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Entanglement and the SW2) phase states in atomic systems
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We show that a system ofhZidentical two-level atoms interacting withcavity photons manifests entangle-
ment and that the set of entangled states coincides with the so-call@dBlase states. In particular, violation
of classical realism in terms of the Greenberger-Horne-Zeilinger and Clauser-Horne-Shimoni-Holt conditions
is proved. We discuss a property of entanglement expressed in terms of local measurements. We also show that
generation of entangled states in the atom-photon systems under consideration strongly depends on the choice
of initial conditions and that the parasitic influence of cavity detuning can be compensated through the use of
Kerr medium.
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I. INTRODUCTION number of cavity photons. In particular, the system consid-
ered in Ref[18] corresponds to the phase states of “spin”
It has been recognized that entanglement phenomendgr= 1/2. The SUW2) phase states were introduced in Ré9]
touches on the conceptual problems of reality and locality irfor an arbitrary spin and then generalized in RE29,21] to
quantum physics as well as the more technological aspects tiie case of the S@@) subalgebra in the Weyl-Heisenberg
guantum communications, cryptography, and computing. Iralgebra of photon operato(fr recent review, see Rg22]).
particular, the methods of quantum key distribution in com-From the mathematical point of view, this is the system of
munication channels secured from eavesdropping are based
on the use of entangled stafgls-5] (for recent review, see N=2j+1
Refs.[6,7]). In turn, the realization of quantum compuf&l
is dependent on the ability to form entangled states of ini-qubits defined in the Hilbert space
tially uncorrelated single-particle statg3l.
In recent years, many successful experiments have been Hy=(C?)®N
performed to verify the violation of Bell's inequalities and
Greenberger-Horne-Zeiling¢6GHZ) equality[10,11 and to  with the componentwise action of SU(2)In particular, we
develop the methods of engineered entanglement for quaghow that these states violate the classical realism and dis-
tum cryptography and quantum key distribution. In particu-cuss their realization.
lar, the recent advances in the field of cavity QED and tech- On the other hand, we will discuss a condition of en-
niques of atom manipulation, trapping, and cooling enable aanglement that has been proposed recdi2®j. Let us note
number of experiments that investigate the entanglement im this connection that, in the usual treatment of entangle-
the atomic systemgsee Refs.[11-17 and references ment, the entangled states of a two-compor(@nigeneral,
therein). multicomponent system are considered as the nonseparable
It has been shown recen{l$8] that a pure entangled state states with respect to the subsystemsg., see Ref24]). For
of two atoms can be obtained in an optical resonator througkxample, if the individual components of a two-component
the exchange by a single photon. The main idea in Rl  system are described by the stgig$ and|y;), respectively,
is that a single excitation of the system is either carried by ahe state
photon or shared between the atoms. If a photon can leak out
from the resonator, the absence of photon counts in the pro-
cess of continuous monitoring of the cavity decay can be | endy =2 bil &)@ xi),
associated with the presence of the pure entangled atomic '
state. The importance of this scheme is caused by the fact
that its realization seems to be easily available with present HeN— /o _ s 12—
experimental technique. (€110 =Cxilxd = div. Z Ibi*=1,
The main objective of this paper is to show that the en-
tangled states in the “atoms-plus-photons” systems of th@s entangled ifb;+0 for at least two distinct values of the
type discussed in Refl8] can be represented by the so- subscripti. From the mathematical point of view, the en-
called SU2) phase states corresponding to the®lalgebra  tanglement is caused by the combination of the superposition
of the odd “spin” principle in quantum mechanics with the tensor product
structure of the space of state of the two-component or mul-

. 1jf2n 1 ;)  ticomponent systerfes].
=3 n ' @ Very often, the existence of entanglement is verified in
terms of violation of Bell's inequalities and their generaliza-
where 2h is the even number of atoms ane-1,2, ... isthe tions [26—31. Another way is based on the use of GHZ
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theorem[10]. A possibility to introduce more general in- i.e., by the infinitesimal generators of the algebraZLlt is

equalities is also discuss¢8?2]. now a straightforward matter to check that
It should be noted that the use of Bell's inequalities and _ |
their numerous generalizations demonstrate nothing but the Vil (g.|oMy.)=0, (4)

nonexistence of hidden variables. Moreover, it is possible to o
say that the unique, general, and mathematically correct defivhere averaging is taken over the statds Another ex-
nition of entanglement still does not exig.g., see Ref. ample is provided by the GHZ statgs0]
[32)).
An interesting approach has been proposed recgafly (GHZ)\ _ 1
Considering the state shared between Alice and Bob as a Iz )—E(|e1e2e3>i|g1gzgg>), ®)
guantum communication channel, the authors of R&Z]
concluded that the information in the case of entanglement igorresponding to the maximum atomic excitation in the 3

carried mostly by the correlations between the ends of the. 3 system. It is easily seen that the averaging of the local
channel. These correlations manifest themselves by means gheratorg3) over Eq.(5) gives the same result as Ed).

the local measurements on the sides of the chaia@l This property(4) can be used to define the entangled
Following Ref.[23], consider a composite system defined giates.
in the Hilbert space We will show that the S(2) phase states of spjrdefined
B 0 by Eg. (1) in a (2n+n)-type atom-photon system obey the
H=eRY, |=2. nonseparability conditions, have the propgdy, and mani-

_ fest the violation of classical realism expressed in terms of

Let G be the group of dynamical symmetry of a subsystem iny, GHZ[10] and CHSH(Clauser-Horne-Shimoni-HoIf33]
the composite system. Then the Hermitian operago#sso- -, ditions.

ciated with representation & in H () define the set of local The paper is organized as follows. In Sec. II, we consider

measurement on the corresponding side of the chanr}el P'fhe representation of the $2) phase states. As a particular
V|de2d by a statdy) e 1. For example, in the case 61 example, we examine the system of two identical two-level
= C7, corresponding to the Einstein-Podolsky and Rosenyoms, interacting with a single cavity photon and show that
(EPR spin-; system,G=SU(2) and the set of local mea- the maximum entangled atomic states of the RE§] belong
surements can be specified by the infinitesimal generators @f the class of the S(2) phase states of spin=1/2. Let us

the SL(2) group stress that hereafter the maximum entanglement is defined in
o _ the usual way by the maximum of reduced entrépy., see
{g}={ox’}, k=123, Refs.[23,25,27,3D. Then, we generalize this result on the
o o case of 21+ n system. As a nontrivial example, we consider
which is the complexification of the 3B) group. in Sec. Il the system of four identical two-level atoms inter-

It was shown in Ref[23] that the maximum correlation  4cting with the two cavity photons. In this case, the set of
between the ends of the channel corresponds to the statggiangled, maximum excited atomic states is provided by the
such that six orthogonal S(R) phase states of spif=5/2. For these

states, we prove violation of classical realism through the use
Vg, (9)=0. of GHZ and CHSH conditions. In Sec. IV, we discuss how

. , the entangled atomic states can be achieved in the process of
This statement can be illustrated by the atoms-plus-photongeady-state evolution. In particular, we show that the maxi-
systems under consideration. Consider first the set of tW@,,m entanglement can be achieved if the initial state of the
identical two-level atoms. Lefe;) and|[g;) denote the ex- system contains the photons and does not contain the atomic
cited and the ground atomic states of Ilﬁ*é'atom, reSPec- excitations. We also show that the presence of the cavity
tively. Then, the entangled, maximum excited atomic stategetyning hampers the creation of pure entangled states and
in the system “2 atoms plus 1 photon” considered in Ref.ihat the parasitic influence of detuning can be compensated
[18] are through the use of the Kerr medium inside the cavity. Finally,

in Sec. V, we briefly discuss the obtained results.
1
= +
=) \/§(|6ng>_ [9:€2)).- @ Il. REPRESENTATION OF THE SU (2) PHASE STATES
An arbitrary spinj can be described by the generators

Then, the local measurememtan be described by the Pauli 3..J_ .3, of the SU2) algebra such that

matrices

+.J-1=23,, 2= ]=Fds,
o= le(al+ g (e, [ d-1=20z Lz e )=

. . =22+ 1(3,.3_+3_3)=j(j+1)x1, 6
o) =—ile(gl+ilg)(el, 220 $=10+D) ©
0 wherel is the unit operator in the (2-1)-dimensional Hil-
oy’ =le)el—laal, () bert space. Since
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Jo=3,%id,,

it is possible to say that the generatdrs,J_ ,J, in Eq. (6)
correspond to the Cartesian representation of the2Salge-

bra. Following Ref[19], one can introduce the representa-
tion in spherical coordinates via the polar decomposition o

Eq. (6) of the form

+

JJr:\]rey \]r:\]r+y _1! (7)
where the Hermitian operatal, corresponds to the radial
contribution, whitee gives the exponential of the azimuthal
phase operator. It is a straightforward matter to show &hat
can be represented by the followingj(21)X (2j+1) ma-

trix:

€€

0 0
0 0
€= : A (8)
0O 0 0 O 1
e’ 0 00 0

in the (2] +1)-dimensional Hilbert space. Heteis an arbi-
trary real parametegireference phageThe eigenstates of the
operator(8)

dey=e o), n=1,...(2j+1), (9
form the basis of the so-called phase states
1 2 0
(1)y = eik¢n’ 10

dual with respect to the basis of individual stajteg) of the
Hilbert space.

As a physical example of some considerable interest, con-
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1 )
|p)= E(|9192>+el¢1|9192>): (14)

b= yl2+ (15 1) 7/2.

fIt is easily seen that the phase staféd) form the set of

entangled atomic states in the two-atom system under con-
sideration. Definitely, these states obey the nonseparability
condition. It is also seen that E@l4) coincides with the
maximally entangled statg®) of Ref.[18] when the refer-
ence phasg/=0.

Consider now a generain2-n system an=1. Then, the
maximum excited atomic states

|‘/’i>:|{e}n 1{g}n>a

can be used to construct a representation of th€25alge-
bra (6) of spinj defined in Eq(1). Herei=1,2,... N and

2n
n
is the total number of such a states. In the bé&Ei, we can
construct the polar decomposition of the @WUalgebra of
spin (1) and the corresponding exponential of the phase op-

erator(8) and the phase staté0). Let us rename the states
(15) as follows:

[0 — i),
Then, the SR) phase state€l0) take the form

(15

N=2j+1=

k'=k—1=0,... N—-1.

N—-1

1 ik’
| )= \/_N : e yn), (16)
=0

where

¢ = (p+2k)IN.

sider now the system of the two identical two-level atom

interacting with the single cavity photoisee Ref[18]). If

These state§l6) form a basis dual with respect to E@.5)

the cavity photon is absorbed by either atom, the atomignd spanning the Hilbert space of the maximum excited

subsystem can be observed in the following states

lg1)=]€192), |¥2)=19:1€2),

where|e;g,) =|e;)®|g,) and|e) and|g) denote the excited

(11)

and ground atomic states, respectively. The subscript mar

the atom. Using the atomic baditl), we can construct the

following representation of the SB) algebra:
Ji=le19:)(9:65], J_=|g1e)(e19,,

J3=7 (|e1092)(e192| —|g1e2)(g1€5])- (12

This representation formally corresponds to E§). at the

spin j=1/2. Then, the corresponding exponential of the

phase operatoB) takes the form
e=]e19,)(g18,| +e'’|g;e;)(e19,|. (13

In turn, the phase staté9) and(10) are

atomic states in therg+n system under consideration. By
construction, the phase statgd$) are nonseparable with re-
spect to contributions of individual atoms and thus entangled
[24]. Let us stress that the choice of the phase factors in Eq.
16) is irrelevant to entanglement, which holds for arbitrary
phase factors. This choice is caused by the aspiration for
getting the dual with respect to basib) of entangled states.

It is easily seen that the statéi6) obey the conditiori4).
In fact, the action of the flip operators!’} in Eq. (3) on the
states(16) leads to the change of the number of either ex-
cited or deexcited atoms:

He}n—l !{g}n+1>r| € {g}
Hetn+1dghn-1) e{e}

and therefore(a{))=0 in the case of averaging over the
states(16). Since each statél5) contains equal number of
excited and deexcited atoms, the action of the parity operator
in Eq. (3) on the phase stat€46) should lead to the state

‘T(ll,)ﬂ h)—
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that differs from Eq(16) by the multiplication of a certain . THE 4 +2 SYSTEM

terms by the factor of-1. Hence To show that the phase stat€k) of a 2n+n system

N/2 N violate the classical realism, consider the system of four
(I — E Si1- > 1]=0 identical two-level atoms interacting with two cavity pho-
(o3’)= ) . ; ; ;
N\iZ1 =l tons. The maximum excited atomic state1at2 are

By constructionN is always an even number.

Thus, the S(R) phase statel6), corresponding to the €1620304),  |€102€304),  [€19203€4),
maximum excited atomic states in then2n system, are
entangled because they are nonseparable and, at the same
time, obey the conditiori4) for the local measurements. In |91€28504),  [91€203€4),  |9192€5€4). (19)
the following section, we show that the staté$) manifest

violation of classical realism as well. These orthonormal states form the six-dimensional basis of

Before we begin to discuss this subject, let us note that thg,e Hjlhert space in which the representation of the genera-
SU(2) phase states of the atomic system under consideratigp, ¢ (6) has the form

with integer spin do not provide the entanglement. Consider
as an example the system of three identical two-level atoms,
interacting with a single cavity photon. There are the threej, = \/5/e;e,050,)(€19,€304 + V8|€10,304)(€10,93€4|
excited atomic states
+3|€10203€4)(9182€304| + \/§|91926394><91929394|

e , €,03), e (17)
le19203), [91€,93), |9192€3) +\/g|glezgge4><glgzeBe4|'

and the three dual phase states of the type as shown in Eq.
(16)
J3=35]€1€,0304)(€1€,0304] + 3]€10,8304)(€19,€304]

1 . )
)= E (|e19,03) + €' g e,03) + €% %4 g;19,e3)). + 7 |€10203€4)(€10203€4] — 7 191€2€304)(91€2€594]
(18 — 3 191€203€4)(91€203€4| — 5 [9192€3€4)(9192€3€4].

It is clear that the statedl8) are the phase states of sgin _ _ i
=1. Here By construction, they describe the spjr-5/2 system. In

turn, the exponential of the phase operd®rtakes the form
¢=(p+2km)/3, k=0,1,2.

. . =|e.e €10,€304| +|e10.e e e
It is easily seen that the phase stat® cannot be factor-  © |1829304)(€192€304| + |€1028:04)(€1020:€4
ized with respect to atoms. At the same time, the average of  +|e,0,03€4)(01€,€304] +|g1€,€304)(01€,03€4]

the parity operatorr{) in Eq. (3) over the state18) is .
° +191€,03€4)(0192€3€4] + €'7|g10,€384)(€1€2037,|.

1
vk, Dlgy=—=,
(ol o5’ 9 3 Then, the six phase staté8) have the form(16) with N

=6 and
although the averages of the flip operators are

[

Vil (o g =0. ¢k:%+ k?w k=01, ... 5. (20)
Thus, the nonseparable staté8) do not obey the condition
(4). At the same time, these states do not manifest the maxi- I for Ea.(16). th bl d
mum entanglement as well. Let us stress that the nonsep.eu’l‘%{-S Well as orl dq.( d), kt) esehstatesdgre r]:onTepa}ra € an
bility is not a sufficient condition of maximum entanglement glnce entangled and obey the conditidh for local vari-
[24]. For example, from the measurement of the state of th&9'es- . .
first atom we can only learn that either the atoms 2 and 3 are To show Fhat these phase states violate thg classical real-
both in the ground state with reliability or they are in the :sm., let us first represent the staid$) at N=6 in the fol-
two-atom entangled state of the type discussed in R&i. owing way
Similar result can be obtained for the system of three atoms
interacting with two cavity photons. The only maximum en- 1
tangled state of the system of three atoms is provided by the = 1 el bk + @2k (21
superposition of GHZ statg$). |4 \/§ X X2 1X30)
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where 4
IT m{P=1. (25)
=1

1 )
|x10 = —=(|e1629304) + € | g19,€584)),
w \/E 1820504) 10263%4) At the same time, it follows from Eq24) that

0o Po o oo ot

1 )
Ix20)= —=(|91826394) +€% 4 e10,03e4)),
V2 x[oNoP P (V]| x100= ~|x10)-

1 ' Employing the classical variables instead of the local opera-
|X31) = E(|gle293e4>+e'¢k|elgzegg4>). (22)  tors allows this to be cast into the form

(133m(2)  M2)Y2m(3) (M3 2m4) midh2 - _
It is easily seen that each set of six staiggy) with p (i) ma(ms)"m(mg ™) ms (m2 ™) L
=1,2,3 andk=0,...,5consists of the nonseparable and Since {")?=(m{’)?=1, we get an equivalent equality
hence entangled states. Consider, for example, the states
|x1) in Eq. (22). Because of the definition of the phase mBPmPmPm{H=—1,
angle ¢, at N=6, they consist of the three sets of the pair- _ _
wise orthogonal states which contradicts Eq(25). Hence, the stateyo) in Eq.(22)
obey the GHZ theorem. Similar result can be obtained for all
{Ix101x139}  {x1)slxw}h  {Ixi2.lxs}- other states in E(22) and hence, for the phase stat@g).
Our consideration so far have applied to the local mea-
Itis also seen that the second and third sets here are obtaing@rements touching on a single atom. We now note that the
from the first set by the successive rotations of the referencghase state€21) allow another kind of entanglement in the
frame. o _ _ case of pairwise measurement. Consider again the |staje
Now the violation of classical realism can be provediy Eq. (22) and assume that the measurementsdb cor-
through the use of the GHZ theordt0]. Consider first the  responds to a pair of atoms:
state| x10) in Eq. (22). It is easy to verify that this state obey

the following conditions: a=Cos0;|e;6;)(e16;] +5inf,(|e1€,)(9192| +19192)
Vil ®,00x10=x10 (23 X (e1€,]) —€0S6,/9192)(9192|,
and b=costy,|e3es)(e3eq| + Sin Oy(|€3€4)(9394| +9594)
Vo@D 10 = — X109 x(€3e4|) — COSOy|9394)(g3al- (26)

1) (2) (3) (4)| V= |x10) Assume now that we make the two measuremardsda’
T2 02701701 IX100 T T X0 with the anglesd; =7 and 6,= =/2 and the two more mea-
surementd andb’ with the anglesd)= — 6,,, respectively.

010301705 10 =xa0), Then, the averaging over the stdiigo) gives

oD ooV x10=|x10), (ab)y=(ab’)=cos#,, (a'b)y=sing,=—(a’b’).
o DaP oo™ x10=x10), Employing the CHSH inequalit}33]

oD@ @ y10 = x10)- (24) [(ab)+(a’b)+(a’b’y—(ab’)|<2 (27

Itis possible to say that these equalitig) and(24) express ~ then gives

a kind of EPR *“action at distance” in the maximum excited
states of the system of four atoms interacting with two pho-
tons. In other words, the correlations represented by Edsyiolation of this inequality and hence, of the classical real-
(23) and (24) permit us to determine in a unique way the jsm occurs at small negativ&,, when we can put
state of the fourth atom via measurement of the states of
other three atoms. |cosf,—sin | ~1+]6,|>1.

The operator equalitie®3) and (24) can be used to ob- ) ) .
tain the relations similar to those in the GHZ theorem. Fol-Similar consideration can be done for all states in &)

lowing Ref.[10], we have to assign the classical quantitiesthrough the use of proper pairwise measurements. At the
mi(I) to the local operators. Here same time, the phase statgd) do not manifest entangle-

ment with respect to the pairwise measurements.

|cos,—sin 6| <1.

m’ m{=+1. The phase statd46) for the 6+3,8+4, . .. systems, cor-
responding to the spifl) equal to 19/2,69/2 . ., respec-
Then, it follows from Eq.(23) that tively, can be considered as above.
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IV. INITIAL CONDITIONS AND ATOMIC where|- - -),, denotes the states of the cavity field. The co-
ENTANGLEMENT efficientsC..(t) and C(t) in Eq. (30) are completely deter-
mined by the initial conditions and the normalization condi-

It is clear that the evolution of ther2-n system strongly ..
. o . tion.
depends on the choice of initial conditions. To trace the It is easily seen that the stale_)®|0), is the eigen-
proper choice leading to the atomic entanglement, let us ig- y seen N ph 9
; tate of the Hamiltonia29). Hence, at

nore the relaxation processes. Then, the steady-state evols

tion of the 2h+ n system under consideration is governed by C_(0)=1, C,(0)=C(0)=0
the Hamiltonian - o '

the atomic phase state ) in Eq. (14) provides the station-
—Ant + + ary, maximum entangled atomic state in the system under
H=Aa%atwolt 7/2| (Rrata’Ry). 28 consideratiorf18]. At the same time, it is not very clear how
to prepare such a state.
Here A is the cavity detuningw, is the atomic transition Therefore we consider a more realistic initial state pro-
frequency,y is the atom-field coupling constant, and opera-vided by excitation of either atom, while the cavity field is in
torsa anda* describe the cavity photons, the vacuum state. To realize such a state, we can assume, for
example, that one of the atorfigitially deexcited is trapped
in the cavity, while the second atofimitially excited) slowly
passes through the cavity like in the experiments discussed in
Refs.[14,15. assume for definiteness that

|W(0))=[€192)®|0)pn. (31)

Then, the coefficients of the wave functi@B0) take the

N:a+a+2| |e|><e||®|r$|1(l),

and the atomic operators are defined as follows:
R =le)(gil® 4107

Here 1) denotes the unit operator in the two-dimensional "™
Hilbert space of thé!" atom. It is seen thgt\;H]=0. It is 1
also seen that the atomic operators are similar, in a certain _ T a-iwgt
C_(t) e ,
sense, to the local operatdi®. In fact
R:_U(ll)iio'(zl) 1 iA i(wg+A/2)t
[ = . = —gj —Hwg
2 C.(b) NA coq Ot)+ ZQsm(Qt) e ,
Consider first the case of two atoms and single cavity .
photon wher = 1,2 and the Hamiltoniaf28) coincides with - _ 'y —i(wg+AR2)ta;
S C(t) e sin(Qt),
that of Ref.[18]. For simplicity, we use here the same cou- Q
pling constanty for both atoms. Our consideration can easily ) 9 1/2 ] ] o
be generalized on the case of coupling constant depending d¥rereQ=[2y"+(A/2)7]"* At first site, the probabilities
the atomic position. Let us note that, in the case of only two _ 5 2
atoms, the Hamiltoniaf28) can be represented as follows Pi(t)_|<O|Ph®<¢PmW(t)>| =|C.(v)]

to observe the stated4) corresponding to the maximum

—Aat + +
H—H,=Aa"atwoNy+7V2(R "a+ta’R), (29 atomic entanglement, are

where P (t)=1.
N¢:a+a+k=+1 | i) Bl A2 42 1
P+(t)—@ + &CO§(Qt)$ E,
and
respectively. At the same time, the absence of photon counts,
R =|¢,)(9:19|. which is considered in Ref.18] as a sign of the atomic
entanglement, corresponds here to the case when both prob-
Here|#.) denote the phase statéss?). abilities P, (t,) = 1/2 at a certain tim&, . In other words, the
Using the Hamiltoniar{29) as the. generator of evolution, mutually orthogonal entangled statés4) have the same
for the time-dependent wave function we get probability to be observed at=t,. This means that there is
L IHut no atomic entanglement at all but we definitely know which
[W(t)=e""4|¥(0)) atom is in the excited state.
— Consider one more realistic initial state when both atoms
[C-(O¢-)+C(] ¢ )]@[0)pn are trapped in the cavity in deexcited state, while the cavity
+C(1)[9192)@[1)pn, (300 field contains a photon:
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[W(0))=[9192)@[1)pn. (32 V. CONCLUSION

Let us briefly discuss the obtained results. For the system
of two identical two-level atoms interacting with a single
iz photon as proposed in Rgfl8] it is shown that the maxi-
C,(t)=— Te*'(‘”O*A’Z)tsin(Qt), mum entangled atomic states are represented by th&)SU
phase states of spin 1/2. Moreover, it is shown that th€pU
iA phase states of the half-integer spiil) form a certain class
C(t)=|cog Ot)— = sin(Qt) |e (ot 22}t of maximum entangled atomic states in the system wof 2
20 atoms interacting witln photons. In particular, the violation

o . of classical realism is shown.
Hence, under this initial condition, the entangled sfate) It should be noted in this connection that the above con-

cannot be achieved at all, while the second entangled sta :
6.} in Eq. (14) can be achieved. It is seen that, in the Casegeidered S2) phase states do not represent a unique way to

i - . construct the maximum entangled states in the multiatom
of initial state(32), the probability to detect the photon is systems and that some other symmetries, for example the

Then, for all times we ge€_(t)=0 and

A2 SU(W) can be considered as well. Moreover, in some cases
Pon(t)=|C(1)[2=cog(Qt) + —Zsinz(Qt). the SU2) phase states cannot be used to determine the maxi-
40 mum entangled states at all. Consider for example the case of

_ _ - two identical two-level atoms interacting with two photons,
This expression takes the minimum value when the atomic subsystem can be specified by the four

states
2

minpph:Pph(tm):@ lere2), [€192), [91€2), [9192).

By performing a similar analysis to that described in Sec. Il,

it is easy to construct the corresponding set of thg2pU
phase states

att=t,=w(2m+1)/2Q2, m=0,1,.... At thesame time
tm, the probability to have the entangled atomic state )
takes the maximum value

242 |b) =3 (|erey) +e'e;g,) +e” | g,0,) +e¥ % g, e)),

Pi(tw)=C(tn)*=-5———.
(tm) =|C(tm)] 2t (A2)2

¢ Kk

¢k=z+7, k=0,1,2,3,
It is seen that the pure atomic entanglement with(t,,)
=1 is realized att=t,, only in the absence of the cavity which do not manifest the maximum entanglement. At the
detuning whem\ — 0. same time, the general criterigd) permits us to determine

The parasitic influence of the cavity detuning can be cominfinitely many maximum entangled states in this cE&#.
pensated through the use of Kerr medium filling the cavity.An example is provided by the following set of orthonormal
In this case, the Hamiltonia(28) should be supplemented by maximum entangled states:
the term[34]

H —«(a*a)? |1)= 3 (|e1e2) +10102) +i|e10,) +ig1€7)),
which leads to the following renormalization of the Rabi [2)= 3 (|e182)—9192) —ile192) +il91€2)),

frequency: 1 .
|3y =7 (ile1€;) +i]91092) +]€192) +]91€5)),

Q—Q,.=29*+(A+ k)4,

Then, the proper choice of the Kerr parameter —A

should lead to the pure entangled atomic sfate) at a  In fact, the Eq.(4) gives a general conditiof23], while the

certain times. SU(2) phase states can manifest the maximum entanglement
Consider now the case of four atoms and two photons. lnly under a certain conditidrspecial choice of the effective

contrast to the previous case, neither phase state ifi2#g. spin(1)].

is an eigenstate of the Hamiltoni&28). Then, the choice of Nevertheless, the SB) phase states considered in Secs.

the initial state either as a state with two excited atoms or aH and 1l represent an important example of the atomic en-

a state with one excited atom plus cavity photon does notangled states. First of all, they can be easily realized in the

lead to a pure atomic entanglement. As in the case of twatomic systems in a cavity. In fact, these states have a simple

atoms, the pure atomic entanglement can be reached undghysical meaning. In addition to Eq9), the SU2) phase

the choice of the state with the absence of the atomic excistates can be defined to be the eigenstates of the Hermitian

tations in the initial state. The influence of the cavity detun-“cosine” operator[19,22

ing can be compensated by the presence of Kerr medium as

well as in the case of two atoms. C=1(eteh),

|2y =3 (—i]eier) +i|g102) +]e192) —|g1€2)).
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where € is defined by Eq(8). This operatoiC can be con- o [ -
sidered as a “Hamiltonian,” describing the correlations be- S
tween the different atoms. For example, in the case of the
two atoms interacting with the single photon, the oper&tor
takes the form P 3
C=0Bo@+ DD, (33
where 1
0 o +ig) FIG. 1. Atomic Raman-type interaction with pun(®) and
T Stokes(S photons.
The operator structure of E€33) coincides with that of the Let us stress that the general condition of the type as in

so-called model of plane rotator, which is a particular case offd: (4) is also valid in the case of stat€34). However, the
the Heisenberg model of ferromagnetism widely used in stadefinition of local measurement should be changed in this
tistical physicg35] and in quantum information theofg6]. ~ case. Because of the number of degrees of freedom per pho-

Let us also stress that the 81 phase states similar to 0N is equal to 3, the Hermitian operators associated with the
those considered in Secs. Il and Ill have been discussed ré&U(3) group should be considered instead of the infinitesi-
cently in the context of quantum codifg7]. mal generators of the $2) group. For Qxample, the set of

It is also known that the S@@) phase states have direct Stokes operators of R€f21], corresponding to the represen-
connection with the quantum description of polarization oftation of the SWU3) subalgebra in the Weyl-Heisenberg alge-
spherical photons emitted by the multipole transitions in atfra of spherical photons, can be used to define the complete
oms and molecule§21,22,38. Therefore, the polarization Set of local measurements in this case. _
entanglement of photons can be examined in direct analogy tiS shown in Sec. IV that the realization of a pure atomic
to the above discussed atomic entanglen{@9]. At the  €ntanglementin the {2+ n)-type atom-plus-photon systems
same time, the consideration of spherical photons require&rongly depends on the choice of initial state. That is the
the use of more quantum degrees of freedom. Consider as &htangled states can be reached in the process of steady-state
example the cascade decay of a two-level atom specified U;;,volutlon only if all 2n atoms are initially in the deexcited

the transition40] states, while the cavity contains justphotons. This condi-
tion has an intuitively clear explanation: the excitations of
|J=2m=0)—|J =0m’'=0). different atoms have the same probability and therefore each

photon in the 2+ n system is shared with a couple of atoms.
HereJ,J’ andm,m’ denote the angular momentum and pro- |t is also shown in Sec. IV that the presence of cavity
jection of the angular momentum of the excited and thedetuning hampers the creation of a pure entangled atomic

ground atomic states, respectively. This transition gives risetate. This negative effect can be compensated through the
to an entangled photon twig0]. Each photon carries spin use of Kerr medium in the cavity.

1, but because of the conservation of the angular momentum \We now note that the practical realization of a long-lived,

in the process of radiation, the sum of projections of themaximum entanglement in a quantum-mechanical system
angular momenta of the two photons should be equal to zergtrongly depends on the interaction between this system and
Denoting the state of a photon with givemby |m), we get  environment. The point is that the state of a closed quantum-
the three possible states of the photon subsystem: mechanical system changes periodically, providing the maxi-
mum entanglement as an instant event only at a certain times
(see Sec. IY. Such a periodicity is caused by a finite number
These three “individual” states can be used to construct theﬁggiiﬂ;eeits izf ;ffgsszr;/n tg]?:c?rﬁteil?tl;rg g;ssttétrfttcs)u;h‘ﬁegte'
dual basis of the S(2) phase statef21] bath,” which would tune in the system to a required state. In
1 Ref. [18], it has been proposed to support the atomic en-
|p)=—=(|+1)®|—1)+€ ?|0)2|0)+e? | —1)a|+1), tanglement by the cavity losses. In this case, the absence of
V3 the photon counting outside the cavity can be associated with
the existence of the entangled atomic state in the cavity.

Let us stress that an advantage of the use of th€SU
phase states as the maximum entangled atomic states con-
sists in the simple preparation of the initial states discussed
similar to Eq.(18). It can be easily seen that these statesn Sec. IV.
manifest the maximum entanglement. In view of realization of atomic entanglement with the

Similar entangled states have been discussed in the copresent experimental technique, it seems to be more conve-
text of the so-called biphoton excitatiofél] (photon pairs nient if the existence of entangled state in a cavity would
in symmetric Fock stat@sThey can also be used in qguantum manifest itself via a signal photon rather than the absence of
cryptography[42]. photon leakage from the cavity. In this case, there should be

[+De[-1), [0)e[0), |-L)e|+1).

Y2k

kKT k=0,1,2, (34

022111-8



ENTANGLEMENT AND THE SU?2) PHASE STATES IN . .. PHYSICAL REVIEW 466, 022111 (2002

at least two modes such that one of théhe cavity modg  sponding to the excitation of the atomic level 3 shared be-
provides the correlation between the atoms, while the seconitdveen the atoms. Since the inverse process cannot be realized
can freely leave the resonator to signalize the existence of theithout assistance of the Stokes photon, such a state repre-
entanglement. Such a process can be realized through the usents a durable atomic entangled state.

of Raman process in atoms shown in Fig(elg., see Ref. It is clear that the above consideration of the atomic en-
[43]). Here the dipole transitions are allowed between theganglement in the multiatom system can be generalized with
levels 1 and 2 and 2 and 3, while forbidden between 1 an@ase in the case of Raman process in atoms. In other words,
3 because of the parity conservation. In the simplest case, wee SU?2) phase states similar to E(L6) form the class of
should assume that the two identical atoms of this type aréhe maximum entangled atomic states in the case of Raman-
located in a cavity, which has a very high quality with re- type processes in the three-level atoms as well. An evident
spect to the pumping modep, while the Stokes photons advantage of the use of the Raman process is the long-lived

with frequencywg can leak away freely. maximum entanglement in atomic subsystem.
Assume that the atoms are initially in the ground state 1,
the Stokes field is in the vacuum state, and the pump field ACKNOWLEDGMENTS
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