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The motion of point charged particles is considered in an even dimensional
Minkowski space—time. The potential functions corresponding to the massless sca-
lar and the Maxwell fields are derived algorithmically. It is shown that in all even
dimensions particles lose energy due to acceleratior2083 American Institute of
Physics. [DOI: 10.1063/1.1613040

I. INTRODUCTION

Recently Gal'tso¥ and Kazinskiet al? have considered the Lorentz—Dirac equation for a
radiating point charge in a Minkowski space—time of arbitrary dimension. They showed that the
mass renormalization is possible only in three and four dimensions. In their discussion, they have
also given the retarded Green’s functions of the D’Alembert equation in any dimensions which
was in fact constructed rigorously a long time dgdotivated by these works, we are interested
in the radiation problem of accelerated point charges in all even dimendmrnihe reason why
we did not consider odd dimensions, please see Appendiki&e we find the Lieard—Wiechert
potentials corresponding to the massless scalar and the Maxwell fields in all even dimensions. We
then use these potentials to relate the radiation from an accelerated point particle to its motion and
the geometry of its trajectory. We derive the energy flux for this radiation and show that acceler-
ating point charged patrticles lose energy in all even dimensions.

In Sec. I, we develop the kinematics of a cul@en a D-dimensional Minkowski manifold
Mp. In Sec. lll we find the Lieard—Wiechert potentials of massless free scalar fields in an even
dimensional Minkowski space. We calculate the energy radiated due to the acceleration. We show
that in all even dimensions such particles lose energy, as can be expected. In Sec. IV, we determine
the Lienard—Wiechert potentials for the Maxwell theory. We give a recursion relation between the
vector potentials of the theory in two consecutive even dimensions. In Sec. IV, we also show that
particles carrying electric charges lose energy in all even dimensions. We construct explicit solu-
tions of the electromagnetic vector field due to the acceleration of charged particles in 4,6,8,10
dimensions. We then find the energy fluxes in 4,6,8 dimensions due to acceleration. In Appendix
A, we give the Serret—Frenet equations in an arbitrary Minkowski space—time and also some
auxiliary tools used in the calculation of the energy flux integrals. In Appendix B, we give a proof
of the recursion relation introduced in Sec. IV.

II. CURVES IN D-DIMENSIONAL MINKOWSKI SPACE

In our previous worké;® we developed a curve kinematics to be utilized in finding new
solutions and in calculating energy fluxes due to the acceleration in the framework of Einstein’s
general theory of relativity. Here we use the same approach to solve the scalar and Maxwell field
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equations in all even dimensions. For this purpose, we shall now give a summary of the geometry
of a regular curve irMp, Minkowski space—time manifold of dimensidh.

Let z#(7) describe a smooth cun@ in My, whereris the arclength parameter of the curve.
From an arbitrary poink* outside the curve, there are two null lines intersecting the c@rve
These points are called the retarded and the advanced time®. hetthe distancéworld func-
tion) between the points* andz*(7), then by definition it is given by

= 37,,(x*=2(7)) (X"~ 2"(7)), )

where,,=diag(-1,1,..,1). Henced vanishes at the retarded,, and advanceds;, times. In

this work we shall focus on the retarded case only. The Green’s function for the vector potential
chooses this point on the cur@”® By differentiatingd with respect to* and lettingr= r,, we

get

P ’M:LFQL(TO), REZ#(T()) (XM_ZM(TO))v (2)

whereR is the retarded distancg,, is a null vector, and a dot over a letter denotes differentiation

with respect tory. The derivatives oR andA ,, using(2), are given by

M,f%[mv—zﬂm—zm—(A—e) ko], 3
R,=(A—e)\,+Z,, (4)

where
A=2t(x,~z,), 2'Z7,=€e=0,£1. (5)

Here e=0,—1 for null and time-like curves, respectively. Furthermore, we have
N, Z¥=1, MR,=1 (6)
Lettinga= A/R, it is easy to prove that
a, \=0. (7

Similarly, other scalarsd; ,a,,...), satisfying the same proper{y) obeyed bya can be defined

dkz#
ak=)\#E(k)—, k=1,2,..,n. (8)
Moreover one has
ak,a)\azoa (9)

for all k (k=0 is also included if we leag=a). For a more detailed discussion, please refer to
Ref. 4. Heren is a positive integer which depends on the dimengloof the manifoldMp. An
analysis using Serret—Frenet frames shows that the scalasg)(are related to the curvature
scalars of the curv€ in Mp. The number of such scalarslis—1.° Hence we len=D—1.
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Ill. MASSLESS SCALAR FIELD
Let ¢ describe a massless scalar field satisfying the free field equation

Fo

IXHIXY =0.

/o (10
Let D be a positive even integer, arti® and ¢°*2) denote the retarded solutiofisiénard—
Wiechert potentialsof the massless scalar field ih andD +2 dimensions, respectively. Then

1d
(D+2)—_— _— 4(D)
D=2 — 40, (1

In this recursion relation we emphasize that the expressions on the right-hand side are those of
D-dimensions. Take the solutiap®) in D-dimensions, take its derivative and divide this by the

R of D-dimensions. The result is the solutiaff®™2) of D+ 2-dimensions. For the proof of
relation (11) see Appendix B. In the following we explicitly give these solutions for
=4,6,8,10:

c
¢(4)=§, (12
1
¢(6):E[c—p0], (13
1 .
¢ g6~ 3pe+ (~ay+3p2)c], (14
5 3,
d)(lO):i d—C—G ¢+ (15p%—4a,)c+| —a,+10pa, — 15 3+£'z d_z c (15
R[4 °P P 1 2 TP R% S C)

wherec=c(7) is the (time dependentscalar charge and=a— €/R.
The flux of massless scalar field energy is then giversee Refs. 7 and 11 for this definition
and also for the integration surfa&

dE=— f RIS (16)

whereTfL’V:&M bd, d—5(nPo, P dg ¢) ., is the energy momentum tensor of the massless
scalar field¢. The surface element3] on Sis given by

ds,=n,R°~%drdQ, (17)
wheren, is orthogonal to the velocity vector fiel, which is defined through
_ - nl““ s _ 2
)\M—GZ,H'Glﬁy n“n,=—e€R" (18

Here e,=* 1. For the remaining part of this work we shall assuawe—1 (C is a time-like
curve. One can consides in the rest frame as a sphere of radRisHere d) is the solid angle.
Letting dE/d7=N,, we have

NgP):—fD ,2,T4"n, RP73dQ, (19
o
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whereSP 2 is the (D —2)-dimensional sphere centeredat 7, on the curveC. At very large
values ofR the energy flux is given by

N(¢D): - J'SD*Z dQ RD73 (Za (?a ¢)(nﬁ O')B d))

It turns out that the energy flux expression has a fixed sign foDallThe energy flux of the
massless scalar field asR—« is given by

N = —elfSD,z[éD)]zdn,

where we obtairR independent function€or eachD) ¢(®) from

f(D): lim [RDIZ ¢)(D+2)]_

R—o

As an example leD=4. We take¢(®) from (13), multiply it by R? and letR—« (thenp—a),
and finally we obtairt™). The explicit expressions af®) are as follows:

fM=¢—ac, (20)
£®)=¢—3ac+(—a;+3ad)c, (21)

d3c _
§<8>:F —6ac+(15a°—4a,)c+(—a,+10aa; — 15°%)c, (22)

d*c d®

0= — 10a—C +(45a%—10a,)¢— (5a,— 60aa; + 105a°)¢
d7'4 dT3 1 2 1

—(ag—15aa,— 10a3+ 105,;a°— 105%*) c. (23)

Hence we havéassumingc= constant)

4
N(af):_fl(?) c? ki, (24
2
NGO = _ ¢ 8m” [ 20K+ i+ T2K2] 25
& 1 105 K1 T (K1T [K1K3 1,

3
7T . .
NG = —el(—lo 395) CP{OY (i1 = 4x3 — K1k3)%+ (2icrkp+ Kyicn)+ kKK

+ k2[900k; +1100¢2 K3+ 359721} . (26)

IV. ELECTROMAGNETIC FIELD

In the Lorentz gauged, A“=0), the Maxwell equations reduce to the wave equation for the
vector potentialA,,, »*"d,d,A,=0. By using the curveC, we can construct divergence free
(Lorentz gauggvector fieldsA, satisfying the wave equation outside the cufveén any even
dimensionD. Similar to the case of the massless scalar field, such vectors obey the following
recursion relation

d
(D+2)_— ~ A(D)
AL B=o AP (27)

x|~
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In the recursion relation above(#D) is the electromagnetic vector potential in ex2fdimensions,
with ©=0,1,..,D—1. On the right-hand side of the recursion relation all operations are done in
D-dimensions, just like the scalar case. However the result is to be considered as the electromag-
netic vector potential oD +2-dimensions, withu=0,1,..,D+1 on the left-hand side. As an
example we havé\ﬁf)z z,, IR as the electromagnetic vector potential of four dimens?dﬂere'zﬂ
is the four velocity,R and 7 are, respectively, the retarded distance and time in four dimensions.
Using the recursion relatio(27) the right-hand side becomes

z,—az z

e = Bt eR—“.

We then regard this expression as the solutkéf? of the Maxwell field equations in six-
dimensions. Indeed it satisfies both the Lorentz condition and the field equations of six-
dimensions, as can be verified separately. Starting fdor¥, we can generate all even dimen-
sional vector potentials satisfying the Maxwell equations. For instance, the vector potentials for
D=4,6,8,10 are explicitly given by

z
(4)_Z~
A= R’ (28)
©_ Ly o
AL =@[z#—pzﬂ], (29
1 [d®z .
A =5 g5 —3PZ.+ (—ai+3pY)z,|, (30)
10 L d*z, d’z, ) ) . 1. dz)
AM :E F—Gpw‘l‘(lSp —4611)2#4‘ —a2+10pa1—15p +§ZQF Z# .
(3D

The flux of electromagnetic energy is then giverf tipie integration surfac8 is also given in this
reference

dEz—jSZMTg”dSV, (32)

wherewa=FWF,,“— %anw is the Maxwell energy momentum tensét,,=A, ,—A,, , is
the electromagnetic field tensor aRd=F*# Fag-
Letting dE/dr=N,,*° we have

Ngm:—jD ,2, T4 n, R°73dQ. (33)
o-

At very large values oR, for all evenD, we get

NP =—e f o, 808D 7 da, (34)
where
gl(uD): |Im [AELD+2) RD/Z]’ (35)
R—o

so thatn# £2)=0 for all D.
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Here we have two remarks. The first one is on the gauge depende(®%.0fhe only gauge
freedom left in our solutions i#,—A,+d,¢, where ¢ satisfies the scalar wave equatid®).
However we have already found the solutions of the scalar wave equation for all even dimensions.
It can be shown that the contribution of such scalar functions to the nor‘f{fbﬁs zero in the
limit R—cc. Our second remark is on the sign N> in (34). The vectors¢D) in all even
dimensions are orthogonal to the null veckgy, hence they must be eith@) space-like vectors,
(i) proportional to\ ,, or (iii) zero vectors! They are zero only when the cur@is a straight
line which leads to no radiation. They cannot be proportional to the null vact@ither, because
this again leads to the trivial case of zero radiation. In the first three ¢4sés8 dimensionsit
can be easily observed that zero radiation implies #)at is a zero vector. Hencé!> is a
space-like vector in all even dimensions. Therefore the sign of the right-hand s{8d) ¢$ the
same in all dimensions. These vectors are explicitly given as follows:

4)_ o .
g,(u)_z,u_azll-’ (36)
6 dsZM .
£P= 55 —laz, t(—a+ 3a?)z,, (37)
@ 92 oz, ) . 4 s
€)= —6az +(15°—4ay)z,+ (~a,+ 10aa,— 15°) 2, (39)
d®z d*z d®z
g;m):# —10a-7 + (452~ 10a;) = +(—5a,+60aa; ~ 10%°)2,
+(—ag+15aa,+10af— 105,a°+ 105%)z,, . (39

These lead to the following energy flux expressions:

8
NG = — ey« (40)
(6)_ 32m? 2 22,9,
Ng”’'=—€; 15 K1+K1K2+7K , (41

4 2 _
Ng})= - 6110395[ 297{( Kkq— §Ki— K1 Kg) +(2kq Kot K1 Kp) 2+ Ki K% K%

+ 453007+ 5062 K5+ 825;<'ﬂ] . (42)

To be compatible with the classical resuifspne should take;= —1.

V. CONCLUSION

In this work we have considered radiation of scalar and vector fields due to acceleration of
point charged particles. We first examined the geometric properties of their paths in an even
dimensional Minkowski spachlp. By using the curve kinematics we developed, we have first
found the retarded solutions of the scalar field equations1in These solutions describe the
potentials of the accelerated scalar charges and we have examined the energy loss due to such a
radiation. We have shown that in all even dimensions such scalar point particles lose energy. We
have given explicit examples f@ =4,6,8,10. We then found the retarded solutions of the Max-
well field equations that describe the point particles carrying electric charges. Again, using the
curve kinematics we developed an algorithm to calculate the vector poteAfjalin
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D +2-dimensions from the one iD-dimensions. We have given explicit examples 1or
=4,6,8. We have calculated the energy flux in each case, and we have shown that particles lose
energy due to acceleration in all even dimensions.
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APPENDIX A: SERRET-FRENET FRAMES

In this appendix, we first give the Serret—Frenet framb idimensions. Here we shall assume
that the curveC described in Sec. Il is time-like and has the tangent vetter z#. Starting from
this unit tangent vector, by repeated differentiation with respect to the arclength parageiae
can generate an orthonormal frag®e*,N7",N5,... N5 _,}, the Serret-Frenet frame

TH= iy N¥, (A1)

N&= e TH— Ky NY, (A2)

N4 = iy N&— kg N, (A3)
NE_,=kp_2NE_3—kp_1NE_4, (A4)
Ngfl:KDfl NG (A5)

Here «; (i=1,2,..,.D—1) are the curvatures of the cur at the pointz#“(r;). The normal
vectorsN; (i=1,2,..,.D—1) are space-like unit vectors. Hence at the paifitry) on the curve
we have an orthonormal frame which can be used as a basis of the tangenta$pdeg at this
point. In Sec. I, we have defined some scalars

dkzﬂv
a=—" N\,
k dTO

where

n*
AN=€eTH+ 61?.

Heren* is a space-like vector orthogonal T¢. It can be expressed as a linear combination
of the unit vectorN;’s as

n“=a1 Nf"‘a{z N'12L+“‘+CYD_1 Ng—ll

where af+a3+---+ad_;=R? One can choose the spherical anglésg:,....dp_4
e (0,7m), ¢p_3e€(0,27) such that

a;=Rcosf, a,=Rsinfcos¢,, az=Rsinfsing,cose,, ...,
ap_>,=RsiN#SiNg, - SiNpp_4 COSPp _3,

ap-_1=Rsin#sing, -+ singp_,Singp_3.
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Hence we can calculate the scalagsin terms of the curvatures of the curé and the angles
(0,¢4,...,0p_3) at the pointz“( 7). We need these expressions in the evaluation of energy flux
formulas. As an example we giveanda; :

a=— €€k, COSH, a;= Kf— €€1K1 COSO+ €€k, Ko SINO COSP . (AB6)

The rest of the scalars can be determined similarly. It is clear that these sagladepend on the
curvatures and the spherical angles, forkall

APPENDIX B: THE PROOF OF THE RECURSION RELATIONS (11) AND (27)

Here we give the proof for the vector potential case. The same type of proof applies also for
the scalar case. Using the recursion relatidf) successively we get

(DI2) -2,

?“. (B1)

1d

(D) — —_
R dr

o

On the other hand, from Refs. 1 and 2, we have

A;D>=f G(x—2z(7)) z, dr, (B2)

where 7 is the parameter of the curv€. The integral here is carried on the range of
Te(—x,»). HereG(x—z(7)) is the retarded Green function given by

G(x—2(7))=0(x"~2°% &' ~2(®). (B3)

Here & is the world function given by(1), 6(x) is the Heaviside step function andl(x)

= (ddx¥) 8(x). Here we assume th& is an even integefWhen D is an odd integer, the
expression for the Green function {(B3) contains the step function instead of tBdunction.
Hence the potentials in all odd dimensions remain nonlGnggral expressionsThis makes our
curve kinematics ineffective The zeros ofb denote the advanced and retarded proper times on
the curveC, but the step functio®(x®) chooses the retarded one. Since the integration is over the
curve parameterin (B2), it is better to transform the derivative of the delta function with respect
to @ to the derivative with respect ta As a simple example consider the=6 case

d
55 0(@)= (B4)

drdr ar o ®)

®=0

It is easy to show thatd/dr = —R. The delta functionS(®) can be expressed as follows:

O(7— 7p) N (17— 71)

AP)=—p¢ R

The second term will vanish identically due to the step functiofB8). Hence

1dz
()
a Rdr R’

or simply A®=(1/R)(d/d7) A®. This verifies our relatiori27). For the general case, we need
higher order derivatives af(®) at ® =0. We find such terms by usin@4) and taking successive
derivatives. In the general case, for #0,1,2,... we obtaifwhen® =0)

d -1 d\*
W5(q))=[(?a_) 5((13)} (BS)
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Using this expression in the Green’s functi@®3) for k= D/2 -2, inserting it in the integral
equation(B2),

AD)= f 0(x0—2°%) P2 7%(®) z, dr (B6)
—-1d D/2-2
=f 0(x°—z°)<?d—7) 8(®) z, dr, (B7)

and integrating by parts, we obtaiB1).
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