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Abstract

Recent Coulomb drag experiments in low-density double-layer electron systems have the power of distinguishing various

many-body formulations of the effective interactions. In this work we theoretically study the correlation effects on the drag

resistivity in these systems within various models. The effective inter-layer interactions are best described by the generalization

to the double-layer case of the Kukkonen–Overhauser approach which differs significantly from the self-consistent field

approach of Singwi et al. [Phys. Rev. 176 (1968) 589]. Following the formulation of Vignale and Singwi [Phys. Rev. B 32

(1985) 2156] we derive an expression for the effective inter-layer interaction which embodies the many-body correlations

through the local-field corrections. The drag resistivity is calculated within this approach together with the Hubbard

approximation for the intra-layer local-field factor and a simple model for the inter-layer correlations. Comparison with the

recent measurements of Kellogg et al. [Solid State Commun. 123 (2002) 515] yields very good agreement. Our results are also

contrasted with the corresponding drag resistivities given by the Singwi et al. theory, the dynamic random-phase approximation

and the Hubbard approximation. The significant differences found between these theories emphasize the strong sensitivity of

the drag resistivity to the effective inter-layer interactions.
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The double-layer electron systems with and without

perpendicular magnetic field attract lot of attention because

of the large number of interesting physical effects they

reveal [1]. One notable situation is the so-called drag effect

when a current driven in one layer gives rise to a voltage

difference in the second one [2]. The resulting drag

resistivity rD is directly proportional to the rate of

momentum transfer between the layers, and therefore

amenable to theoretical modeling.

Starting with the pioneering work of Gramila et al. [3]

there has been a number of experimental investigations of

the drag effect probing the various regimes of the parameter

space of layer densities, temperature, and separation

distance between the quantum wells [4]. The experiments

of Hill et al. [5] showed the evidence of plasmon

enhancement to the drag resistivity at temperatures close

to the Fermi temperature. They have also found significant

differences with the random-phase approximation (RPA)

based calculations [6] and the observed results. Noh et al. [7]

performed similar experiments and argued that correlation

induced multi-particle excitations must be included to

account for the observed density dependences.

The theoretical efforts to account for the presumed

correlation effects concentrated on improving upon the

RPA. A commonly used treatment in this vein is the self-

consistent field approach of Singwi et al. [8] (STLS) which

treats the short-range correlations effects better than RPA.

Świerkowski et al. [9] applied the STLS formalism to
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double-layer electron–electron and electron-hole systems to

demonstrate that the correlation effects enhance the drag

resistivity by an order of magnitude compared to the RPA

results. These calculations were compared with the

experimental data of Gramila et al. [5] which were at

relatively high density, viz. n ¼ 1:5 £ 1011 cm22.

With the advances in semiconductor growth techniques,

very high mobility samples are routinely being manufac-

tured to allow for measurements at low carrier densities.

Thus, experimental results can be used as a testing ground

for various many-body theories in the regime beyond weak

coupling. The interaction effects or the coupling strength is

described by the dimensionless parameter rs ¼ a=aB where a

and aB are the average inter-particle distance and effective

Bohr radius, respectively. The RPA breaks down for rs . 1;

and a more accurate theoretical model to describe the

interaction effects in low-density electron systems is needed

to account for drag resistivity measurements. This question

has been raised in the experimental reports trying to identify

the processes contributing to the observed drag effect.

Recent experiments on low density electron–electron

[10] and hole–hole [11] double-layer systems revealed

some new aspects. First, both papers reported a strong

enhancement of the drag resistivity (up to 200 times larger

in the case of hole–hole systems) than the values predicted

by the theory). Second, at low temperatures rD shows a

stronger than T2 dependence. Considering the hole–hole

bilayer system [11] Hwang et al. [12] used the Hubbard

approximation to account for the correlation effects together

with several additional arguments to explain the exper-

imental results. The experiments of Kellogg et al. [10]

which were the starting point of our work have a two-fold

importance: first the layers they used are separated by a

distance (280 Å) which is smaller than the ones reported in

previous experiments [3,7] thus making the double-layer

system more sensitive to interlayer interactions and second,

one has kFd < 1 (d being the interlayer center to center

separation), a regime where the 2kF electron–electron

backward scattering cannot be neglected. Both inter-layer

interactions and 2kF processes are expected to contribute to

the drag resistivity and thus explain the discrepancies

between the measured drag resistivity and the prediction

given by a model [6] in which the static screening is given

by a Thomas–Fermi approximation (which coincides with

RPA only when q , 2kF). This hint is supported by the

experimental curves which show a density-dependent

enhancement of the drag ranging from a factor of 2 for the

highest density, up to 10 for the lowest one and also from the

peak at q ¼ 2kF of the drag intensity. It was also reported

that the experimental data suggest a N24 behavior of rD as a

function of density which contradicts the N23 dependence

predicted by the simplest RPA.

Motivated by these recent experiments, the aim of this

work is to demonstrate the importance of effective intra- and

inter-layer interactions in the observed drag resistivity. We

consider several theoretical models to show the sensitivity

of the drag resistivity to the strength of intra- and inter-layer

correlations. As noted previously the RPA is not capable of

predicting the quantitative behavior of drag resistivity,

because it does not include the correlation effects. Our

calculations show that the STLS theory does not account for

the experimentally observed drag resistivity either because

the correlation effects are overestimated. We employ the

effective interaction theory of Vignale and Singwi [13] to

model the inter-layer interaction in a double-quantum well

system. We compare our theoretical calculations with the

recent experimental results of Kellogg et al. [10] to find very

good agreement. As the recent drag experiments on hole

systems [11] were analyzed by Hwang et al. [12] we

concentrate here on the electron double-layer systems. In the

following we present the theoretical framework in which we

perform our calculations and the results we obtain.

We consider two identical infinite layers of electrons

separated by a distance d such that there is no tunneling

between them. Each layer is characterized by the dimen-

sionless coupling constant rs ¼ a=aB where a ¼ 1=
ffiffiffiffi
np

p
is

the average spacing between the electrons defined in terms

of the area density n; and aB ¼ "21=ðmpe2Þ is the effective

Bohr radius, e and mp being the background dielectric

constant and electron effective mass. The experimental

results reported by Kellogg et al. [10] used a sample with

electron density n ¼ 1:7–5:2 £ 1010 cm22, corresponding

to rs values of 2.5–4.3. The bare Coulomb interaction

between electrons on the same layer and on different layers

is given as V11ðqÞ ¼ 2pe2=ðeqÞF11ðqLÞ and V12 ¼ 2

pe2=ðeqÞe2qdF12ðqLÞ; respectively. F11 and F12 are infinite

quantum-well form factors taking the finite width effects

into account (L is the quantum-well width).

The drag resistivity rD of a double-layer electron system

with equal layer densities has been obtained in a variety of

theoretical models. These include the Boltzmann equation

[14], the memory function formalism [6], and diagrammatic

perturbation theory [15]. Theoretical considerations lead to

the same expression for rD in terms of the effective

interlayer interaction. To the lowest order in the dynami-

cally screened effective inter-layer interaction W12ðq;vÞ;

and specializing to the case of equal densities in the layers,

rD is given as [6,9,14,15]

rD ¼
"2

8n2e2kBTp2

ð1

0
dqq3

ð1

0

dv
W12ðq;v; TÞIm x0ðq;v; TÞ

sinhð"v=2kBTÞ

����
����
2

ð1Þ

where x0ðq;vÞ is the density–density response function of a

non-interacting single layer.

The key quantity in the above expression is the effective

interlayer interaction W12; for which the simplest approxi-

mation would be the bare inter-layer Coulomb interaction

V12ðqÞ: The earlier calculations considered the statically

screened Coulomb interaction within the RPA, which reads

W12 ¼ V12=1ðqÞ where the screening function is the one
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appropriate for a double-layer system 1ðqÞ ¼ ½1 2

V11xðq; 0Þ�
2 2 ½V12xðq; 0Þ�

2: The next level of approxi-

mation is to include the frequency dependent response

functions in 1ðq;vÞ to obtain the dynamically screened RPA

interaction.

In the previous drag experiments [3,4] on electron–

electron double-layer systems the density parameter was of the

order of rs , 1–2; justifying the use of the RPA for theoretical

modeling. The recent experiments of Kellogg et al. [10] on the

other hand, are in the range of rs , 2–4 which are somewhat

outside the area of applicability of RPA. Many-body effects

beyond the RPA are treated within the self-consistent field

approximation of Singwi et al. [8]. In particular, the

corrections due to exchange and correlation to the effective

interaction potentials associated with charge fluctuations are

incorporated in this scheme in a physically motivated way. In

this approach the dynamically screened inter-layer effective

interaction is given by Świerkovski et al. [9] W12 ¼

V12ð1 2 G12Þ=1ðq;vÞ; where G11 and G12 are intra- and

inter-layer local-field factors, respectively.

In this work we use the formulation of effective two-

body interactions in Coulomb liquids advanced by Vignale

and Singwi [13]. This approach is the generalization to a

two-component case of the screened interaction originally

developed by Kukkonen and Overhauser [16]. In contrast to

the RPA, which considers the screening of a test charge, the

Kukkonen–Overhauser formulation takes into account of

the medium. More recently, Richardson and Ashcroft [17]

employed these effective interactions to explore the intrinsic

superconductivity in a 3D electron-hole liquid. The

Vignale–Singwi (VS) approach takes into account the

direct interaction as well as the interactions stemming from

the exchange of charge and spin fluctuations and it has the

advantage of including direct and exchange contribution in a

consistent manner. The Vignale–Singwi effective inter-

action is given by [13,17]

Wijðq;vÞ ¼ VijðqÞ þ
X
kl

fikðq;vÞxklðq;vÞfljðq;vÞ; ð2Þ

where fij ¼ Vij½1 2 Gij� and x is the density–density

correlation function of the interacting system whose

elements can be computed from ðx21Þij ¼ dijx
21
0 2 fij:

More explicitly, the effective inter-layer interaction reads

(we omit the q and v-dependences for brevity)

W12 ¼
V12ð1 2 G12Þ

½1 2 V11ð1 2 G11Þx0�
2 2 ½V12ð1 2 G12Þx0�

2

þ V12G12: ð3Þ

The form of W12 within the Vignale–Singwi approach is

similar to that in the STLS except for the last term V12G12:

At a first glance this term seems to be small, but as will be

shown, it gives a notable contribution to lW12l
2
: We note

that the VS form of W12 reduces to the RPA if the local-field

factors are omitted.

In our calculations to be presented below, we have found

that the STLS scheme produces a drag resistivity much

higher than the experimental results. The Vignale–Singwi

form of W12 constructed via the STLS local-field factors also

yields a large rD: The main reason for this is that the intra-

layer local-field factor G11 is too large. In the previous

applications of VS formalism parameterized forms satisfy-

ing certain limiting conditions of the local-field factors have

been used. In the absence of reliable and accurate

information on the local-field factors of a double-layer

system, we take a phenomenological point of view. We have

used the Hubbard approximation for the intra-layer local-

field factor which has been known to yield good agreement

with experimental results [18]. The Hubbard approximation

for the intra-layer local-field factor is calculated as

GH
11ðq; TÞ ¼ 2

1

n

ð dk

ð2pÞ2
q·k

q2

VðkÞ

VðqÞ
½S0ðq 2 k;TÞ2 1�; ð4Þ

in which S0ðq; TÞ is the temperature dependent static

structure factor of a non-interacting system. To include

the correlation effects between the layers, we adopt the

approach used by Dong and Lei [19] to calculate G12: Here,

the inter-layer local-field factor is assumed to have the form

G12ðqÞ ¼ aq=
ffiffiffiffiffiffiffiffiffiffi
q2 þ b2

p
; and the parameters a and b are

determined from the large and small q limits. We call this

the hybrid Hubbard-STLS approach.

We now present our calculations for drag resistivity rDðTÞ

using the theoretical models described above and compare

them with the recent experimental results of Kellogg et al. [10].

The drag measurements are done on a double quantum-well of

widths L ¼ 180 Å separated by a distance d ¼ 280 Å. We

therefore, model the finite width effects by an infinite square

well which modifies the bare Coulomb interactions by a form

factor, viz. VijðqÞ! VijðqÞFijðqLÞ: Although our calculations

can easily be extended to double quantum wells of unmatched

densities, in this work we consider only the case of equal

density systems.

In Fig. 1 we show the calculated drag resistivity as a

function of temperature in various theoretical models of

effective inter-layer interaction and compare them with the

experimental results of Kellogg et al. [10]. At a layer density

of n ¼ 2:3 £ 1010 cm22 (corresponding to rs ¼ 3:5) we

observe that the static RPA yields a very poor agreement

with experiment as already noted by Kellogg et al. [10].

When the frequency dependence of the screening function

1ðq;vÞ appearing in the effective interaction W12 is included

the agreement with experimental data is somewhat

improved. On the other hand, when the correlation effects

beyond the RPA are incorporated within the STLS scheme

we find that the calculated rD lies much above the

experimental results. We note that the intra- and inter-

layer local field factors GijðqÞ we use in the STLS approach

are independent of temperature. Note that the net effect of

temperature dependent local-field factors is to reduce the

drag resistivity. Nevertheless, the effects of temperature on

GijðqÞ are estimated to be much smaller than the difference

between the calculated and measured rD: Finally, our
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present model of hybrid Hubbard and STLS approximations

within the VS approach yields a very good quantitative

agreement with the experimental data.

To further show the differences in various theoretical

models we show in Fig. 2 the drag resistivity at

n ¼ 3:1 £ 1010 cm22. When we use the STLS local-field

factors within the VS approach, rD comes out to be even

more enhanced than that in the STLS approximation. This,

however, does not represent the experimental results of

Kellogg et al. [10] well. It is also seen that the extra term

V12G12 in the effective inter-layer interaction W12 makes a

significant contribution to rD: We find similar behavior of

various theoretical models for W12 at other densities for

which Kellogg et al. [10] data are available (not shown in

this work). It was also found by Hwang et al. [12] in their

analysis of hole drag experiments of Pillarisetty et al. [11]

the Hubbard local-field factors significantly enhance the

drag resistivity. These comparisons clearly indicate the

crucial role played by the effective inter-layer interaction

W12 on the drag resistivity rD: In particular, the intra-layer

correlations as described by the STLS approach over-

estimate the drag resistivity.

The sensitivity of the drag resistivity to the model of the

effective inter-layer interaction W12; may also be seen in the

log–log plot of rD as a function of the layer density shown in

Fig. 3. As an illustration, at T ¼ 4 , we find that the dynamical

RPA fails to predict the density dependence of the observed

rD by systematically underestimating it. The static RPA

screening essentially gives the same result as dynamic RPA

except at very low densities. The STLS approximation which

is supposed to describe the short-range correlation effects

better than RPA also shows significant differences in the

regime of densities probed by the Kellogg et al. [10]

experiment. Our present approximation which treats the

intra-layer correlation effects at the Hubbard approximation

level provides an overall satisfactory agreement with the

experimental data. Another useful information we draw from

these plots is that the density dependence of rD is essentially

Fig. 1. The drug resistivity rD as a function of temperature for

matched layer densities n ¼ 2:3 £ 1010 cm22. The solid, short-

dashed, long-dashed, and dotted lines represent calculations within

the present model, STLS, dynamic-RPA, and static-RPA, respect-

ively. The solid circles are the experimental data of Ref. 10.

Fig. 2. The drug resistivity rD as a function of temperature for

matched layer densities n ¼ 3:1 £ 1010 cm22. The solid line shows

rD within the present model of VS approximation (using Hubbard-

STLS local-field factors). The dotted line uses the Hubbard

approximation for G11 and G12 ¼ 0: The long- and short-dashed

lines represent calculations within the STLS and VS (including

STLS local-field factors), respectively. The solid circles are the

experimental data of Ref. 10.

Fig. 3. The drug resistivity rD as a function of the layer density for

T ¼ 4 K. The solid, short-dashed, long-dashed, and dotted lines

represent calculations within the present model, STLS, dynamic-

RPA, and static-RPA, respectively. The solid circles are the

experimental data of Ref. 10.
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similar for dynamic RPA, STLS, and the present model. They

all roughly follow the n24 rule, in contrast to the prediction of

n23 of the simple model [3,6].

The last point we consider is the contribution of the 2kF

electron–electron scattering processes. The possibility of

these processes is experimentally confirmed by the behavior

of the drag intensity hðq; TÞ defined by rDðTÞ ¼
Ð

dqhðq; TÞ:

We show the calculated hðq; TÞ=T2s in various approxi-

mations as a function of q=2kF in Fig. 4. At low temperatures

it has a peak around q ¼ 2kF; which shifts towards lower

momenta when the temperature increases. The magnitude of

hðq; TÞ however, depends very sensitively on the form of the

effective interaction W12 as Fig. 4 indicates. As the previous

figures suggest the VS approach with the local-field factors

calculated in a hybrid Hubbard-STLS approximation yields

the best agreement with experimental results.

In summary, we have performed calculations of the drag

resistivity in connection with the recent experiments of

Kellogg et al. [10] at low density. We have shown that the

observed drag resistivity depends very sensitively on the

effective inter-layer interaction W12: The static and dynamic

screening effects incorporated at the level of RPA under-

estimate the measured drag resistivity. The STLS approxi-

mation on the other hand overestimates it. A theoretical model

based on the formulation of Vignale and Singwi [15]

describing the intra-layer correlations via a local-field factor

within the Hubbard approximation yields very good quanti-

tative agreement with the experimental data. Also important is

to include the inter-layer correlations through the local-field

factor G12: In particular, the temperature dependence of rD at

fixed layer densities and density dependence at fixed

temperatures within the VS approach is accurately reproduced.

Further theoretical work is necessary to improve on the

local-field factors that enter the VS effective interaction.

Comparison with other available drag data for instance in the

plasmon region would be the subject of future work.
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