@f&C) phenomenon in an interacting trapped Bose gas using the
semiclassical two-fluid model and nonextensive statistical mechanics. The effects of nonextensivity character-
ized by a parameter are explored by calculating the temperature dependent thermodynamic properties, fraction
of condensed particles, and density distributions of condensed and thermal components of the system. It is
found that nonextensivity in the underlying statistical mechanics may have large effects on the BEC transition

temperature.
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[. INTRODUCTION interacting Bose gas at zero temperature within the Tsallis

statistics has been made by &aal. [13].

The nonextensive statistical mechanics introduced by The purpose of the present paper is to study the effects of
Tsallis[1] is a field of great interest with many applications. nonextensivity on an interacting system of trapped bosons.
In this formulation of statistical mechanics the nonextensivero this end we use the two-fluid model of interacting bosons
entropy is defined a§,=(kg/q—1)(1—=;pf) in terms of  at finite temperature developed by Minguetial.[14]. Here
the probabilities; for the ensemble to be in the statendq ~ the Bose system is considered to be composed of a conden-
is the so-called nonextensivity parametég (s the Boltz-  sate and a thermal com_ponent bglow the BEC temperature.
mann constant The basic property of entropf, is its non- The noncondensed particles .makmg. up the thermal compo-
additivity from which a host of interesting thermodynamic nent are assumed to be noninteracting except that they feel
and statistical mechanical results follow. The standard resultan effective interaction through the external potential and the
in Boltzmann-Gibbs statistics are recovered in the limit asresence of the condensate. The atoms in the condensate
g—1. The Tsallis approach to statistical mechanics havénteract through a two-body contact potential modeled in
found various applications ranging from’\be”ke anoma- terms of thes-wave scattering length. Thus, the approach we
lous diffusion[2] to relaxation through electron-phonon in- take includes interaction effects and we seek to explore the
teraction[3]. The generalized distribution functions pertinent interplay between the nonextensivity and interactions. Simi-
to classical and quantum systems in this context were studid@’ two-fluid approache$15,16 are gaining attention be-
by a number of authorigt—8]. cause of their simple and intuitive content. Other applica-

The successful observation of Bose-Einstein condensatiofions [17,18 employing the two-fluid model have
(BEC) in externally confined atomic vapoif®] has also successfully described the two-dimensional systems. Treat-
stirred a great deal of interest in the study of interactingnd the nonextensivity parametgras an adjustable param-
boson systems. The ground-state static and dynamic propegter, we calculate the thermodynamic properties of the sys-
ties and thermodynamics of condensates are extensively ifem as a function of temperature. We find that there are
vestigated and the essential results are compiled in a numbgignificant differences in the chemical potential, internal en-
of review articleq10]. Experimental results of the tempera- €rgy, and fraction of atoms in the condensate compared to
ture dependence of the fraction of atoms in the Condensatg']e standard results brought about by nonextensive statistics.
the density distribution of condensed and noncondensed at- The rest of the paper is organized as follows. In Sec. Il we
oms provide a testing ground for many-body calculations orputline the two-fluid model and approximations to calculate
these quantum systems. the thermodynamic quantities in an interacting, trapped sys-

Recently, SalasnicL1] considered the BEC phenomenon tem of bosons. The effects of nonextensive statistics are in-
in trapped noninteracting systems within the nonextensiv&orporated through the nonextensive BE distribution func-
statistical mechanics. He employed an approximate form ofion. In Sec. Ill we present our results to highlight the effects
the nonextensive BE distribution function to calculate theof nonextensivity in an interacting system. We conclude with
BEC transition temperature and other thermodynamic quar@ brief summary.
tities. Fa and LenZi12] reexamined the same problem with-
out resorting to approximations to the nonextensive BE dis-
tribution function and found considerable differences. The
aforementioned works studied noninteracting system of The ground-state properties of a condensed system of in-
trapped bosons. However, for the current atomic vapors oferacting bosons at zero temperature are described by the
interest, although being in the dilute gas regime, the interaccross-Pitaevski(GP) equation[19]. At finite temperature
tion effects are very important. Most thermodynamic proper-the interaction of condensed patrticles with those that are not
ties are understood by introducing an effective interactioralso have to be taken into account. Within the mean-field
coupling expressed in term of treewave scattering length theory the condensate is described by the Gross-Pitaevskii
and within a mean-field approach. An attempt to understanéquation supplemented by the presence of thermal particles

Il. MODEL AND THEORY
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In the aboveg=4#ia/m is the coupling constant with
the swave scattering lengthVe,(r) =mw?r?/2 is the har-
monic confining potential for isotropic traps, ang(r) is the
density of the thermal particlee.>0 signifies short-range
repulsive interactions between the atomsis the chemical

potential to be determined from the knowledge of the total

number of particles

N=No+f dep(e)(n(e)), @

where Ng= [d ¢2(r) is the number of condensed atoms
p(e€) is the density of states, adah(e€)) is the distribution
function for bosons. We treat the noncondensed particles
noninteracting bosons in an effective potenfi20] V«(r)
=Vey(r) +2gn(r) +2g42(r), and calculate the semiclassi-
cal density of states using

B (2m)3/2

- 47°H3

p(e) 3

j dgl’\/e—Veﬁ(l’).
Ves(r)<e

Becausé/«(r) depends ony?(r) andn+(r) and they in turn
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for ©<<0. Note that the density of states expressions we use
include u that originates fromVex(r) [c.f. Eq. (3)]. © em-
bodies the interaction effects. More simplified formsp¢)
were used by Salasnidil] and Fa and LenZil2] in their
treatment of a noninteracting system.
If we use the standard Bose-Einstein distribution function

rat temperatureT, (n(e))=[expB(e—w)—1]"%, with B
=1/kgT, we recover results obtained by Minguzetial.[14].

3h the nonextensive statistical mechanics of Tsallis, the BE
distribution function is given by1,4]

1
(1A= (e— )0 I-1

whereq is a parameter signifying the nonextensivity of the
system. A-j—1, (n(e))q goes over to the standard Bose-
Einstein distribution function. Foq close to unity, i.e., the
nonextensivity is weak, a Taylor expansion o< 1) to first

(n(e))q ®

depend onVeg(r), the above set of equations have to begqer yields
solved self-consistently. Rather than going through a fully
numerical solution of the above set of equations we make

some simplifying assumptions to treat the interactions pertur- (n(e)),~

batively. Such an approximate scheifigl] works remark-

ably well to reproduce the fully self-consistent results, thus,

we are motivated to employ the simpler approach.
We now introduce the simplifications and approximation

to enable us to calculate various thermodynamic propertie
and density distribution of the condensed and thermal pa
ticles in the system perturbatively. First, the Thomas-Ferm

(TF) approximation gives

PA(r)

1
gttt Ved ) =29 ]0(1 = Vex—2gnr), (4)

where 6(x) is the unit step function. The TF approximation
neglects the kinetic energy term in Eq) compared to the
interactions and is known to be reliable exceptTarlose to
the BEC transition temperatuf@1]. Next, we consider the
situation to zero order igny that yields
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sAs we have noted, Salasni€hl] used the approximate form

f the BE distribution function in the nonextensive statistics
r:;md found a marked difference in the BEC transition tem-
Perature compared to the ordinary case. Fa and Lei#i
pointed out the importance of using the exact nonextensive
BE distribution function by demonstrating deviations as
|g—1] becomes large. We, thus, use the full distribution
function given in Eq.8) in our subsequent calculations for
an interacting system of bosons.

Ill. RESULTS AND DISCUSSION

We have calculated the thermodynamic properties of a
trapped interacting Bose gas in the two-fluid model, by treat-
ing the parametegn; to zero order as set out in the previous
section. We take the various physical parameters to be used
in the numerical calculation from the experimental work of
Ensheret al. [22] on a gas of®’Rb atoms. We take/ayo
=0.0062 for thesswave scattering length describing interac-
tion effects, where,o=(%/mw)*? is the harmonic oscilla-
tor length. For simplicity we assume an isotropic harmonic

for the number of condensed particles. The density of statesscillator well for the trapping potential. In the temperature
within the same approximation is obtained to[ld] dependent thermodynamic quantities we use the scale set by
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FIG. 1. The chemical potential of the interacting, trapped Bose
gas as a function of temperature. The solid line indicatesalcu- 1.0 — T T
lated using the standard BE distribution function. The dotted and I ]
long dashed lines below the solid line are for nonextensive statistics L (b)
with q=1.1 andg= 1.05, respectively. The short dashed and dash- 08 .
dotted lines above the solid line are also for nonextensive statistics I ]
with q=0.9 andg=0.95, respectively. - .
0.6 - —
the transition temperature of a noninteracting bosons in a i i |
harmonic trapkgTo=% w(N/Z(3))"3, where{(3)~1.202 is = L .
the Riemann zeta function. 04 ]
The chemical potentigk as calculated from Eq2) for a - .
system ofN=10® particles and various values of the nonex- o2 - \ ]
tensivity parameteq is illustrated in Fig. 1. We find that L N T
there are significant differences between ¢rel (standard r AN
. . . . . I \ h
BE distribution and q#1 cases especially at higher tem- polo b v by v b b NN
peraturesT ~ T,. At very low temperatures, the nonextensiv- 06 02 04 06 08 10 12

ity does not appear to be important. This is because the T

change in the form of the excited state populations due 0 £ 5 (a) The fraction of particles in the condensate as a func-
nonextensive statisticsEq. (8) or (9)] is negligible at low  tjon of temperature. The thin solid line is for a trapped noninteract-
temperatures. Foy<1, we have used an upper cut@{e  ng system. The thick solid line i, /N calculated using the stan-
—wp)<1/(1-q) in the nonextensive distribution function dard BE distribution function. The dotted and dashed lines are for
(n(€))q- The energy cutoff fog<1 naturally arises from nonextensive statistics witg=1.1 andq=1.05, respectively(b)
the constraints imposed on internal energy as discussed Imhe fraction of particles in the condensate as a function of tempera-
Tsallis et al. [23]. It has been used in the previous calcula-ture. The thin solid line is for a trapped noninteracting system. The
tions [11,12 on BEC for noninteracting systems. In this thick solid line isNy/N calculated using the standard BE distribu-
case, the chemical potential decreases more rapidly than tiien function. The short dashed and dash-dotted lines are for non-
g=1 case, therefore, the critical temperatiiteat whichy ~ extensive statistics withj=0.9 andg=0.95, respectively.
becomes zero is lower thar,.

Figure 2 shows the temperature dependence of the con- The changes ofhly/N and T, due to nonextensive statis-
densate fractioi, /N for various values of the nonextensiv- tics follow directly from Eq.(8) or (9). Clearly, forq>1, the
ity parameterg. In Fig. 2a) we concentrate on thg>1  population of an excited statéor a givenT and) is higher
case. As a consequence of the behavior of the chemical pthan for the extensive statisticg€ 1). Thus, the condensate
tential the condensate fractidw, /N decreases more rapidly will vanish more rapidly leading to a loweréd. . Similarly,
than the standard BE distribution result. We can clearly seéor <1, the population of an excited state is lower than for
the decreasing of critical temperatufe as a result of non- theq=1 case, resulting in an increaség. Our calculations
extensive statistics. Also plotted is the expression for theprovide quantitative information based on these observa-
condensate fraction of a noninteracting Bose gas in a hations.
monic trap,Ny/N=1—(T/To)3. In Fig. 2b) we show our Having calculated the temperature dependence of the
results forg<1. In this case, the condensate fraction staysiumber of particles in the condensate, we now turn to the
above the result using the standard BE distribution functiondensity profiles of the condensed and noncondensed par-
Consequently, the BEC transition temperatdieis larger ticles. The density of condensed atoms is simply given by
than that for standard BE distribution function. no(r)=(r)?. For the thermalnoncondensedparticles in
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FIG. 4. The average internal energy of a trapped Bose gas per
2 e L o oy o s e e o e particle as a function of temperature. The solid line indicdEes
(b) calculated with the standard BE distribution function. The dashed
and dash-dotted lines are for nonextensive statistics wit.05
andg=0.95, respectively.

15

T/T,=0.95 .
/To Here we use the previously calculated values wofand

Ver(r) to obtainnt(r). Our results for the density profiles of
condensed and noncondensed particles are depicted in Fig. 3.
In Fig. 3@ we showny(r) andn(r) for q=1.1, g=1
(Boltzmann-Gibbs statistigsand q=0.9 at T=0.8T, in a
system ofN=10® particles. Forg=1.1, the system is close
to the BEC transition temperature, therefore, the condensate
is rather small. Consequently the thermal component is quite
—_ sizeable compared to the condensate. ¢®10.9, the con-
o L TN, A T T e densate is larger than that in the standard calculation with
1 2 3 4 ordinary BE distribution function. In all cases, the density
r/ay, distribution of thermal particlea(r) makes a peak around
the region where the condensate vanishes, and it extends out
(solid lineg and noncondenseni(r) (dashed linesparticles as a E%Lirga?_?fgg%?i Xl It:rll?é(?()ar\;vgesrztt):\rlethceogggﬁggtglsctga%o-

function of the radial distance &t=0.8T,. The thick lines corre- tfora=1.1h Iready di d. Th t bevi
spond to the calculation using the standard BE distribution function €Mt forq= 1.1 nas aiready disappeared. Ine system obeying

The thin lines are for nonextensive statistics. The smaller condert® Usual Boltzmann-Gibbs statisticg=1) is close to the
sate and the corresponding thermal cloud iscferl.1, whereas the transition temperature. We plato(r) and nr(r) for q=1
larger condensate and corresponding thermal cloud i5jf00.9.  andq=0.95 cases only. Whem<1, we have used energy or
(b) The density distributions of the condenseg(r) (solid line9 momentum cutoffs mentioned earlier in the calculation of
and noncondensen(r) (dashed linesparticles as a function of density distributions. From the knowledge of configuration
the radial distance &=0.95T,. The thick lines correspond to the Space distributions we can calculate the momentum distribu-
calculation using the standard BE distribution function. The thintions by Fourier transformation. The examples we have
lines are for nonextensive statistics wigl=0.9. shown indicate measurable differences in the density profiles
of condensed and thermal components of the interacting
Bose gas due to nonextensive statistics. These quantities are
amenable to experimental observations, thus, analysis in
terms of nonextensivity should be possible.

We have also calculated the internal energy of the system
using

/

/
[

[=]

FIG. 3. (&8 The density distributions of the condenseg(r)

keeping with the noninteracting bosons in an effective poten
tial picture, we use

1
nT(r): (th) §f d3p

) = J:desp(exn(e))q a

X :
_ 2 _ — U(g-1)_
[1+B(q—1)(p72Mm—Ven(r) — p)] 1 within the nonextensive statistics. From the knowledge of
(20 E(N,T) the specific heat,, and other thermodynamic prop-
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erties of the system can be calculated. Figure 4 displays thextensivity is characterized by a parameter in the Bose-
energy per particle as a function of temperature. We observEinstein distribution function. We have calculated the ther-
that influence of nonextensive statistics becomes more vigsnodynamic properties, condensate fraction, and density
ible at higher temperatures. distributions of condensed and thermal particles to compare
We have reported our calculations of the effects of nonthe differences between nonextensive statistics and the stan-
extensivity on the thermodynamics of an interacting trappedjard one. Our results indicate small deviations from ordinary
system of bosons, treating the nonextensivity parampé&  BE statistics may result in large changes in the BEC transi-
adjustable. There has been attempts at relading the un-  tjon temperature for interacting systems. There may be sev-
derlying dynamics of the systef@a4]. It has been argued that gg| possible directions for future calculations. The effects of
the value ofq for a specific system is mainly controlled by nonextensivity may be further explored in systems of lower
the range of interactions. From our calculations shown iryimensionalities, as recent experiments are getting to be per-
Fig. 2, it appears thag>1 emulates the behavior of inter- formed in two and one-dimensional condensates. Our calcu-
acting system of bosons in a trap potential. This is becausgtions may easily be extended to account for asymmetric
experimental results indicate a lowering f [22]. These  trapping potentials. Finally, the behavior of trapped Fermi

changes inT. have been fully accounted for by repulsive gases may also be investigated within nonextensive statisti-
interactions and finite size effects. At the same time, in theiicg] mechanics.

variational approach to solve the GP equation at zero tem-
perature within nonextensive statistics, &gaal. [13] have

usedq<1 for r_epulsive_ interactio_ns. It would be desirable to ACKNOWLEDGMENTS
explore the microscopic foundation of the valueggbaram-
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