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Abstract

The paper presents a class of numerical methods to compute the stationary distribution of Markov
chains (MCs) with large and structured state spaces. A popular way of dealing with large state spaces in
Markovian modeling and analysis is to employ Kronecker-based representations for the generator
matrix and to exploit this matrix structure in numerical analysis methods. This paper presents various
multilevel (ML) methods for a broad class of MCs with a hierarchcial Kronecker structure of the
generator matrix. The particular ML methods are inspired by multigrid and aggregation-disaggrega-
tion techniques, and differ among each other by the type of multigrid cycle, the type of smoother, and
the order of component aggregation they use. Numerical experiments demonstrate that so far ML
methods with successive over-relaxation as smoother provide the most effective solvers for consider-
ably large Markov chains modeled as HMMs with multiple macrostates.

AMS Subject Classifications: 65F10 (primary), 60J27 (secondary).

Keywords: Multilevel methods, multigrid, aggregation-disaggregation, Markov chains, Kronecker-
based numerical techniques.

1. Introduction

Markov chains (MCs) are a commonly used mathematical model to describe the
quantitative behavior of discrete event systems. Usually some high-level formal-
isms like Stochastic Petri Nets (SPNs) or Queueing Networks (QNs) are used to
specify a model which is afterwards mapped onto a MC. Often the stationary
distribution of the MC is computed with numerical methods to determine per-
formance or dependability measures of the modeled system [25]. Although the
computation of the stationary distribution requires nothing more than the solu-
tion of a set of linear equations, practical problems arise due to the enormous size
of the state space of MCs resulting from realistic examples which often grows
exponentially with the model specification. A popular way of dealing with this so
called ‘‘state space explosion problem’’ is to employ a Kronecker [28] (or tensor)
based representation of the generator matrix of the MC which remains compact
even for considerably large state spaces.

In the Kronecker-based approach, the system of interest is modeled so that it is
formed of smaller interacting components, and its larger underlying MC is neither
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generated nor stored but rather represented using Kronecker products of the
smaller component matrices. This introduces considerable storage savings at the
expense of some overhead in the analysis phase. The concept of using Kronecker
operations to define large MCs underlying structured representations is very
natural for many application areas since complex systems are usually composed
of interacting components. It appears in specification techniques like hierarchical
Markovian models (HMMs) [4], [10], [12], or in compositional Markovian models
such as stochastic automata networks (SANs) [22], [23], [15] and different classes
of superposed Stochastic Petri Nets (SPNs) [14], [19]. In order to analyze large,
structured Markovian models efficiently, various algorithms for vector-Kronecker
product multiplication are devised [15], [11] and used as kernels in iterative
solution techniques proposed for HMMs [4], [5], [8], [9], SANs [25], [26], [5], [11],
and superposed Generalized SPNs [19].

In this paper, we consider the steady-state analysis of HMMs, which consist of
multiple low level models (LLMs) and a high-level model (HLM) that defines the
interaction among LLMs. The HMM formalism is a natural way to describe
complex systems and can be interpreted as an extension of well known specifi-
cation formalisms like QNs, SPNs, or a subclass of SANs which are enhanced by
some information about a hierarchical structure. We introduce the specification
formalism here only by means of a simple example; detailed information can be
found in the literature [4], [5], [10], [12]. However, it should be mentioned that
almost all MCs resulting from practical applications can be represented as HMMs
and this representation can be easily derived from the model specification using an
appropriate modeling tool [3].

Our aim is to solve

pQ ¼ 0;
Xn�1

i¼0
pi ¼ 1; ð1Þ

where Q is the infinitesimal generator or generator matrix (i.e., continuous-time
Markov chain, CTMC) of order n underlying an HMM and p is its (row) sta-
tionary probability vector. We number the states of Q starting from 0 and assume
it is irreducible implying p is also its steady-state vector [25]. The matrix Q has
nonnegative off-diagonal elements known as (exponential) transition rates and
diagonal elements that are negated row sums of its off-diagonal elements; hence,
Q has row sums of zero. We remark that Q is a nonsymmetric matrix, in many
cases having nonzero elements of different magnitudes, and arises in application
areas such as communication systems, computer systems, and manufacturing
systems. Equation (1) can be viewed as a homogeneous linear system with a
singular coefficient matrix of rank ðn� 1Þ subject to a normalization condition so
that its solution vector can be uniquely determined. From p various result mea-
sures of performance or dependability can be derived.

The CTMC underlying an HMM can be expressed using sums of Kronecker
products thereby facilitating the representation of considerably large Markovian
models compactly. It is very important to note that the (nonzero) elements of Q
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underlying the Kronecker representation are never explicitly generated, and
iterative solvers geared towards such representations utilize a specific vector-
Kronecker product multiplication algorithm [15]. Hence, one has a number of
constraints to consider that do not exist when working with flat, sparse matrices.
Recall that we work with very large nonsymmetric matrices that are stored very
compactly. Typically the number of LLMs in an HMM is at least three, implying
a problem dimension of at least four when there are multiple macrostates. Dif-
ferent numerical solvers have been implemented and tested for HMMs [5]. The
most effective solvers known for HMM problems with multiple macrostates and
of dimension four or larger are block successive over-relaxation (BSOR) [8]
preconditioned BiConjugate Gradient STABilized (BiCGStab) [27] and Trans-
pose Free Quasi-Minimal Residual (TFQMR) [16] methods (see [9]) as recently
shown empirically by comparing different solvers on a large number of examples.
Unfortunately, solvers using BSOR are sensitive to the ordering of LLMs, the
block partitionings chosen, and the amount of fill-in in the factorized diagonal
blocks so that a robust implementation for arbitrary models is difficult to achieve.
This paper aims at improving the state-of-the-art in steady-state solvers for such
HMMs using ideas from multigrid [17], [29] and aggregation-disaggregation [25]
techniques.

Multigrid (MG) techniques are iterative algorithms defined on multiple grids of
increasing coarseness for the problem at hand through which the solution process
proceeds in cycles until some predetermined stopping criteria are met. One cycle
of MG consists of the traversal of these grids from the finest to the coarsest and
back to the finest in some order. The finest grid is where the solution vector is
required. The coarser grids are where smaller, approximate versions of the ori-
ginal problem are solved.

The general MG algorithm may be formulated recursively (see the multigrid
algorithm in [24]). As boundary case, a linear system at the coarsest grid is
solved. At intermediate, finer grids there are a number of consecutive recursive
calls to the next coarser grid which are preceded by smoothing, residual com-
putation, and restriction operations and are followed by interpolation (or pro-
longation), correction, and smoothing operations. We will refer to smoothing
operations before the recursive call(s) as pre-smoothing iterations, those after as
post-smoothing iterations, and the method used in the process as the smoother.
At an intermediate grid, for a V-cycle (which is the standard) the number of
recursive calls to the next coarser grid is one, whereas that for a W-cycle is two.
An F-cycle at an intermediate grid is slightly more complicated, but can be
viewed as a recursive call to a W-cycle followed by a recursive call to a V-cycle
on the next coarser grid. The MG idea has been shown to provide effective
solvers for (partial) differential equations when the grids are chosen appropri-
ately.

A multilevel (ML) algorithm inspired by MG has been presented for the steady
state analysis of large, sparse MCs in [18]. Therein the restriction and interpolation
operations of MG are replaced respectively with aggregation and disaggregation
[25], [20], and accordingly residual computation and correction operations are

Multilevel Methods for Kronecker-based Markovian Representations 351



omitted. The number of grids employed in the corresponding ML solver is about
log2n owing it to fact that the number of unknowns in each grid is halved at the
next coarser grid. Unfortunately, this solver is hindered by the sparse generation
and storage of the intermediate aggregated matrices for general MC problems,
which restricts the size of solvable MCs to relatively small state spaces much
smaller than the examples solved with the method presented here. Additionally, the
method is often not more efficient than SOR due to the overhead for the com-
putation of the aggregated matrices in each ML cycle (see [7] for an empirical
comparison).

The Kronecker structure of an HMM suggests a natural definition for the grids.
Since HMM components form a hierarchy, one grid can be associated with each
level of the hierarchy implying as many grids as the number of LLMs plus one for
the HLM when it has multiple states (that is, the case of multiple macrostates).
With this choice of grids, if one replaces the restriction and interpolation oper-
ations respectively with aggregation and disaggregation, then residual computa-
tion and correction operations disappear from the MG algorithm as in [18] and
one can still utilize the Kronecker structure on intermediate aggregated matrices.
This has the advantage that generator matrices of CTMCs at intermediate grids
never need to be generated since they are defined by slightly modifying the
Kronecker representation. Such a view formed the basis of the ML algorithm in
[6] for HMMs with one macrostate whose generators can be represented as sums
of Kronecker products. The particular ML solver therein employed a V-cycle and
could use either the power or the Jacobi over-relaxation (JOR) method as
smoother.

This paper extends the ML solver in [6] to HMMs with multiple macrostates
and with the capability of using (V, W, F) cycles, (power, JOR, SOR) methods
as smoothers, and (fixed, cyclic, dynamic) orders in which LLMs can be
aggregated in a cycle. Then it provides the results of numerical experiments on a
set of HMMs showing that the ML method with SOR smoother provides the
most effective solver for HMMs with multiple macrostates so far and is in fact
the most effective solver currently available for considerably large CTMCs with
a generator that cannot be held in sparse format in main memory. Even for
smaller CTMCs where the generator can be stored as a sparse matrix in main
memory, ML solvers exploiting the Kronecker representation demonstrate a
performance comparable to the performance of the most effective solvers for
sparse matrices [7]. The storage requirements of the proposed solver can be
forecasted from the HMM description and are nearly insensitive to the ordering
of LLMs to the contrary of BSOR preconditioned projection methods. Note
that in the proposed solver, the smoother is used with matrices that are
recomputed at each cycle and held in Kronecker form. The nonzero elements in
these matrices are never explicitly generated. Therefore, we are restricted to
using smoothers that are formulated for sums of Kronecker products, that are
not based on factorizations, and that do not benefit from the values of the
nonzero elements in the matrices. In other words, the smoother should be as
simple as possible.
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The next section introduces the Kronecker-based description of CTMCs under-
lying HMMs on a model from the literature. The third section presents the
proposed class of ML methods for HMMs with multiple macrostates and dis-
cusses how they work. The fourth section provides results of numerical experi-
ments. The fifth section concludes the paper.

2. Hierarchical Markovian Models

We introduce HMMs on an example from the literature so that the inherent
structure of the Kronecker representation and ideas related to multigrid and
iterative aggregation-disaggregation can be closely observed. Yet, the interested
reader can find a formal definition and detailed examples of HMMs in [5, pp.
387–390]. We recall that the Kronecker product of two matrices A 2 IRrA�cA

and B 2 IRrB�cB results in the matrix U 2 IRrArB�cAcB , which is written as
U ¼ A� B and whose elements satisfy uiArBþiB;jAcBþjB ¼ aiA;jA biB;jB [28]. The

Kronecker sum of two square matrices E 2 IRrE�rE and F 2 IRrF�rF results in
the matrix V 2 IRrErF�rErF , which is written as V ¼ E � F and defined in terms
of two Kronecker products as V ¼ E � IrF þ IrE � F . Here IrE and IrF respec-
tively denote identity matrices of orders rE and rF . Oberserve that Kronecker
operations are asssociative such that they can be naturally defined for more
than two matrices. Kronecker operations realize a linearization of a multi-
dimensional state space. Thus, the Kronecker product/sum of K matrices
describes transitions in a K-dimensional state space which are mapped
onto transitions in a one-dimensional state space [28]. Observe that the Kro-
necker product A� B is an rA � cA block matrix. Therefore, it can be perceived
as a two-grid. The Kronecker product of K matrices defines a nested block
partitioning having ðK � 1Þ intermediate levels and can be perceived as a
K-grid.

Example 1: We consider a model of the multiserver multiqueue discussed in [1]
and name it as msmq medium. The model consists of the HLM and five LLMs,
each corresponding to a finite queue of capacity 5. Customers arrive at each
queue according to a Poisson process and those that arrive at a full queue get
lost. There are 2 servers serving the 5 queues in a round-robin manner. The state
space of the HLM is defined by considering the distribution of servers among
the LLMs, resulting in 15 HLM states (two servers distributed among 5 LLMs).
When a server arrives at a queue with customers, it serves the customer at the
head of the queue and travels to the next queue in line. A server that arrives to
an empty queue, immediately moves to the next queue in line. Service times at
queues and traveling times from one queue to the next are exponentially dis-
tributed. Note that there can be two servers simultaneously serving two different
customers at the same queue. The structure of the model is shown in Fig. 1. The
figure depicts the state in which the first server is serving the first queue and the
other server travels from the fourth to the fifth queue. Each LLM describes a
queue together with the arrival and service process, and has 32 states. The state
space of each LLM is partitioned into three subsets depending on the number of
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servers momentarily serving the corresponding queue or traveling from the
particular queue to the next in line. With zero servers at the queue we have 6
LLM states describing the queue with population 0 through 5, with one server
we have 11 states (i.e., 6 states when the server travels to the next queue and 5
states when the server is serving which requires at least one customer), and with
two servers we have 15 states. All states are numbered starting from 0. We name
the states of the HLM as macrostates and those of Q as microstates. The
mapping between LLM states and HLM states is given in Table 1. Macrostates
in an HLM may have different numbers of microstates when LLMs have par-
titioned state spaces, as in this example. For more information about the HMM
components in this example and the corresponding matrices, see [5, pp. 390–
392].

Six transitions denoted by t0, t1, t2, t3, t4, and t5 take place in the HLM and affect
the LLMs. Transition t0 covers all local transitions inside the LLMs, whereas
transitions ti describe the movement of a server from queue i to iþ 1, for
0 < i < 5; and from queue 5 to 1, when i ¼ 5. The transitions t1; . . . ; t5 are cap-
tured by the following ð15� 15Þ HLM matrix which will define the coarsest grid
in the ML solver:

Table 1. Mapping between LLM states and HLM states in msmq medium

1HLM LLM 1 LLM 2 LLM 3 LLM 4 LLM 5 # of microstates

0 17:31 0:5 0:5 0:5 0:5 15. 6. 6. 6. 6 = 19,440
1 6:16 6:16 0:5 0:5 0:5 11. 11. 6. 6. 6 = 26,136
2 6:16 0:5 6:16 0:5 0:5 11. 6. 11. 6. 6 = 26,136
3 6:16 0:5 0:5 6:16 0:5 11. 6. 6. 11. 6 = 26,136
4 6:16 0:5 0:5 0:5 6:16 11. 6. 6. 6. 11 = 26,136
5 0:5 17:31 0:5 0:5 0:5 6. 15. 6. 6. 6 = 19,440
6 0:5 6:16 6:16 0:5 0:5 6. 11. 11. 6. 6 = 26,136
7 0:5 6:16 0:5 6:16 0:5 6. 11. 6. 11. 6 = 26,136
8 0:5 6:16 0:5 0:5 6:16 6. 11. 6. 6. 11 = 26,136
9 0:5 0:5 17:31 0:5 0:5 6. 6. 15. 6. 6 = 19,440
10 0:5 0:5 6:16 6:16 0:5 6. 6. 11. 11. 6 = 26,136
11 0:5 0:5 6:16 0:5 6:16 6. 6. 11. 6. 11 = 26,136
12 0:5 0:5 0:5 17:31 0:5 6. 6. 6. 15. 6 = 19,440
13 0:5 0:5 0:5 6:16 6:16 6. 6. 6. 11. 11 = 26,136
14 0:5 0:5 0:5 0:5 17:31 6. 6. 6. 6. 15 = 19,440

serve move

LLM1

serve move

LLM3

serve move

LLM2

serve move

LLM5

serve move

LLM4

Fig. 1. Structure of the MSMQ example
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: ð2Þ

To each transition in the HLM matrix corresponds a Kronecker product of five
(i.e., number of LLMs) LLM matrices. The matrices associated with those LLMs
that do not participate in a transition are all identity. LLM 1 participates in t1 and

t5 respectively with the matrices Qð1Þt1 and Qð1Þt5 ; LLM 2 participates in t1 and t2

respectively with the matrices Qð2Þt1 and Qð2Þt2 ; LLM 3 participates in t2 and

t3 respectively with the matrices Qð3Þt2 and Qð3Þt3 ; LLM 4 participates in t3 and t4

respectively with the matrices Qð4Þt3 and Qð4Þt4 ; and LLM 5 participates in t4 and

t5 respectively with the matrices Qð5Þt4 and Qð5Þt5 . In general, these matrices are very
sparse and therefore held in row sparse format [25]. In this example, each of the
transitions t1, t2, t3, t4, t5 affects exactly two LLMs. For instance, the Kronecker
product associated with t5 in element (4,0) of the HLM matrix in Eq. (2) is

Qð1Þt5 ð6 : 16; 17 : 31Þ � I6 � I6 � I6 � Qð5Þt5 ð6 : 16; 0 : 5Þ;

where Qð1Þt5 ð6 : 16; 17 : 31Þ denotes the submatrix of Qð1Þt5 that lies between states 6
through 16 rowwise and states 17 through 31 columnwise, I6 denotes the identity

matrix of order 6, Qð5Þt5 ð6 : 16; 0 : 5Þ denotes the submatrix of Qð5Þt5 that lies between
states 6 through 16 rowwise and states 0 through 5 columnwise. Hence, this
particular Kronecker product yields a ð26; 136� 19; 440Þ matrix. The rates
associated with the 25 transitions in (2) are all 1 in this example. The transition
rates are scalars that multiply the corresponding Kronecker products.

Other than Kronecker products due to the transitions in (2), there is a Kronecker
sum implicitly associated with each diagonal element of the HLM matrix. Each
Kronecker sum is formed of five LLM matrices corresponding to local transition
t0. For instance, the Kronecker sum associated with element (5,5) of the HLM
matrix is
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Qð1Þt0 ð0 : 5;0 : 5Þ�Qð2Þt0 ð17 : 31;17 : 31Þ�Qð3Þt0 ð0 : 5;0 : 5Þ�Qð4Þt0 ð0 : 5;0 : 5Þ�Qð5Þt0 ð0 : 5;0 : 5Þ:

Each Kronecker sum is a sum of five Kronecker products in which all but one of
the matrices are identity [25]. The non-identity matrix in each Kronecker product
appears in the same position as in the Kronecker sum. That state changes do not
take place in any but one of the LLM matrices with t0 in each such Kronecker
product is the reason behind naming t0 a local transition. The particular
Kronecker sum associated with element (5,5) of the HLM matrix is
ð19; 440� 19; 440Þ.

In the HLM matrix of msmq medium, there do not exist any non-local transitions
along the diagonal. In general, this need not be so. Therefore, we introduce the
following definition.

Definition 1: In a given HMM, let K be the number of LLMs, S
ðkÞ
j be the subset of

states of LLM k mapped to macrostate j, Ti;j be the set of LLM non-local tran-
sitions in element ði; jÞ of the HLM matrix, rateteði; jÞ be the rate associated with
transition te 2Ti;j, and Dj be the diagonal (correction) matrix that sums the rows
of Q corresponding to macrostate j to zero. Then the diagonal block ðj; jÞ of Q
corresponding to element ðj; jÞ of the HLM matrix is given by

Qj;j ¼a
K
k¼1Q

ðkÞ
t0 ðS

ðkÞ
j ;S

ðkÞ
j Þ þ

X

te2Tj;j

rateteðj; jÞb
K

k¼1
QðkÞte ðS

ðkÞ
j ;S

ðkÞ
j Þ þ Dj; ð3Þ

and, when there are multiple macrostates, the off-diagonal block ði; jÞ of Q corre-
sponding to element ði; jÞ of the HLM matrix is given by

Qi;j ¼
X

te2Ti;j

rateteði; jÞb
K

k¼1
QðkÞte ðS

ðkÞ
i ;S

ðkÞ
j Þ: ð4Þ

When there are multiple macrostates, Q is a block matrix having as many blocks
in each dimension as the number of macrostates (i.e., order of the HLM matrix).
The diagonal of Q is formed of its negated off-diagonal row sums, and may be
stored explicitly or can be generated as needed.

Each row/column in matrix Q has a two-dimensional address, namely the block
number and the state number in the block. At the model level, state ði; xÞ with
macrostate i and detailed state x is characterized by a Kþ one-dimensional vector

ði; x1; . . . xKÞ such that x ¼
PK

k¼1 xk �
QK

j¼kþ1 njðiÞ
� �

; where njðiÞ ¼ jSðjÞi j and xk is

the number of the state in S
ðkÞ
i when states are number consecutively 0 through

jSðjÞi j � 1.

In Example 1, the second term in Eq. (3) is missing. Although Q in msmq medium
is of order 358,560 and has 2,135,160 nonzeros, its Kronecker representation
needs to store 1 HLM matrix having 25 nonzeros and 15 LLM matrices (since
identity matrices are not stored) having a total of 370 nonzeros. This is a sub-
stantial saving in storage.

356 P. Buchholz and T. Dayar



If we neglect the diagonal of Q which is handled separately, from Definition 1 it
follows that each nonzero element of the HLM matrix is essentially a sum of
Kronecker products. This has a very nice implication on the choice of grids in the
proposed ML solver when component aggregation is used in forming the coarser
grids. The HLM and LLMs 1 through K define the least coarsest (in other words,
the finest) grid. This grid is Q. Since the HLM holds the LLMs together, it will
define the coarsest grid, which is not aggregated. Regarding the intermediate
grids, let us assume that LLMs are aggregated starting from 1 up to K. Then the
HLM and LLMs 2 through K define the first coarser grid when LLM 1 is
aggregated. The HLM and LLMs 3 through K define the second coarser grid
when LLMs 1 and 2 are aggregated; and so on. We consider a form of aggregation
in which all grids are irreducible and have row sums of zero. In the K þ 1-
dimensional structure of the CTMC aggregation means to freeze the probability
distribution in one dimension and consider in the other dimensions aggregated
probability flows according to the frozen dimension. For our example this implies
that for an aggregated LLM the distribution of the buffer population is fixed.
However, there could be different distributions for each state of the rest of the
system.

The Kronecker representation having naturally defined K þ 1 ðKÞ grids when
there are multiple (single) macrostate(s) in the HMM, let us concentrate on the
sizes of the grids defined by the HLM and LLMs for the assumed order in which
LLMs are aggregated. In Example 1, the grids defined in this way by HLM, HLM
and LLM 5, HLM and LLMs 4-5, HLM and LLMs 3-5, HLM and LLMs 2-5,
HLM and LLMs 1-5 have respectively the sizes (15� 15), (119� 119),
(913� 913), (6; 822� 6; 822), (49; 896� 49; 896), (358; 560� 358; 560) (see Table
1 and Eqs. (3)–(4)). Obviously, one is not restricted to aggregating LLMs in the
order 1 through K, and can consider other orders. The number of possible orders
equals K!. In the next section, we introduce the ML method with the grid choices
suggested by the Kronecker structure of HMMs and remark that the grids are
never explicitly generated.

3. ML Methods for HMMs with Multiple Macrostates

The class of ML methods introduced in this section for HMMs with multiple
macrostates have the capability of using (V, W, F) cycles, (power, JOR, SOR)
methods as smoothers, and (fixed, cyclic, dynamic) orders in which LLMs can be
aggregated in a cycle. These parameters are respectively denoted by C, S, and O.
We remark that C 2 fV ;W ; F g, S 2 fPOWER; JOR; SORg, and O 2 fFIXED;
CYCLIC;DYNAMICg. In a particular ML solver, C, S, and O are fixed at the
beginning.

In Algorithm 1, we give the recursive ML function that is invoked for LLMs. It is
the driver in Algorithm 2 where the particular ML solver starts executing at the
finest grid involving the HLM and all the LLMs, and then invokes the recursive
ML function with the order of aggregation in the list C. Each pass through the
body of the repeat-until loop in Algorithm 2 corresponds to one cycle of the ML
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method. One will notice that steps 3–9 in Algorithm 1 are almost identical to the
statements between step 3 and 4 in Algorithm 2. Nevertheless, Algorithm 2 is
coded separately since the finest grid is treated somewhat differently as we next
explain.

The order of aggregating LLMs in each ML cycle is determined by the list J
defined in Algorithm 2. The elements of J from its head to its tail are denoted
respectively by J1;J2; . . . ;JKþ1. The subscripts of these elements indicate their
orders inJ. In each ML cycle, HLM is always the last model to be handled due to
its special position in the hierarchy. Hence, JKþ1 is given the value K þ 1 and is
associated with the HLM; this never changes. Initially, LLM k is associated with
element Jk which has the value k for k ¼ 1; 2; . . . ;K (see step 1 of Algorithm 2).
In each ML cycle, LLMs are aggregated according to these values starting from
the element at the head of the list (see the second statement in the repeat-until
loop of Algorithm 2). Hence, LLM J1 is the first LLM to be aggregated.

In the FIXED order of aggregating LLMs, the initial assignment of values to the
elements of J does not change after the ML method starts executing; this is the
default order. In the CYCLIC order, at the end of each ML cycle a circular shift of
elements J1 through JK in the list are performed; this ensures some kind of
fairness in aggregating LLMs in the next ML cycle. On the other hand, the
DYNAMIC order sorts the elements J1 through JK according to the residual
norms projected (or restricted) to the corresponding LLM at the end of the ML
cycle, and aggregates the LLMs in this sorted order in the next ML cycle (see step
8 of Algorithm 2). This ensures that LLMs which have smaller residual norms are
aggregated earlier at finer grids. We expect small residual norms to be indicative
of good approximations in those components. Note that at each intermediate
grid, the recursive ML function is invoked for the next coarser grid with the list of
LLMs in C which is formed by removing the LLM at the head of the incoming list
D by aggregation (see step 4 in Algorithm 1). Once the list of LLMs is exhausted,
that is K þ 1 is the only value remaining in the list D, backtracking from the
recursion starts by solving a linear system as large as the HLMmatrix (see the first
if statement in Algorithm 1).

Algorithm 1: Recursive ML function on LLMs in D

function MLðQD; xD;D; cÞ
ifðjDj ¼¼ 1Þthen

yD ¼ solveðQD; xDÞ; ðstep 1Þ
ifðC ¼¼ F Þthen ðstep 2Þ

c ¼ 1;

else

xD ¼ SðQD; xD;w;MIN IN PRE;MAX IN PRE; q;RES COUNT ; g1Þ; ðstep 3Þ
C ¼ D� ½headðDÞ�; ðstep 4Þ
compute QC from QD and xD; ðstep 5Þ
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xCðsCÞ ¼
X

sD2SD;projðsD;D;CÞ¼¼sC

xDðsDÞfor all sC 2SC; ðstep 6Þ

ifðc ¼¼ 1Þthen ðstep 7Þ
yC ¼ MLðQC; xC;C; cÞ;

else

yC ¼ MLðQC; xC;C; cÞ;
yC ¼ MLðQC; xC;C; cÞ;

yDðsDÞ ¼ xDðsDÞ
yCðprojðsD;D;CÞÞ
xCðprojðsD;D;CÞÞ

for all sD 2 SD; ðstep 8Þ

yD ¼ SðQD; yD;w;MIN IN POST ;MAX IN POST ; q;RES COUNT ; g2Þ; ðstep 9Þ
return ðyDÞ;

Now we discuss the operation that computes the next coarser grid QC from the
grid QD using the vector xD (see step 5 in Algorithm 1) by aggregating the
component at the head of list D (i.e., headðDÞ) and thus forming the list of
components in C. This implies that matrix entries in QC depend on vector xD and
will be different in every step of the algorithm. LetSD andSC respectively denote
the state spaces of components in D and C. A positive number of states sD 2SD

are projected to each state sC 2SC. We represent this in the algorithms as
9sD 2SD; projðsD;D;CÞ ¼¼ sC for all sC 2SC. We also remark that there are
no unreachable states in HMMs and their underlying CTMCs are always irre-
ducible. Hence, this projection is surjective (or onto).

Algorithm 2: ML driver

mainðÞ
J ¼ ½1; 2; . . . ;K þ 1�; x ¼ initial approximation; it ¼ 0; cyc ¼ 0; stop ¼ FALSE;

ðstep 1Þ
ifðC ¼¼ W or C ¼¼ F Þ then ðstep 2Þ

c ¼ 2;

else

c ¼ 1;

repeat ðstep 3Þ
x ¼ SðQ; x;w;MIN OUT PRE;MAX OUT PRE;q;RES COUNT ; m1Þ;
C ¼ J� ½headðJÞ�;
compute QC from Q and x;

xCðsCÞ ¼
X

s2S;projðs;J;CÞ¼¼sC

xðsÞ for all sC 2SC;

ifðc ¼¼ 1Þ then
yC ¼ MLðQC; xC;C; cÞ;
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else

yC ¼ MLðQC; xC;C; cÞ;
yC ¼ MLðQC; xC;C; cÞ;

yðsÞ ¼ xðsÞ yCðprojðs;J;CÞÞ
xCðprojðs;J;CÞÞ for all s 2 S;

y ¼ SðQ; y;w;MIN OUT POST ;MAX OUT POST ; q;RES COUNT ; m2Þ;
ifðC ¼¼ F Þ then ðstep 4Þ

c ¼ 2;

x ¼ y; it ¼ it þ m1 þ m2; cyc ¼ cycþ 1; ðstep 5Þ
normalizeðxÞ; r ¼ xQ; ðstep 6Þ
ifðit � MAX IT or time � MAX TIME or krk � STOP TOLÞ ðstep 7Þ

stop ¼ TRUE;

else

ifðO ¼¼ DYNAMICÞ then ðstep 8Þ
sort LLM indi- cesJ1;J2; . . . ;JK into increasing order of krkk;
where rk is the residual associated with LLM k and is computed from r;

else if ðO ¼¼ CYCLICÞ then
circular shiftðJ1;J2; . . . ;JKÞ;

untilðstopÞ;
take x as the steady-state vector p of the HMM;

For each state sC 2 SC, the columns of the grid QD corresponding to the states
in SD that get projected to the same state sC are summed. This yields a column
aggregated grid whose row sums are zero given that QD has row sums of zero.
For each state sC 2SC, the rows of this column aggregated grid corresponding
to the states in SD that are projected to the same state sC are multiplied with
the corresponding elements of the row vector xD and summed. This yields the
square grid QC which has row sums of zero regardless of the norm of xD. We
remark that the grid QC is irreducible as long as xD > 0 and QD is irreducible
(see also [6, pp. 346–348]). In practice, QC is not explicitly generated; instead it
is represented as a sum of Kronecker products of matrices in C and an addi-
tional vector of a length equal to the number of states in SC for each non local
transition to capture the effect of aggregated LLMs. A formal representation of
the aggregated matrix can be found in [6, p. 347] for HMMs with one mac-
rostate. This representation is valid for every submatrix of QC in case of mul-
tiple macro states. Note that the tail of C has the value K þ 1 corresponding to
the HLM. These vectors are used so as to facilitate the operations on the
coarser grid QC in the recursive ML function. Hence, 25 vectors need to be kept
for each intermediate grid except the coarsest in Example 1. Since these vectors
are generally much shorter than n, they do not bring considerable storage
overhead to the ML method.
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The aggregation on the columns of QD is also performed on the columns of the
row vector xD yielding the vector xC > 0 when xD > 0 (see step 6 in Algorithm 1).
In [6, p. 348] it has been shown that xC is the stationary vector of QC if xD is the
stationary vector of QD. Step 8 in Algorithm 1 corresponds to the opposite of
what is done in step 6; that is, it performs disaggregation using xD, xC, and the
newly computed vector yC to obtain the vector yD. Similar aggregation and dis-
aggregation operations are performed in Algorithm 2 at the finest grid Q.

The variable c in the two algorithms determines the number of recursive calls to
the ML function. In step 2 of the initialization statements before the repeat-until
loop in Algorithm 2, c is set to 2 for a W- or an F- cycle and set to 1 for a V-cycle.
After this point, there are two places where the value of c changes, and these
happen only for an F-cycle. Hence, for a V-cycle c remains 1 and for a W-cycle it
remains 2, meaning for V- and W-cycles respectively 1 and 2 recursive calls are
made to the ML function on the next coarser grid. On the other hand, for an F-
cycle c is set to 1 at the boundary case of the recursion (see step 2 in Algorithm 1).
Recall that an F-cycle can be seen as a recursive call to a W-cycle followed by a
recursive call to a V-cycle. After the F-cycle is over, c is reset to 2 in step 4 of
Algorithm 2 so as to be ready for a new cycle [29, pp. 174–175].

Each ML cycle starts and ends with some number of iterations using the smoother
S. See the two statements right after step 3 and right before step 4 in Algorithm 2,
respectively. The same is true for each execution of the recursive ML function at
intermediate grids as can be seen in steps 3 and 9 of Algorithm 1. The first two
arguments of the call to the smoothers in both algorithms represent respectively the
grid to be used in the smoothing process and the vector to be smoothed. The user is
given the flexibility to specify different numbers of pre- and post-smoothings in the
two algorithms. Hence, we have the nonnegative integer pairs of parameters
ðMIN OUT PRE;MAX OUT PREÞ, ðMIN OUT POST ;MAX OUT POST Þ for the
finest grid handled by Algorithm 2, and ðMIN IN PRE;MAX IN PREÞ,
ðMIN IN POST ;MAX IN POST Þ for the coarser intermediate grids handled by
Algorithm 1.

For each pair of parameters ðMIN 	;MAX 	Þ, S performs MAX 	 smoothings
when MIN 	 � MAX 	. When MIN 	 < MAX 	, S performs an adaptive number
of smoothings using the two parameters q and RES COUNT as follows. Upon
entry to the smoother, the residual norm of the current solution vector is com-
puted and recorded. Then MIN 	 smoothings are performed and the residual
norm of the solution vector is recomputed. If the ratio of the two residual norms is
less than q, then S stops executing; otherwise, smoothings continue till MAX 	
iterations or the ratio of residual norms of two solution vectors RES COUNT
iterations apart are less than q. Note that the computation of the residual vector
requires an extra implicit vector-grid multiply when S is SOR. However, this is
performed only every RES COUNT smoothings once the smoother is beyond
MIN 	 smoothings. The parameter w in the call to the smoother is the relaxation
parameter for JOR and SOR. The parameters ðm1; m2Þ and ðg1; g2Þ can be used to
keep track respectively of the number of (pre-, post-) smoothings at the finest and
coarser grids.
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We start the ML iteration with x set to the uniform distribution. At the end of
each ML cycle the solution vector x is normalized and the residual vector r ¼ xQ is
computed. Global convergence of iterative aggregation-disaggregation on
CTMCs with the possibility of using iterative methods to solve the aggregated
matrices appears in [21]. This result suggests that as long as a sufficient number of
smoothings are performed at each grid, the ML method should converge. See also
the related comments in [6, p. 350]. The ML iteration continues until the total
number of smoothings at the finest grid (i.e., it) exceeds MAX IT , the CPU time
exceeds MAX TIME, or the residual norm of the solution vector (i.e., krk) meets
the prespecified stopping tolerance, STOP TOL. At that point, x is taken as the
approximation of the steady state vector p. The variable cyc counts the number of
ML cycles performed until stopping in case this information cannot be obtained
from it. Note that this is possible for an adaptive number of pre- or post-
smoothings at the finest grid. Finally, we remark that the smoothers of choice
require two vectors of length n and two vectors (three in SOR) as long as the
maximum number of microstates per macrostate in the HMM. One of the vectors
of length n in SOR is required for the computation of residuals in the im-
plementation of DYNAMIC ordering of LLMs for aggregation. The next section
presents numerical results with the proposed class of ML solvers.

4. Numerical Experiments

We implemented the ML method as discussed in the previous section in C as part
of the APNN toolbox [3], [2]. Now the toolbox has three ML solvers named
ML_POWER, ML_JOR, and ML_SOR depending on the smoother used. We
report the results of three sets of numerical experiments although other experi-
ments that provide results along the same direction have also been performed.

First are the results of the msmq medium problem introduced in Example 1 and the
courier medium problem [8], which are discussed in the next subsection. In these
medium sized problems, we compare the results of ML solvers among each other
and with those of STR_POWER, STR_JOR, STR_RSOR, which respectively
implement power, JOR, SOR methods, and also with those of STR_BSOR,
BSOR_BICGSTAB, and BSOR_TFQMR available in the APNN toolbox. Here,
STR_BSOR is the two-level version of the BSOR solver in [8] that takes ad-
vantage of various techniques to reduce the amount of fill-in when factorizing
diagonal blocks of the chosen partitioning. The solvers BSOR_BICGSTAB and
BSOR_TFQMR are respectively BSOR preconditioned versions of the projection
methods BiCGStab and TFQMR in [9]. To the best of our knowledge, BSOR_-
BICGSTAB and BSOR_TFQMR are the most competitive solvers for HMMs
with multiple macrostates when they utilize favorable block partitionings.

Second are the results of experiments that shed light to the scalability of the ML
method. These appear in Subsect. 4.2. Having observed in a multitude of ex-
periments that SOR performs best among the three smoothers, we run ML_SOR
on different dimensioned versions of the msmq problem and compare the results
with those of STR_RSOR.
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Third are the results of experiments in Subsect. 4.3 on three problems named
msmq large, courier large, and qh realcontrol, again with multiple macrostates,
using ML_SOR, STR_RSOR, STR_BSOR, BSOR_BICGSTAB, and
BSOR_TFQMR. The first two of these problems are larger versions of the two
problems used in the first set of experiments in Subsect. 4.1. The medium version
of the msmq problem has been discussed in detail in Sect. 2. We introduce the
medium version of the courier problem in Subsect. 4.1.

The characteristics of the three problems used in Subsect. 4.3 are given in Table 2.
For each of them, we provide the macrostates (HLM states), the number of
nonzeros in the HLM matrix (nzHLM ) and their values (rates), the state space
partition of each LLM (LLM states), the number of LLM matrices (LLM ma-
trices), the total number of nonzeros in LLM matrices (nzLLMs), the transitions in
the off-diagonal part (Tði; jÞ; i 6¼ j) and the diagonal part (Tðj; jÞ) of the HLM
matrix, the number of states (n) and the number of nonzeros (nz) of the underlying
CTMC.

The CTMCs underlying all problems in this paper are irreducible. The techniques
proposed in [8] to reduce the amount of fill-in require modest storage for the
factors of the diagonal blocks in BSOR and BSOR preconditioned projection
methods in these problems. Albeit smaller, qh realcontrol is known to be rather
difficult to solve. BSOR preconditioned projection methods perform particularly
well on this problem. Hence, the results of the last set of experiments will espe-
cially indicate the effectiveness of the class of ML solvers.

In each set of experiments we use w ¼ 1:0 wherever required, implying Jacobi,
Gauss-Seidel (GS), and block GS (BGS) methods rather than JOR, SOR, and
BSOR, respectively. Furthermore, as smoother parameters in the ML solvers we
let

Table 2. Benchmark problems

Attribute msmq large courier large qh realcontrol

HLM states f0 : 34g f0 : 12g f0 : 8g
nzHLM 75 65 18

ðrates 2 f10gÞ ðrates 2 f1; 1449:3; 4821:6; 8771:9gÞ ðrates 2 f10; 000gÞ
LLM 1 states f0 : 6; 7 : 19; f0 : 29g f0 : 76; 77 : 123;

20 : 37; 38 : 59g 124 : 170; 171 : 202g
LLM 2 states f0 : 6; 7 : 19; f0; 1 : 140; 141; 142 : 201; 202; f0 : 61; 62 : 99;

20 : 37; 38 : 59g 203 : 222; 223; 224 : 227; 228g 100 : 137; 138 : 163g
LLM 3 states f0 : 6; 7 : 19; f0 : 321; 322 : 326; 327 : 470; f0 : 56; 57 : 91;

20 : 37; 38 : 59g 471 : 474; 475 : 526; 527 : 529; 92 : 126; 127 : 150g
530 : 542; 543 : 544; 545g

LLM 4 states f0 : 6; 7 : 19; f0 : 14g None
20 : 37; 38 : 59g

LLM 5 states f0 : 6; 7 : 19; None None
20 : 37; 38 : 59g

LLM matrices 15 14 15
nzLLMs 790 2,333 1,486

Tði; jÞ, i 6¼ j ft14; t15; t16; t17; t18g ft0; t28; t29; t30g ft17; t18; t19; t21; t24; t27g
Tðj; jÞ None ft17,t23g None

n 2,945,880 1,632,600 399,476
nz 19,894,875 9,732,330 1,871,004

Multilevel Methods for Kronecker-based Markovian Representations 363



fð1; 1; 1; 1; 1; 1; 1; 1Þ;
ðMIN IN PRE; ð3; 3; 3; 3; 1; 1; 1; 1Þ;
MAX IN PRE; ð1; 1; 1; 1; 3; 3; 3; 3Þ;
MIN IN POST ; ð3; 3; 3; 3; 3; 3; 3; 3Þ;
MAX IN POST ; 2 ð5; 5; 5; 5; 1; 1; 1; 1Þ;
MIN OUT PRE; ð1; 1; 1; 1; 5; 5; 5; 5Þ;
MAX OUT PRE; ð5; 5; 5; 5; 5; 5; 5; 5Þ;
MIN OUT POST ; ð10; 10; 10; 10; 1; 1; 1; 1Þ;
MAX OUT POST Þ ð1; 1; 1; 1; 10; 10; 10; 10Þ;

ð10; 10; 10; 10; 10; 10; 10Þg

in the cases where a fixed number of smoothings are performed. Besides, we set
RES COUNT ¼ 2 and q ¼ 0:9, and let (MIN IN PRE, MAX IN PRE, MIN IN ,
POST , MAX IN POST , MIN OUT PRE, MAX OUT PRE, MIN OUT POST ,
MAX OUT POST ) 2 fð1; 3; 1; 3; 1; 1; 1; 1Þ, ð1; 5; 1; 5; 1; 1; 1; 1Þ, ð1; 10; 1; 10; 1;
1; 1; 1Þg to experiment with an adaptive number of inner pre- and post-smoothing
iterations. For each setting of the smoother parameters, we experiment with
ðV ;W ; F Þ cycles and (FIXED, CYCLIC, DYNAMIC) ordering of LLMs for aggre-
gation. Hence, we perform ð10þ 3Þ � 3� 3 ¼ 117 experiments per smoother.

All experiments are performed on a 550 MHz Pentium III processor and a 1
GBytes main memory under Linux. The large main memory is necessary due to
the large number of vectors of length n used in BSOR preconditioned projection
methods. All times are reported as seconds of CPU time. In Tables 4 through 7,
we report the times spent in setup and iterative parts of the solvers respectively
under columns Setup and Solve, and indicate the fastest solvers in bold. For each
smoother, we list the best three ML solvers out of the 117 considered. The it
column indicates the number of (outer) iterations it takes the solvers to stop and
the res column indicates the infinity norm of the residual upon stopping. We set
MAX IT ¼ 1; 000, MAX TIME ¼ 1; 000 seconds, and STOP TOL ¼ 10�8 in all
solvers. In BSOR_BICGSTAB and BSOR_TFQMR, each pass through the body
of the code counts as two iterations rather than one since two vector-matrix
products are computed. We choose to normalize the solution vector and compute
the residual every 10 iterations in the solvers STR_POWER, STR_JOR,
STR_RSOR and STR_BSOR.

For the problems in which convergence is observed due to the stopping tolerance
of 10�8 but the norm of the residual is found to be larger than 10�8, we continued
the iterative process by decreasing the stopping tolerance one order of magnitude
at a time until we encountered a residual norm less then 10�8. Such a situation is
witnessed among BSOR preconditioned projection methods since we work with
unnormalized solution vectors and the underlying CTMCs are not scaled. Recall
that the system we solve is singular and a non-scaled coefficient matrix with
considerably large entries may result in the residual norm being larger than what
the (unnormalized) solution vector actually implies (see [13, p. 1697]) especially
when convergence takes place rapidly. In only one of the problems we are not able
to reduce the residual norm below 10�8 by iterating in this manner, and that
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happens to be with the BSOR_TFQMR solver in qh realcontrol in Subsect. 4.3,
where the residual norm is computed to be 1:2� 10�8.

4.1. Performance of ML Solvers on msmq medium and courier medium

Other than msmq medium, in this subsection we consider a typical benchmark
from the literature which is introduced in [30]. We name this model as
courier medium. Its HLM, which has 10 states, describes the interaction among
four LLMs. LLM 1 has 15 states, LLM 2 has 217 states, LLM 3 has 88 states,
and LLM 4 has 30 states. The state spaces of LLM 2 and 3 are respectively
partitioned as 0:1, 2, 3:5, 6:18, 19:22, 23:74, 75:216 and 0, 1, 2:5, 6, 7:26, 27,
28:87. In the particular HLM under consideration, six transitions denoted by t0
through t5 take place and affect the LLMs. LLM 2 and 3 each participates in
four transitions while each of the other two LLMs participates in one transi-
tion. Contrary to msmq medium, the HLM matrix of courier medium has non-
local transitions along its diagonal. The rates associated with all HLM
transitions are 1. Although the underlying CTMC has 419,400 states and
2,281,620 nonzeros, the Kronecker representation associated with the HMM
needs to store 1 HLM matrix having 47 nonzeros and 14 LLM matrices having
a total of 845 nonzeros. Note that medium sized problems have in the order of
100,000 states.

In Tables 3 and 4, we provide the results of numerical experiments with the
msmq medium and courier medium problems, respectively. The setup times of the
ML solvers are all negligible. The courier medium problem seems to be more
difficult to solve than msmq medium due to the longer time it takes to be solved by
a particular solver, and benefits relatively more from a larger number of pre- and
post-smoothings at intermediate grids in ML solvers. The ML_POWER and

Table 3. ML method on msmq medium

Solver it res Setup Solve

STR_POWER 1,000 10�5 0 303
ML_POWER(3,3,3,3,1,1,1,1), CYCLIC, W 52 10�9 0 45
ML_POWER(5,5,5,5,1,1,1,1), CYCLIC, W 46 10�9 0 48
ML_POWER(5,5,5,5,1,1,1,1), DYNAMIC, W 44 10�9 0 47

STR_JOR 720 10�9 0 237
ML_JOR(3,3,3,3,1,1,1,1), CYCLIC, W 26 10�9 0 23
ML_JOR(3,3,3,3,1,1,1,1), CYCLIC, F 32 10�9 0 28
ML_JOR(5,5,5,5,1,1,1,1), CYCLIC, F 32 10�9 0 32

STR_RSOR 240 10�9 0 104
ML_SOR(1,1,1,1,1,1,1,1), CYCLIC, W 24 10�9 0 21
ML_SOR(1,1,1,1,1,1,1,1), CYCLIC, F 22 10�9 0 19

ML_SOR(3,3,3,3,1,1,1,1), CYCLIC, W 18 10�9 0 21

STR_BSOR 120 10�9 2 62
BSOR_BICGSTAB 47 10�9 2 43
BSOR_TFQMR 46 10�10 2 42
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ML_SOR solvers in Table 4 also benefit relatively more than those in Table 3
from a larger number of smoothings at the finest grid.

The winner in both problems happens to be an ML_SOR solver, which is
significantly better than BSOR_BICGSTAB and BSOR_TFQMR. The winners
in msmq medium and courier medium require, respectively, 11 and 10 ML cycles.
The quality of the three smoothers are observed to increase in the order POWER,
JOR, and SOR. We also see that adaptive number of smoothings do not yield the
best ML solvers. This seems to be due to the extra effort spent in computing the
residual norms (at least twice in each call to the smoother) to facilitate adap-
tiveness although a small number of iterations are required of the smoothers for
rapid convergence. At least six ML solvers in each of the two tables use CYCLIC
order of aggregating LLMs. In msmq medium W and F cycles are used in the
best ML solvers, whereas V cycle is associated with the two fastest ML_SOR
solvers in courier medium. Interestingly, in the more difficult of the two prob-
lems, FIXED ordering of LLMs for aggregation works better with the two of the
three fastest ML_SOR solvers. Finally, we also observe that increasing the
number of pre- and post-smoothings at the finest grid tends to reduce the
number of ML cycles to convergence (see the ML_POWER and ML_SOR
results in Table 4). A similar statement can also be made for smoothings at
intermediate grids. However, a smaller number of ML cycles does not neces-
sarily imply a shorter solution time.

4.2. Scalability of ML_SOR

In this subsection, we investigate the scalability of the ML_SOR solver. We
consider five HMMs of different dimensions related to the model introduced in
Sect. 2. These HMMs are named msmq c3, msmq c4, msmq c5, msmq c6, msmq c7
and have respectively 3, 4, 5, 6, 7 LMMs. Hence, the largest model among these

Table 4. ML method on courier medium

Solver it res Setup Solve

STR_POWER 1,000 10�2 1 841
ML_POWER(5,5,5,5,5,5,5,5), CYCLIC, W 590 10�9 1 693
ML_POWER(5,5,5,5,5,5,5,5), CYCLIC, F 610 10�9 1 709

ML_POWER(10,10,10,10,10,10,10,10), CYCLIC, W 640 10�9 1 701

STR_JOR 1,000 10�5 1 924
ML_JOR(1,1,1,1,1,1,1,1), CYCLIC, F 116 10�9 1 213
ML_JOR(3,3,3,3,1,1,1,1), CYCLIC, V 106 10�9 1 199
ML_JOR(5,5,5,5,1,1,1,1), DYNAMIC, V 108 10�9 1 213

STR_RSOR 360 10�9 1 503
ML_SOR(5,5,5,5,1,1,1,1), CYCLIC, V 28 10�9 1 82
ML_SOR(5,5,5,5,5,5,5,5), FIXED, V 50 10�9 1 78

ML_SOR(5,5,5,5,5,5,5,5), FIXED, W 50 10�9 1 84

STR_BSOR 60 10�10 4 154
BSOR_BICGSTAB 37 10�9 4 124
BSOR_TFQMR 40 10�9 4 133

366 P. Buchholz and T. Dayar



HMMs with multiple macrostates has a problem dimension of eight. The number
of LLMs indicate the number of queues in the corresponding HMM. There are 2
servers serving the queues in each HMM in a round-robin manner as in
msmq medium. In all HMMs, each LLM matrix is of order 20 (due to a finite
queueing capacity of 3) and the 20 states are partitioned into the three subsets 0–3,
4–10, and 11–9. Each LLM participates in two non-local transitions as in
msmq medium. The HLM matrices corresponding to the five HMMs have
respectively 6, 10, 15, 21, 28 macrostates and 9, 16, 25, 36, 49 nonzeros. The values
of all nonzeros in the HMM matrices are 10. The number of LLM matrices and
their total number of nonzeros are respectively 9, 12, 15, 18, 21 and 132, 176, 220,
264, 308. The number of microstates and number of nonzeros in the underlying
MCs of the HMMs are respectively 1,020, 7,008, 42,880, 243,456, 1,311,744
and 3,969, 32,976, 235,680, 1,527,552, 9,241,344.

Table 5 presents the results of STR_RSOR and the best three ML_SOR solvers
for the five msmq problems. Note that, the ML_SOR solvers across all problems
in Table 5 have the same parameters. Each of the solvers performs two
smoothings at the finest grid, use either CYLIC or DYNAMIC order of aggre-
gation, and utilize W or F cycle. The number of ML cycles to convergence range
between 11 and 22, but do not vary significantly for a specific ML_SOR solver.
On the other hand, the number of iterations performed by STR_RSOR in-
creases as the problem size increases. The setup times for the ML solvers are all
negligible. The solution times of msmq c3 and msmq c4 are too small to say
something. However, the ratio of solution times of consecutive problems among
msmq c5, msmq c6, and msmq c7 seem to resemble the ratio of the number of

Table 5. Scalability of ML_SOR

Problem Solver it res Setup Solve

msmq c3 STR_RSOR 180 10�9 0 0
ML_SOR(1,1,1,1,1,1,1,1), CYCLIC, W 44 10�9 0 0
ML_SOR(1,1,1,1,1,1,1,1), DYNAMIC, W 44 10�9 0 0
ML_SOR(3,3,3,3,1,1,1,1), CYCLIC, F 28 10�9 0 0

msmq c4 STR_RSOR 260 10�9 0 1
ML_SOR(1,1,1,1,1,1,1,1), CYCLIC, W 40 10�9 0 1
ML_SOR(1,1,1,1,1,1,1,1), DYNAMIC, W 38 10�9 0 1
ML_SOR(3,3,3,3,1,1,1,1), CYCLIC, F 26 10�9 0 1

msmq c5 STR_RSOR 290 10�9 0 13
ML_SOR(1,1,1,1,1,1,1,1), CYCLIC, W 34 10�9 0 4
ML_SOR(1,1,1,1,1,1,1,1), DYNAMIC, W 32 10�9 0 4
ML_SOR(3,3,3,3,1,1,1,1), CYCLIC, F 24 10�9 0 4

msmq c6 STR_RSOR 360 10�9 0 109
ML_SOR(1,1,1,1,1,1,1,1), CYCLIC, W 30 10�9 0 22
ML_SOR(1,1,1,1,1,1,1,1), DYNAMIC, W 30 10�9 0 23
ML_SOR(3,3,3,3,1,1,1,1), CYCLIC, F 22 10�9 0 23

msmq c7 STR_RSOR 420 10�9 1 873
ML_SOR(1,1,1,1,1,1,1,1), CYCLIC, W 30 10�9 1 148
ML_SOR(1,1,1,1,1,1,1,1), DYNAMIC, W 30 10�9 1 153
ML_SOR(3,3,3,3,1,1,1,1), CYCLIC, F 22 10�9 1 154
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states in the corresponding problems. Hence, ML_SOR is clearly scalable in
msmq.

4.3. Performance of ML_SOR on Benchmark Problems

In this subsection, we consider three problems. The first two problems named
msmq large and courier large are respectively larger versions of msmq medium
and courier medium, which are analyzed in Subsect. 4.1, and have in the order of
1,000,000 states. The third problem named qh realcontrol is the model of token
based scheduling in a queueing network and has in the order of 100,000 states.
See Table 2 for characteristics of these problems. The qh realcontrol and
msmq large problems do not have any non-local transitions along the diagonal
of their HLM matrices, whereas courier large does. Regarding non-local tran-
sitions, each LLM in qh realcontrol and msmq large respectively participates in
four and two transitions. In courier large, LLM 2 and 3 each participate in four
transitions while each of the other two LLMs participate in one transition. The
qh realcontrol problem is especially difficult to solve owing it to the existence of
nonzeros in its HLM and LLM matrices that have considerably different orders
of magnitude.

Table 6. ML_SOR on benchmark problems

Problem Solver it res Setup Solve

msmq large STR_POWER 280 10�3 3 1,004
STR_JOR 260 10�6 3 1,030
STR_RSOR 190 10�9 3 902
STR_BSOR 120 10�9 24 751

BSOR_BICGSTAB 46 10�9 24 487
BSOR_TFQMR 46 10�10 24 470

ML_SOR(3,3,3,3,1,1,1,1), CYCLIC, W 14 10�9 3 152
ML_SOR(3,3,3,3,1,1,1,1), CYCLIC, F 14 10�9 3 150

ML_SOR(10,10,10,10,1,1,1,1), CYCLIC, V 14 10�9 3 171

courier large STR_POWER 240 100 3 1,005
STR_JOR 220 10�5 3 1,017
STR_RSOR 130 10�9 3 819
STR_BSOR 48 10�7 21 1,028

BSOR_BICGSTAB 42 10�9 21 1,020
BSOR_TFQMR 42 10�9 21 992

ML_SOR(1,1,1,1,1,1,1,1), CYCLIC, V 48 10�9 3 483
ML_SOR(1,1,1,1,1,1,1,1), CYCLIC, W 44 10�9 3 480
ML_SOR(1,1,1,1,1,1,1,1), CYCLIC, F 44 10�9 3 474

qh realcontrol STR_POWER 1,000 100 0 432
STR_JOR 1,000 10�3 0 475
STR_RSOR 1,000 10�4 0 553
STR_BSOR 1,000 10�4 6 550

BSOR_BICGSTAB 276 10�9 6 273
BSOR_TFQMR 246 10�8 6 239

ML_SOR(5,5,5,5,1,1,1,1), CYCLIC, W 292 10�9 0 262
ML_SOR(5,5,5,5,1,1,1,1), CYCLIC, F 302 10�9 0 271

ML_SOR(10,10,10,10,1,1,1,1), CYCLIC, W 272 10�9 0 274
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In msmq large and courier large, ML_SOR with CYCLIC order of aggregating
LLMs provides clear winners (see Table 6). The best ML solvers in qh realcontrol
also employ the CYCLIC order. The numbers of pre- and post-smoothings at the
finest grid performed by the best ML_SOR solvers in all three problems are each
one. The numbers of pre- and post-smoothings at the intermediate grids in the
winning ML_SOR solvers are three to five. Regarding the type of cycles, the F
cycle provides two winners among the ML_SOR solvers. It is also the cycle of
choice in the second best ML_SOR solver for qh realcontrol. Nevertheless, the W
cycle appears the most among the nine ML_SOR solvers in Table 6. Note that it
takes about 150 cycles to solve qh realcontrol using ML_SOR. For this more
difficult problem, BSOR_TFQMR and BSOR_BICGSTAB provide very strong
solvers, which are not easy to beat, but the ML solvers demonstrate similar
performance.

5. Conclusion

This paper has proposed a class of ML methods for HMMs with multiple mac-
rostates. The ML solvers are capable of using (V, W, F) cycles, (power, JOR,
SOR) methods as smoothers, and (fixed, cyclic, dynamic) orders in which LLMs
can be aggregated in each cycle. Extensive numerical experiments on three
benchmark HMMs have been performed. Results demonstrate that ML with
SOR as the smoother provides the most competitive solver for HMMs with
multiple macrostates so far. In almost all cases, three to five pre- and post-
smoothings at intermediate grids and one pre- and post-smoothing at the finest
grid of the ML_SOR solver are sufficient to obtain the solution in a small number
of ML cycles. Among the three different orders of aggregating LLMs, the cyclic
order seems to be favored the most. Regarding cyle type, W or F can be rec-
ommended. The storage requirements of the proposed ML solvers are modest and
nearly insensitive to the ordering of LLMs in the given HMM description. This is
to the contrary of the situation in BSOR preconditioned projection methods.
However, as it is observed in one of the test problems, there may be HMMs that
are difficult to solve for which BSOR preconditioned projection methods also
provide effective solvers.
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