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On Laurent series with multiply positive coefficients

NATALYA A. ZHELTUKHINA

Abstract. We consider the class of doubly infinite sequences {ax}z=_., whose
truncated sequences {ax }r—_,, are 3-times positive in the sense of Pdlya and Fekete for all
n=1,2,...,and ap # 0. We obtain a characterization of this class in terms of independent

parameters. We also find an estimate of the growth order of the corresponding Laurent

series 350 apz”.

1. Introduction and results

Let

(1.1) {antnt_o: a0 #0
be a doubly infinite sequence, and

(1.2) flz)=)_ an2"

n=—00
the corresponding generating Laurent series. Recall [5] that the sequence
(1.1) is called totally positive if all minors of the four-way infinite matrix

a_o a_1 ag a1 g a3 Qg4
(13) ... Qa_3 a—2 a_—1 Qg ay az das
a_4, a_-3 a_2 a_q apg aq as

are nonnegative. Denote by PF., the class of all totally positive sequences.
In 1953, EDREI [1] found an exhaustive characterization of totally positive
sequences (1.1) in terms of generating functions (1.2).

Edrei’s Theorem (see [1], [2, p. 427]). A function f(z) is a gener-
ating function of a totally positive sequence if and only if
(1 + a2)(1+ 6,271

_ k —1
Je) = eela v ) g5 5= 2y
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where k is an integer and

[ee]

C>07 q—17q17ai7ﬁi77i75i 207 Z(al+/82+71+52) < 00.
i=1

In [6] SCHOENBERG generalized the concept of a totally positive se-
quence as follows: Let r be a given natural number. We say that the se-
quence (1.1) is r-times positive, provided the matrix (1.3) has no negative
minor of order < r.

Denote by PF, the class of all r—times positive sequences, r € N.
If a Laurent series (1.2) is a generating function of an r-times positive
sequence, we shall write f € PF,.. Evidently, PF; D PF, D PF3 D --- D
PF, . Clearly, the class PF} consists of all sequences (1.1) with nonnegative
coefficients. It is a simple matter to see that the class PF; consists of all
sequences of the form

(1.4) an, =exp{—1(n)}, neZ,

where ¢ : Z — (—o0; +00], ¥(0) < 00, is a convex function. The class PF
is characterized by Edrei’s Theorem. The problem of the description of the
classes PF,., 3 <r < 00, is at present far from being solved.

In view of Edrei’s Theorem, SCHOENBERG [6] stated the problem of
discovering analytical properties of the generating function (1.2) of an r-
times positive sequence (1.1). He considered finite r-times positive sequences

(..., 0, 0, ag, ar, ..y Gm, 0, 0, ...),

and described the zero distribution of the corresponding generating polyno-
mials. Here we restrict ourselves to some subclasses of PF,., 3 < r < oo,
containing infinite sequences. Mostly, we deal with the case r = 3.

Denote by T'Q,, r € NU{oo}, the class of all sequences (1.1) such that
all truncated sequences

{a}i_, ={.., 0,0, a_p, a_py1, ..., Gy, 0, 0, ...}, n=1,2...,

are r-times positive. Their subclasses @), C T'Q, consisting of all one-side
sequences (with a, = 0 for n < 0) were considered in [3] and [4]. We shall
reduce the problem of characterization of the class T'QQ3 to that of Q3. First,
we present some known facts concerning 3.

Theorem A (see [3]). If a formal power series

(1.5) flz) = i apz®
k=0
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belongs to @, for some n > 3, then it converges on the whole complex plane
C and its sum f(z) is an entire function of order 0. Moreover,

log M 1
lim sup og M(r: f) <

2 — )
r—oo  (logr) 2log %

where M (r, f) = max{f(z) : |z| =r}.

There is a characterization of class (03 in terms of independent param-
eters. The role of independent parameters is played by the points of the set
(0,00) x [0,00) x U, where
(1.6) U= {{ak}kZQ © (i) if 3j with a; =0, then a; =0, Vkziy

Define the numbers
(1.6") [ao] =14 a9, [aeag] =14 as\/[as], [aeasay] =14 agy/[asas],

oy asag.coag]) =14 apy/[azas ..o an—1],

Theorem B (see [4]). A power series (1.5) belongs to Q3 if and only
if
n—1_n—2

apa oy o -ai_lan

a1 = apQ, ap = ’

[ag]"/2[ogas]W=D/2 - agars - - - g —1]3/2 [0 ig - - - ]
where
apg >0, a>0, {aplp,€U
and U is defined in (1.6).
Since T'Qs is a subclass of PFy, any sequence (1.1) in 7'Q3 admits
representation (1.4). Set
Ny =min{n >1: ¢(n) =40} (N; =+o0ifh(n) < +oo, Vn >1),
Ny =max{n < —1: ¢(n) =400} (Ny= —o0ifp(n) < +oo, Vn < —1),
and
Y(n) —2¢p(n—1)+¢Yn—2) if 1<n< Ny,
Asth(n) == +oo if > N;orn<N,,
Y(n)—2¢v(n+1)+¢n+2) if No<n<-—1
Define the sequence {wy,}52 , as follows:

(17) wo =1, Wn = [C!gOég to an—l]ag:a;;:---:an,l:la n > 3.

Theorem C (see [4]). For a formal power series (1.5) to belong to Q3
it 1s mecessary and sufficient that

Axip(n) > log (1+

), n > 2,

n

where wy, n > 2, are defined in (1.7).
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Our main result allowing to reduce double-sided sequences to one-sided
ones is stated in the following theorem.

Theorem 1. A Laurent series (1.2) belongs to the class TQs if and
only if both power series

fi(z) = Z ak—lzk and  fo(z) = Z al—kzk
k=0 k=0

belong to the class Q3.

It is natural to ask whether the class PFj itself satisfies the property:
both power series in Theorem 1 belong to the class PF3. The answer is
negative as the following example shows. The Laurent series

il 2
n=—00
belongs to PF, for any ¢ > 1 (see [2, p. 433]). However, by the identity
2 2 2
q—(lz-i-l) q—(k+2)2 q—(k-i-S)2
I = | qg7F q—(k;rl) q—(l€4r2)2 =
0 g " g~ B+1)
_ q—(k+1)2—(k+2)2—(k+3)2+6k+5(q6 _ 2q4 +1), kez,
we conclude that I}, < 0 for 1 < ¢ < 1+T‘/5, and hence it follows that

1+5

Z q_"Qz" ¢ PFy for 1<¢®< for any k € Z.
n=~k

Theorems 1 and A allow us to derive the following estimates on the
growth order of functions in T'Q3.

Theorem 2. Let a Laurent series (1.2) belong to T'Q, for some r > 3.
Then it converges in C\ {0} and

log M 1
(1.8) lim sup og M(r, /) < ,
r—00 (log ?”)2 2 10g 1+T\/g

log M 1
(1.9) lim sup —2 (17”7 f) .
r—0  (log )2 2log 15

where M (r, f) = max{f(z) : |z| =r}.

Combining Theorems 1 and B, we deduce a representation of the class
TQs3 in terms of independent parameters.
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Theorem 3. A Laurent series (1.2) belongs to T'Qs if and only if

ap = a_1q,
(1.10) o
an—1= [OQ]n/Q[OQa?)]C(L;—llO;/S.Q. ; [zj% . j::f]gfg[a2a3 ] nz2
(1.11)
a_10B" By B B 1 s

ot = [B2]/2( B2 B3] =1)/2 - - - [BoB3 - - Br1]3/2[BafBs - - - Bn]
where U is defined in (1.6) and

1+a oo
2, Bo = as, {Bri1tize € U.
2

Q_1 >07 a>07 {ak}zO:2€U7 /8:

Since T'Q3 C PF3, Theorem 3 provides a rich source of functions from
PF5. The important point to note here is that Theorem 3 allows us to
construct functions in PFj3 \ PFy. The problem of finding the greatest
n > 3, such that f(z) € PF,, for some special functions f(z), was treated
in ([2, Chapter 8, §12]).

Corollary. Let U be defined in (1.6). For any as, \/52_1 <ap <1,
there exist asz, (3, 0 < ag, B3 < 1, such that for all {Bri2}3o, € U and
{ag42}72, € U, the sequence (1.1) defined in (1.10) and (1.11) belongs to

PF3\ PFy.
The next theorem is an immediate consequence of Theorems 1 and C.

Theorem 4. For a sequence (1.4) to belong to TQs it is nessesary
and sufficient that

Astp(n) > log (1 + ), n>1

1
vV Wn+1
and

< -—1.

1
=) "s

For a sequence (1.4) to be a PF5-sequence, we must have the convexity
of the function ¢ : Z — (—o0;00], ¥(0) < oo, that is, nonnegativity of
Asp(n). Theorem 4 demonstrates how the nonnegativity changes if we
require (1.4) to belong to T'Q3 C PF5.

Agip(n) > log (1+
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2. Proof of Theorem 1

Lemma 1.1. Let a Laurent series (1.2) belong to TQ2. Set

k1 =min{k >0: ar =0}, and ko =max{k<0: a; =0}
Then ar =0 for all k <ko+1 and k > k1 — 1.

Proof. Let us show that ap = 0 for all £ < kg. Assume ky > —o0.
We have

Q41 Aky+1

= —aia >0
ay ag kWko+1 =

2

for all k£ < ko. Hence, a;, = 0 for all £ < ky. That a;, = 0 for all £ > k; can
be proved similarly. O

Without loss of generality we may assume that as # 0 and a_o # 0,
that is, k1 > 2 and ky < —2. Lemma 1.1 allows us to introduce the positive
numbers

5, = {ag_l/(akak_g) %f 0 <k <k,
ai 1 /(araps2) if ky <k <O.

Note that d; = d_.

Lemma 1.2. Let the Laurent series (1.2) belong to TQs. Then both
fi(z) = Z ar—12"  and fa(z) = Z ar_p2"
k=0 k=0

belong to Q3.

Proof. (i) Let us show that fi(z) belongs to Q3. We shall use the
following test of m-times positivity, which is due to SCHONBERG [6)].

Theorem (see [6]). Let {bix}7_, be a finite sequence of numbers.
Consider the matrices

bp b1 by . by, 0 0 0
0 by by ... bp_1 by 0o ... 0
Bk = 0 0 bo bn_g bn—l bn ... 0 k= 1,2,...,m,
o 0 o0 ... . . . o by
where By consists of k rows and n + k columns. Assume that the following
condition is satisfied for k = 1,2,...,m: all kxk—-minors of By consisting of
consecutive columns are strictly positive. Then {...,0,b9,b1,...,b,,0,...}

1S an m-times positive sequence.
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Fix any n, 1 < n < k1, and consider the following three matrices:

Ai=(a-1 ag a1 ... ap,—¢),
A2:(a_1 a a1 ... apb—¢ 0 )
0 a_1 ag ... Qp_1 anp —¢€)’
a_1 ag al ... ap,—¢ 0 0
Ag == 0 a_1 Qo ¢ 7o | Ay — & 0
0 0 a_1 ... Qp_o9 Ap_1 Ay — €

All minors of A; are positive for 0 < & < a,,. For all m € NN {m < n},

Q—m+1 Qm 0
_ 5 Am—10-—m >
a_m Am—1  am = 0-—m++10m—20m | Om — 1- # = 07
m—20—m+1
0 Am—2  Qm—1 +

whence 6, > 1, m € NN {m < n}. Therefore, all 2 x 2 minors of A,
consisting of consecutive columns

Qg Ak+1
= ap—10k4+1(0p+1 — 1), 0<Ek<n—1,
ag—1 A
a_1 ag a, —¢ 0
0 a_1|’ Ap—1 anp —¢€|’

are strictly positive.
Consider all 3 x 3 minors of Az consisting of consecutive columns:

a_q a ay a ay as
M_1=10 a_1 Qo > 0, My=|a_1 ag ai |,
0 0 a_q 0 a_1 Qo
ar  Ggt1 agy2(—€)
My = \|ap—1 ag ag11 , 1<k<n-2,

p—2 Q-1 Ak

M, () = | an—1 an, —€ 0 > 0.
Op—2 Ap—1 ap — €
Since {...,0,0,a_k_1,a—k,...,ak,akt1,...} are 3-times positive, and 5 > 1
for all 1 <k <n —2, we have
ap a1 0
M[] =|a—1 Qo aq —|—a2a2_1 >0
0 a_1 Qo



312 N. A. Zheltukhina

and
ar  Ak1 Ggra(—€)
My > |akp—1 ag Ak+1 =
a2 QAg—-1 Ak
ay agy1 O
=|ak-1 ai ar+1 |+ (akt2(—¢€))ar—2ax (0 — 1) >0
Q-2 QGg—1 Qg

for all sufficiently small €.
We have

M,_1(s) = a2 | + (an —€)*an_3 — 2(an — €)an_1an_2,

Mn_l(O) 2 O, M/n_l(O) == Qanan_g(dn_15n - 1) > 0.
Hence, M,,_1(g) > 0 for all sufficiently small € > 0. So, all 3 x 3 minors of
As consisting of consecutive columns are strictly positive. By Schoenberg’s
theorem stated above, it means that {...,0,0,a_1,...,ap_1,a,—¢,0,0,...}
is a 3-times positive sequence for all sufficiently small €. Taking the limit as
e tends to 0, we have that {...0,0,a_1,...,a,-1,a,,0,0,...} is a 3-times
positive sequence for all n € N. To prove that fi(z) € Qs3, it suffices to
prove that {...,0,0,a_1,0a0,0,0,...} and {...,0,0,a_1,0a0,a1,0,0,...} are
3-times positive sequences. But the first sequence is even totally positive.
And the second one is 3-times positive, that follows from f € T'Q3.

(ii) Note that f C TQs3 implies f(1/z) € TQ3. Then, by part (i),
f2(2) € Qs. O

Lemma 1.3. Let the Laurent series
o oo
fi(z) = Z ak—lzk and  fa(z) = Z al—kzk
k=0 k=0

both belong to Q3. Then the Laurent series (1.2) belongs to TQs.

Proof. Fix any n > 1. Let k; and k9 be as in Lemma 1.1. Denote

_[n if k1 = oo,

" min{n, ky — 1} if k1 < oo
[ if ko = —o0,
"2 7\ max{—n, ko + 1} if ky > —oc.

Let us prove that
{-.., 0,0, an, — €, Gnyt1y -y Any—1, Gn, —€, 0, 0, ...}

is a 3-times positive sequence for any sufficiently small e. Consider the
following three matrices:

Al =(an, =€ Gpot1 - Gpy—1 Gpy —€ ),
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Ay = (an2—5 Apot1l  --r Apy, —e 0 >
- 9
0 T s Qn, — €
Ony — €  Gpyt1 Onyt2 .. Qp, —€ 0 0
As =10 Opy — € Gpytl cee Qpy—1 Gn, —€ 0
0 0 Opy —€  +ov Gpy—2 Gnq—1 Gn, — €

All minors of A; are strictly positive for 0 < & < min{ay,,,an,}. For
1 S m S ni,

ag A 0

E G — 1 — =2m=1Y >
-1 Qm-1 0am = 40am—20m | Om — 1L — ﬁ = U.
0 Um—2  Qm—1 0%m=2

So, 6, > 1 for all m, 1 < m < ny. Similarly, 6, > 1 for all m,
ng <m < —1. Therefore, all 2 x 2 minors of Ay consisting of consecutive
columns:

ap—1 Ak
Q-2 QA1

Ap, — € Qpy+1

= — <k <
0 Uy — € akak_g(dk 1), 1 S k S Ny,

2
an, —€ 0
Apy—1  Gp, —€

ag—1 Qg
ag—2 Aag—1
are strictly positive. Consider all 3 x3 minors of A3 consisting of consecutive
columns:

= apap—2(0p—2 —1), np +2<k <1,

an2+1 an2+2 an2+3
an-‘rl(g) = |Ony — €& Qny+1 Any+2 |
0 Ony — € Gnyt1

Gny—1 Qp, —€ 0
Mnl—l(e) = an1—2 anl—l anl — £ 9
an1—3 an1—2 anl—l

ag k41 Ok42
My =|ar—1 ag k41|, na+2<k<n;—2

ag—2 QAg—1 Ak
Since f1(z) € Q3, for k > 1 we have
Qg Ak+1 0
My > |ar—1 ag ag41| = 0.
Q-2 QAg—-1 Ak
Since fa(z) € Q3, for k < —1 we have
ag Ap41 A2
My > |ap—1 ag aps1| > 0.
0 ap—1 ag
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Since fi(z) € Q3, we also have

ao ay az
a_1 Qo a1
a_9 a_1 Qo

ao a a2
a_q ag ay
0 a_1 agp

M, = > > 0.

The claim that M, _1(¢) and M,,,+1(g) are strictly positive for all suffi-
ciently small € > 0 one can prove by the same method as in Lemma 1.2. So,
all 3 x 3 minors of Az consisting of consecutive columns are strictly positive.
It follows from Schoenberg’s theorem, stated at the beginning of the Proof
of Lemma 1.2 that

{..., 0,0, an, — €, Gnyt1y -y Any—1, Gn, —€, 0, 0, ...}

is a 3-times positive sequence for any sufficiently small ¢ > 0. Taking the
limit as € tends to 0, we find that

{...0, 0, anyy Gnotiy -+ Qny—1, Gny, 0, 0, ...}
is a 3-times positive sequence. O
3. Proof of Theorems 2, 3 and Corollary
Proof of Theorem 2. Consider
fi(z) = Zak—lzk and  fao(z) = Z al—kzk'
k=0 k=0

By Lemma 1.2, both fi(z) and f2(z) belong to Q3. Applying Theorem A
to f1(z) and f2(z), we have

log M ; 1 1 )
lim sup og M(r f.) < , c= +f, i=1,2.
r—oo  (logr)? 2logc 2
Hence, the Laurent series
> 1 1 -
f(z) = k:z—ooaka = ;fl(z) + zf2<;> - a—zl —ag— a1z
converges in C\ {0} and estimates (1.8) and (1.9) hold. 0

Proof of Theorem 3. (i) Let f € TQ3. Then by Lemma 1.2,

o0
Z ap—12" € Qs,

k=0
and Theorem B gives representation (1.10). Also, by Lemma 1.2,

o0
Z a—k+12k € Qs

k=0
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and Theorem B gives
(31) ag = al/Bv

" _ a1 3By B B B
i [82]7/2[B2B5)(n=1)/2 o [Bo By -+ - B—1]?/2[BafBs -+ Bn] |

To prove (1.11), it remains to prove that

1+«
5272, B2 = aa.

[6765)]

The formula (1.10) for the coefficient a; implies

a_q ]."‘(12

aq asa?

Formulas (1.10) and (3.1) for the coefficient ag give

. a_ 1+«
a_ia=a1, thatis, (= o= 2
a1 [6510%

It follows from §; = §_1 that as = Fs.

(ii) Consider the Laurent series

o)
a_
() == bosat Y an a2,
< n=2
where a_; > 0, a > 0 and the coefficients a,,_1, n > 2, are given in (1.10).
By Theorem B, the sequence {ax}72 _; belongs to Qs.
Consider the Laurent series

gp2(2) =az ' +af+ ) anp12"

n=2
where
a_i10’ay 1+ as
a; = ) ﬂ = ) ﬁ2 = Qg,
1+ as Qo

and the coefficients a_,,+1, n > 2, are given in (1.11). We have a1 = a_1«
and hence,
ag = a_1a = a3,

—1,n—2
@055 B e

a_n - 9 -
+1 [B2]/2[B2B3] (= 1)/2 .. [Bo B3 - -+ Br_1]3/2[B2B5 - - - ]
By Theorem B, the sequence {a_j}?2 _; belongs to Q3. By Theorem 1,

f(z) = i arz® € TQs. O

k=—o0
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Proof of Corollary. For a given o > 0 and ‘/52_1 < ag <1, define
the coefficients ag, a1, a_1, as, a_o by formulas in (1.10) and (1.11). Taking
appropriate o, and (3,, n > 3, in formulas (1.10) and (1.11), we shall define
an, |n| > 3, such that

f(z) = i arz® € PF3\ PFy.

k=—oc0
Since, by (1.10) and (1.11),
ago ay a2 as agp a1 a2 0
a_q ag a1 ag < a_q agp a1 as _
a_o9 a_1 Qg ai|  |(a—2 a—-1 Qg aq
a_3 a_o9 a—1 Qg 0 a_9 a_1 ap
o a2y afalas
[az] [@2]3/2[azas3] s s
oo a”asaz
_ CL4 1 a [a2]2 [012]3/2f6¥20t3]
-l aﬁ2ﬁ§ﬁ3 1 a aas
[82]3/2[B28s] 5 [a2]
aB”B508s
0 [[32]3/2[25253} 1 a
A <a4 _ 3a4a2 ata? a®ptaSa3 B3 n
- 2] (2] [a2]8[aza3]?[B233]2
a’ (a3 n atadaz  a®fPazfiag
()3 [Ba3]  [ao)¥[anas]  lae]?[asas][B2/33]

0465204305353 .4 4
o [az0s) 555 ) =t atiati(as, ).

]
the inequality J(as,f3) < 0 yields f(z) € PFy.

Substituting 8 = (1 + ag)/(aza) into J(ag, F3), we have
L2 a3 aza3 3
N Bs) =130 4 o Y (aaPlonas PIBA T
04353 + 043043 . 04353043 .
] 3 [B2/33] [042]% [aa0s] [aa][apa3][B235]
ogasfs J(0,0) +
=: J(0, azJi + PB3Ja.

[ao]?[azas][B235]
In all fractions entering in the last equations the numerators do not exceed 1,
while the denominators are greater than 1. Therefore, |Ji| 4 |J2| < 9. The
quantity asJy + 33.J2 may be made arbitrarily small by choosing sufficiently
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small a3 > 0 and (B3 > 0. Therefore, the signs of J(as,3) and J(0,0)
coincide for all sufficiently small ag > 0 and B3 > 0. Note that

2 2
[ 5 a5 +az—1 . —1—1—\/5
J(0,0)=1-3 = — 0 _
( , ) [ag] + [a2]2 [a2]2 <0, since a9 > 5

O
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O psanax Jlopana ¢ MHOTrOKpaTHO
IOJIOYKUTEJILHBIMU KO3 PUIIMEeHTaMU

H. A. 5 KEJITYKNHA

PaccMoTpen kiace nociaenoBaTeabHocTeR {ak e _ oo, OTPE3KU KOTOPLIX {ak e —p
SIBJISIIOTCSA 3-KPATHO MOJIOKUATEILHLIMU B cMbIcye [lomna—Perere npu Bcex n = 1,2, ...,

u ao # 0. Ionydeno onmcanue »TOro Kiaacca B TEPMUHAX HE3aBUCUMLIX IaPaMETPOB.

o oo k
Ha¥inenor omenksr pocra cooTBercTByfomux pazos Jlopama Y 7 apz”.
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