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The motion of point charged particles is considered in an even dimensional
Minkowski space–time. The potential functions corresponding to the massless sca-
lar and the Maxwell fields are derived algorithmically. It is shown that in all even
dimensions particles lose energy due to acceleration. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1613040#

I. INTRODUCTION

Recently Gal’tsov1 and Kazinskiet al.2 have considered the Lorentz–Dirac equation for a
radiating point charge in a Minkowski space–time of arbitrary dimension. They showed that the
mass renormalization is possible only in three and four dimensions. In their discussion, they have
also given the retarded Green’s functions of the D’Alembert equation in any dimensions which
was in fact constructed rigorously a long time ago.3 Motivated by these works, we are interested
in the radiation problem of accelerated point charges in all even dimensions~for the reason why
we did not consider odd dimensions, please see Appendix B!. Here we find the Lie´nard–Wiechert
potentials corresponding to the massless scalar and the Maxwell fields in all even dimensions. We
then use these potentials to relate the radiation from an accelerated point particle to its motion and
the geometry of its trajectory. We derive the energy flux for this radiation and show that acceler-
ating point charged particles lose energy in all even dimensions.

In Sec. II, we develop the kinematics of a curveC in a D-dimensional Minkowski manifold
MD . In Sec. III we find the Lie´nard–Wiechert potentials of massless free scalar fields in an even
dimensional Minkowski space. We calculate the energy radiated due to the acceleration. We show
that in all even dimensions such particles lose energy, as can be expected. In Sec. IV, we determine
the Liénard–Wiechert potentials for the Maxwell theory. We give a recursion relation between the
vector potentials of the theory in two consecutive even dimensions. In Sec. IV, we also show that
particles carrying electric charges lose energy in all even dimensions. We construct explicit solu-
tions of the electromagnetic vector field due to the acceleration of charged particles in 4,6,8,10
dimensions. We then find the energy fluxes in 4,6,8 dimensions due to acceleration. In Appendix
A, we give the Serret–Frenet equations in an arbitrary Minkowski space–time and also some
auxiliary tools used in the calculation of the energy flux integrals. In Appendix B, we give a proof
of the recursion relation introduced in Sec. IV.

II. CURVES IN D-DIMENSIONAL MINKOWSKI SPACE

In our previous works,4–6 we developed a curve kinematics to be utilized in finding new
solutions and in calculating energy fluxes due to the acceleration in the framework of Einstein’s
general theory of relativity. Here we use the same approach to solve the scalar and Maxwell field
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equations in all even dimensions. For this purpose, we shall now give a summary of the geometry
of a regular curve inMD , Minkowski space–time manifold of dimensionD.

Let zm(t) describe a smooth curveC in MD , wheret is the arclength parameter of the curve.
From an arbitrary pointxm outside the curve, there are two null lines intersecting the curveC.
These points are called the retarded and the advanced times. LetF be the distance~world func-
tion! between the pointsxm andzm(t), then by definition it is given by

F5 1
2 hmn ~xm2zm~t!! ~xn2zn~t!!, ~1!

wherehmn5diag(21,1,...,1). HenceF vanishes at the retarded,t0 , and advanced,t1 , times. In
this work we shall focus on the retarded case only. The Green’s function for the vector potential
chooses this point on the curveC.7,8 By differentiatingF with respect toxm and lettingt5t0 , we
get

lm[t ,m5
xm2zm~t0!

R
, R[ żm~t0! ~xm2zm~t0!!, ~2!

whereR is the retarded distance,lm is a null vector, and a dot over a letter denotes differentiation
with respect tot0 . The derivatives ofR andlm , using~2!, are given by

lm,n5
1

R
@hmn2 żm ln2 żn lm2~A2e! lmln#, ~3!

R,m5~A2e! lm1 żm , ~4!

where

A5 z̈m ~xm2zm!, żm żm5e50,61. ~5!

Heree50,21 for null and time-like curves, respectively. Furthermore, we have

lm żm51, lm R,m51. ~6!

Letting a5 A/R, it is easy to prove that

a,m lm50. ~7!

Similarly, other scalars (a1 ,a2 ,...), satisfying the same property~7! obeyed bya can be defined

ak[lm

dk z̈m

dt0
k , k51,2,...,n. ~8!

Moreover one has

ak,a la50, ~9!

for all k (k50 is also included if we leta05a). For a more detailed discussion, please refer to
Ref. 4. Heren is a positive integer which depends on the dimensionD of the manifoldMD . An
analysis using Serret–Frenet frames shows that the scalars (a, ak) are related to the curvature
scalars of the curveC in MD . The number of such scalars isD21.9 Hence we letn5D21.
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III. MASSLESS SCALAR FIELD

Let f describe a massless scalar field satisfying the free field equation

hmn
]2 f

]xm]xn 50. ~10!

Let D be a positive even integer, andf (D) and f (D12) denote the retarded solutions~Liénard–
Wiechert potentials! of the massless scalar field inD andD12 dimensions, respectively. Then

f (D12)5
1

R

d

dt
f (D). ~11!

In this recursion relation we emphasize that the expressions on the right-hand side are those of
D-dimensions. Take the solutionf (D) in D-dimensions, take itst derivative and divide this by the
R of D-dimensions. The result is the solutionf (D12) of D12-dimensions. For the proof of
relation ~11! see Appendix B. In the following we explicitly give these solutions forD
54,6,8,10:

f (4)5
c

R
, ~12!

f (6)5
1

R2 @ ċ2pc#, ~13!

f (8)5
1

R3 @ c̈23pċ1~2a113p2!c#, ~14!

f (10)5
1

R4 Fd3c

dt3 26pc̈1~15p224a1!ċ1S 2a2110pa1215p31
1

R
ża

d3za

dt3 D cG , ~15!

wherec5c(t) is the ~time dependent! scalar charge andp[a2 e/R.
The flux of massless scalar field energy is then given by~see Refs. 7 and 11 for this definition

and also for the integration surfaceS)

dE52E
S

żm Tf
mn dSn , ~16!

whereTmn
f 5]m f ]n f2 1

4 (hab ]a f ]b f)hmn is the energy momentum tensor of the massless
scalar fieldf. The surface element dSm on S is given by

dSm5nmRD23dt dV, ~17!

wherenn is orthogonal to the velocity vector fieldżm which is defined through

lm5e żm1e1

nm

R
, nm nm52eR2. ~18!

Here e1561. For the remaining part of this work we shall assumee521 (C is a time-like
curve!. One can considerS in the rest frame as a sphere of radiusR. Here dV is the solid angle.
Letting dE/dt5Nf , we have

Nf
(D)52E

SD22
żm Tf

mn nn RD23 dV, ~19!
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whereSD22 is the (D22)-dimensional sphere centered att5t0 on the curveC. At very large
values ofR the energy flux is given by

Nf
(D)52E

SD22
dV RD23 ~ ża ]a f!~nb ]b f!.

It turns out that the energy flux expression has a fixed sign for allD. The energy flux of the
massless scalar fieldf asR→` is given by

Nf
(D)52e1E

SD22
@j (D)#2 dV,

where we obtainR independent functions~for eachD) j (D) from

j (D)5 lim
R→`

@RD/2 f (D12)#.

As an example letD54. We takef (6) from ~13!, multiply it by R2 and letR→` ~thenp→a),
and finally we obtainj (4). The explicit expressions ofj (D) are as follows:

j (4)5 ċ2ac, ~20!

j (6)5 c̈23aċ1~2a113a2!c, ~21!

j (8)5
d3c

dt3 26ac̈1~15a224a1!ċ1~2a2110aa1215a3!c, ~22!

j (10)5
d4c

dt4 210a
d3c

dt3 1~45a2210a1!c̈2~5a2260aa11105a3!ċ

2~a3215aa2210a1
21105a1a22105a4! c. ~23!

Hence we have~assumingc5constant)

Nf
(4)52e1S 4p

3 D c2 k1
2 , ~24!

Nf
(6)52e1S 8p2

105D c2@20k1
417k̇1

217k1
2k2

2#, ~25!

Nf
(8)52e1S 16p3

10 395D c2$99@~ k̈124k1
32k1k2

2!21~2k̇1k21k1k̇2!21k1
2k2

2k3
2#

1k1
2 @900k1

411100k1
2k2

213597k̇1
2#%. ~26!

IV. ELECTROMAGNETIC FIELD

In the Lorentz gauge (]m Am50), the Maxwell equations reduce to the wave equation for the
vector potentialAm , hmn ]m ]n Aa50. By using the curveC, we can construct divergence free
~Lorentz gauge! vector fieldsAa satisfying the wave equation outside the curveC in any even
dimensionD. Similar to the case of the massless scalar field, such vectors obey the following
recursion relation

Am
(D12)5

1

R

d

dt
Am

(D) . ~27!
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In the recursion relation aboveAm
(D) is the electromagnetic vector potential in evenD-dimensions,

with m50,1,...,D21. On the right-hand side of the recursion relation all operations are done in
D-dimensions, just like the scalar case. However the result is to be considered as the electromag-
netic vector potential ofD12-dimensions, withm50,1,...,D11 on the left-hand side. As an
example we haveAm

(4)5 żm /R as the electromagnetic vector potential of four dimensions.8 Hereżm

is the four velocity,R andt are, respectively, the retarded distance and time in four dimensions.
Using the recursion relation~27! the right-hand side becomes

z̈m2ażm

R2 1e
żm

R3 .

We then regard this expression as the solutionAm
(6) of the Maxwell field equations in six-

dimensions. Indeed it satisfies both the Lorentz condition and the field equations of six-
dimensions, as can be verified separately. Starting fromD54, we can generate all even dimen-
sional vector potentials satisfying the Maxwell equations. For instance, the vector potentials for
D54,6,8,10 are explicitly given by

Am
(4)5

żm

R
, ~28!

Am
(6)5

1

R2 @ z̈m2pżm#, ~29!

Am
(8)5

1

R3 Fd3zm

dt3 23pz̈m1~2a113p2!żmG , ~30!

Am
(10)5

1

R4 Fd4zm

dt4 26p
d3zm

dt3 1~15p224a1!z̈m1S 2a2110pa1215p31
1

R
ża

d3za

dt3 D żmG .
~31!

The flux of electromagnetic energy is then given by7 ~the integration surfaceS is also given in this
reference!

dE52E
S

żm Te
mn dSn , ~32!

whereTmn
e 5Fma Fn

a2 1
4 F2hmn is the Maxwell energy momentum tensor,Fmn5An,m2Am,n is

the electromagnetic field tensor andF2[Fab Fab .
Letting dE/dt5Ne ,10 we have

Ne
(D)52E

SD22
żm Te

mn nn RD23 dV. ~33!

At very large values ofR, for all evenD, we get

Ne
(D)52e1E

SD22
jm

(D) jn
(D) hmn dV, ~34!

where

jm
(D)5 lim

R→`

@Am
(D12) RD/2#, ~35!

so thatlm jm
(D)50 for all D.
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Here we have two remarks. The first one is on the gauge dependence of~35!. The only gauge
freedom left in our solutions isAm→Am1]mf, wheref satisfies the scalar wave equation~10!.
However we have already found the solutions of the scalar wave equation for all even dimensions.
It can be shown that the contribution of such scalar functions to the norm ofjm

(D) is zero in the
limit R→`. Our second remark is on the sign ofNe

(D) in ~34!. The vectorsjm
(D) in all even

dimensions are orthogonal to the null vectorlm , hence they must be either~i! space-like vectors,
~ii ! proportional tolm , or ~iii ! zero vectors.11 They are zero only when the curveC is a straight
line which leads to no radiation. They cannot be proportional to the null vectorlm either, because
this again leads to the trivial case of zero radiation. In the first three cases~4, 6, 8 dimensions! it
can be easily observed that zero radiation implies thatjm

(D) is a zero vector. Hencejm
(D) is a

space-like vector in all even dimensions. Therefore the sign of the right-hand side of~34! is the
same in all dimensions. These vectors are explicitly given as follows:

jm
(4)5 z̈m2ażm , ~36!

jm
(6)5

d3zm

dt3 23az̈m1~2a113a2!żm , ~37!

jm
(8)5

d4zm

dt4 26a
d3zm

dt3 1~15a224a1!z̈m1~2a2110aa1215a3! żm , ~38!

jm
(10)5

d5zm

dt5 210a
d4zm

dt4 1~45a2210a1!
d3zm

dt3 1~25a2160aa12105a3!z̈m

1~2a3115aa2110a1
22105a1a21105a4!żm . ~39!

These lead to the following energy flux expressions:

Ne
(4)52e1

8p

3
k1

2 , ~40!

Ne
(6)52e1

32p2

15 S k̇1
21k1

2k2
21

9

7
k1

4D , ~41!

Ne
(8)52e1

32p3

10395H 297F S k̈12
4

3
k1

32k1 k2
2D 2

1~2k̇1 k21k1 k̇2!21k1
2 k2

2 k3
2G

14k1
2 @300k1

41506k1
2 k2

21825k̇1
2#J . ~42!

To be compatible with the classical results,7,8 one should takee1521.

V. CONCLUSION

In this work we have considered radiation of scalar and vector fields due to acceleration of
point charged particles. We first examined the geometric properties of their paths in an even
dimensional Minkowski spaceMD . By using the curve kinematics we developed, we have first
found the retarded solutions of the scalar field equations inMD . These solutions describe the
potentials of the accelerated scalar charges and we have examined the energy loss due to such a
radiation. We have shown that in all even dimensions such scalar point particles lose energy. We
have given explicit examples forD54,6,8,10. We then found the retarded solutions of the Max-
well field equations that describe the point particles carrying electric charges. Again, using the
curve kinematics we developed an algorithm to calculate the vector potentialAm in
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D12-dimensions from the one inD-dimensions. We have given explicit examples forD
54,6,8. We have calculated the energy flux in each case, and we have shown that particles lose
energy due to acceleration in all even dimensions.
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APPENDIX A: SERRET–FRENET FRAMES

In this appendix, we first give the Serret–Frenet frame inD dimensions. Here we shall assume
that the curveC described in Sec. II is time-like and has the tangent vectorTm5 żm. Starting from
this unit tangent vector, by repeated differentiation with respect to the arclength parametert0 , one
can generate an orthonormal frame$Tm,N1

m ,N2
m ,...,ND21

m %, theSerret–Frenet frame:

Ṫm5k1 N1
m , ~A1!

Ṅ1
m5k1 Tm2k2 N2

m , ~A2!

Ṅ2
m5k2 N1

m2k3 N3
m , ~A3!

¯

ṄD22
m 5kD22 ND23

m 2kD21 ND21
m , ~A4!

ṄD21
m 5kD21 ND22

m . ~A5!

Here k i ( i 51,2,...,D21) are the curvatures of the curveC at the pointzm(t0). The normal
vectorsNi ( i 51,2,...,D21) are space-like unit vectors. Hence at the pointzm(t0) on the curve
we have an orthonormal frame which can be used as a basis of the tangent space~of MD) at this
point. In Sec. II, we have defined some scalars

ak5
dkz̈m

dt0
k lm,

where

lm5eTm1e1

nm

R
.

Herenm is a space-like vector orthogonal toTm. It can be expressed as a linear combination
of the unit vectorsNi ’s as

nm5a1 N1
m1a2 N2

m 1¯1aD21 ND21
m ,

where a1
21a2

21¯1aD21
2 5R2. One can choose the spherical anglesu,f1 ,...,fD24

P(0,p), fD23P(0,2p) such that

a15R cosu, a25R sinu cosf1 , a35R sinu sinf1 cosf2 , . . . ,

aD225R sinu sinf1¯ sinfD24 cosfD23 ,

aD215R sinu sinf1¯ sinfD24 sinfD23 .
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Hence we can calculate the scalarsak in terms of the curvatures of the curveC and the angles
(u,f1 ,...,fD23) at the pointzm(t0). We need these expressions in the evaluation of energy flux
formulas. As an example we givea anda1 :

a52ee1k1 cosu, a15k1
22ee1k̇1 cosu1ee1k1 k2 sinu cosf1 . ~A6!

The rest of the scalars can be determined similarly. It is clear that these scalars,ak , depend on the
curvatures and the spherical angles, for allk.

APPENDIX B: THE PROOF OF THE RECURSION RELATIONS „11… AND „27…

Here we give the proof for the vector potential case. The same type of proof applies also for
the scalar case. Using the recursion relation~27! successively we get

Am
(D)5S 1

R

d

dt D ~D/2! 22 żm

R
. ~B1!

On the other hand, from Refs. 1 and 2, we have

Am
(D)5E G~x2z~t!! żm dt, ~B2!

where t is the parameter of the curveC. The integral here is carried on the range of
tP(2`,`). HereG(x2z(t)) is the retarded Green function given by

G~x2z~t!!5u~x02z0! d~D/2! 22~F!. ~B3!

Here F is the world function given by~1!, u(x) is the Heaviside step function anddk(x)
[ (dk/dxk) d(x). Here we assume thatD is an even integer.@When D is an odd integer, the
expression for the Green function in~B3! contains the step function instead of thed-function.
Hence the potentials in all odd dimensions remain nonlocal~integral expressions!. This makes our
curve kinematics ineffective.# The zeros ofF denote the advanced and retarded proper times on
the curveC, but the step functionu(x0) chooses the retarded one. Since the integration is over the
curve parametert in ~B2!, it is better to transform the derivative of the delta function with respect
to F to the derivative with respect tot. As a simple example consider theD56 case

d

dF
d~F!5F 1

dF/dt

d

dt
d~F!G

F50

. ~B4!

It is easy to show that dF/dt 52R. The delta functiond~F! can be expressed as follows:

d~F!5
d~t2t0!

R
1

d~t2t1!

R
.

The second term will vanish identically due to the step function in~B3!. Hence

Am
(6)5

1

R

d

dt

żm

R
,

or simply A(6)5(1/R)(d/dt) A(4). This verifies our relation~27!. For the general case, we need
higher order derivatives ofd~F! at F50. We find such terms by using~B4! and taking successive
derivatives. In the general case, for allk50,1,2,... we obtain~whenF50)

dk

dFk d~F!5F S 21

R

d

dt D k

d~F!G . ~B5!
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Using this expression in the Green’s function~B3! for k5 D/222, inserting it in the integral
equation~B2!,

Am
(D)5E u~x02z0! dD/2 22~F! żm dt ~B6!

5E u~x02z0! S 21

R

d

dt D D/2 22

d~F! żm dt, ~B7!

and integrating by parts, we obtain~B1!.
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