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We examine the effect of multilevels on decoherence and dephasing properties of a quantum system con-
sisting of a nonideal two level subspace, identified as the qubit, and a finite set of higher energy levels above
this qubit subspace. The whole system is under interaction with an environmental bath through a Caldeira-
Leggett type coupling. The model that we use is an rf-SQUID under macroscopic quantum coherence and
coupled inductively to a flux noise characterized by an environmental spectrum. The model interaction can
generate dipole couplings which can be appreciable between the qubit and the high levels. The decoherence
properties of the qubit subspace is examined numerically using the master equation formalism of the system’s
reduced density matrix. We calculate the relaxation and dephasing times as the spectral parameters of the
environment are varied. We observe that, these calculated time scales receive contribution from all available
frequencies in the noise spectrumseven well above the system’s resonant frequency scalesd stressing the
dominant role played by the nonresonant transitions. The relaxation and dephasing and the leakage times thus
calculated, strongly depend on the appreciably interacting levels determined by the strength of the dipole
coupling. Under the influence of these nonresonant and multilevel effects, the validity of the two level ap-
proximation is dictated not by the low temperature as conveniently believed, but by these multilevel dipole
couplings as well as the availability of the environmental modes.
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I. INTRODUCTION

Currently a large number of model approaches are present
for formulating the decoherence phenomena in the literature.
The original Caldeira-Leggett model1 is based on a quantum
system under the influence of a double well tunneling poten-
tial with a linear coupling to an infinite bath of harmonic
oscillators. If the potential issufficiently smooth and the
separation between the qubit and the high energy levels is
well above the environmental temperature, this original
model is normally represented as a two level system2 s2LSd
interacting with the bosonic environmentsspin-boson
modeld. An incomplete list of this wide literature is provided
in Refs. 3–5. Another popular model of decoherence is the
central spin system in which central 2LS couples to a large
number of environmental two level systems. The pros and
cons of these two rival models have been extensively
studied.5

Realistically, and aside from the genuine 2LS, a large ma-
jority of physical systems suggested as qubit is far from be-
ing ideal and include some number of higher energy levels.
Higher levels in a multileveled systemsMLSd can be effec-
tive in the dynamics in two ways. The first is the leakage of
the information from qubit subspace to higher levels which
can happen in the presence of some uncontrollable coupling
to a noise field with a sufficiently wide spectrum. Populating
higher levels is basically thought to be a manifestation of
resonant transitions at long times. On the other hand, for an
arbitrary and wide noise spectrum, the same type of system-
noise coupling can also induce nonresonant transitions which
affect the short time dynamics of the interaction and contrib-
ute to the decoherence times. In the coupling of a multi-
leveled system to a wide environmental spectrum both ef-
fects should therefore be expected. As a consequence of

these physical effects, and including the leakage factor, the
validity of the analytic techniques devised to approximate
these MLS in terms of simpler two-level model may become
critically questionable.

In this work, we look for the answers of the following
basic questions:sad Can one understand the effect of the
higher levels on decoherence in a MLS under interaction
with an environment? andsbd what is the role played by the
environmental spectrum in thetwo-levelednessof a MLS?

The MLS can itself be manifestlyN-leveled or a truncated
approximation of a larger system with much higher number
of levels. Examples of both cases have been well known. For
the former, organic molecules with certain discrete rotational
symmetries and low energy configurations of single polymer-
ized chains are good examples. The vibrational energy spec-
tra of atoms and molecules are good examples for the latter.
We remark however, that a concise treatment of the decoher-
ence effects based on such MLS has not been developed yet.
Realistic MLS can be found for instance in superconducting
systems in the macroscopic quantum coherence regimes. In
this work, we use an rf-SQUID in the flux regime to generate
our model system Hamiltonian for a multileveled quantum
system. In the interaction with an environmental noise we
use two scales which parametrize the low and high frequency
sectors of the noise spectrum.

In Sec. II we give an introduction of the model MLS.
There we concentrate on the properties of the environmen-
tally induceddipolematrix elements between the levels. Sec-
tion III recalls the reduced density matrixsRDMd master
equation formalism and adopts it for the coupling of the
MLS to the environment. The noise correlator and the
system-noise kernel, are defined in Sec. III. The results are
presented together with the calculations for pure 2LSsin Sec.
III A d to allow a comparison with the earlier work. Most
original results of the paper are included in Sec. III. The
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MLS with three or higher levels are examined in Sec. III B
separately for the casesN=3, N=4, and 4,N. There, we
confirm the leakage effects and observe that the short time
nonresonant transitions dominate the decoherence times. As
a consequence of these short time effects, we demonstrate in
Sec. III C that, nonresonant transitions introduce severe re-
strictions in the validity of the two level approximation.

II. THE MODEL MULTILEVEL SYSTEM

The majority of the accepted methodssparticularly the
influence functionald widely used in the literature is appli-
cable to the two-leveled dynamics. The results are generally
believed to be true for 2LS and at temperatures well below
the energy separation of the qubit and the high levels.1,2 Such
two level approximations are tempting since they allow ex-
plicit analytic expressions for the decoherence times as func-
tions of the system’s parameters. Exact methods are also
available on pure 2LS.4

If one does not take for granted the validity of such ap-
proximations, a direct investigation of the MLS-environment
interaction must be made. In a MLS a need for explicit de-
pendence on number of levels and their mutual couplings
arises. To keep these dependencies, we represent here the
MLS in its eigenenergy basis.

Our MLS is an rf-SQUID operating under macroscopic
quantum coherence conditions given by the dimensionless
Hamiltonian

Hs/s"V0d = 1
2f− ]w

2 + sw − wbiasd2g + b cossgwd, s1d

whereV0=2p /ÎLC is the harmonic frequency withL being
the inductance of the SQUID loop andC is the effective
capacitance of the Josephson junction,b=EJ/"V0 is the di-
mensionless ratio of the Josephson energyEJ to the harmonic
energy,g="ÎL /Cs2p /F0d2 is a dimensionless scale param-
eter,wbias=2pFbias/F0 is the effective bias in the fluxsap-
plicable in a current biased junctiond, andw=2pF / sgF0d is
the flux sFd dependent dimensionless phaseshere F0

=hc/2e is the superconducting flux quantumd. The Hamil-
tonian s1d is clearly an infinite level system. Truncating the
eigenspace atN levels, it becomes, in the energy basis

Hs = o
n=0

N−1

Enszduz,nlkz,nu, s2d

wherez describes the set of system parametersV0,b ,g ,wbias
whereEnszd, and uz ,nl are, respectively, the parameter de-
pendent eigenenergies and eigenvectors of the MLS. This set
of parameters is sufficiently general to accommodate a vari-
ety of possible effects including the degeneracy of the lowest
two levels sthe qubit subspaced, the symmetry of the wave
functions, etc.fwe define the degeneracy factor byh=sE2

−E1d / sE1−E0d for MLS and h2=sE1+E0d / sE1−E0d for
2LSg. These parametersV0,b ,wbias control, respectively, the
high energy harmonic, the low energy anharmonic spectra
and the reflection symmetry of the rf-SQUID potential, re-
spectively. At low energies, a simple numerical diagonaliza-
tion of s1d reveals that there are low lying eigenenergy con-

figurations within the double well regime in which the
SQUID potential is strongly anharmonic. An interesting case
here is to find highly degenerate6 levels corresponding to the
first two eigenstates for the symmetric double-well potential
si.e., wbias=0d. This particular case has been extensively ex-
amined previously for 2LS using semiclassical methods with
an arbitrarily weak tunneling between the wells.2,3 Another
configuration that turns out to be important in our calcula-
tions is the doubly degeneratesDDd configuration for sys-
tems with 4øN in which the first four levels are pairwise
degenerate with large degeneracy factors. The double-well
potential and energies corresponding to both SD and DD
configurations which are often used in the paper, are shown
in Figs. 1 and 2, respectively.

The rf-SQUID is shown to be a convenientsand nonu-
niqued model for studying multilevel effects due to the fact
that the transitional dipole couplings between the qubit sub-
space and the higher levels are non-negligible as shown in
Fig. 3. Any other physical Hamiltonian with similar features
would qualify for a model MLS.

In the rest of the paper the harmonic frequencyV0
=2p /ÎLC is a free parameter that we use for scaling energy
and time.6

Coupling to noise: The system-noise interaction is consid-
ered to be of Caldeira-Leggett type linear coupling between
the SQUID’s macroscopic fluxŵ and the environmental flux
ŵe arising from the finite inductance of the SQUID loop.
This coupling can be expanded in terms of the environmental

modes asŵe=okhksb̂−k
† + b̂kd wherek is the mode index. The

system noise interaction is simplyHint=sa /2dŵŵe wherea
represents the strength of the inductive couplingsa is to be
normalized by"V0d. The interaction Hamiltonian is given by

FIG. 1. The double-well potential and the eigenenergy configu-
rations corresponding to the singly degeneratesSDd case. Here the
numerical values of the dimensionless parameters for this SD con-
figuration areb.1.616 andg.1.753. The harmonic energy scale
and the degeneracy factors are, respectively,"V0=10−3 eV and
h2.107.

T. HAKIOĞLU AND K. SAVRAN PHYSICAL REVIEW B 71, 115115s2005d

115115-2



Hint =
a

2 o
r,s=0

N−1

swdrsuz,slkz,r uŵe. s3d

Here swdrs=kz ,r uŵuz ,sl are the noise induceddipole matrix
elements. For the model MLS described bys1d, the dipole
matrix is real and symmetric.

The rf-SQUID provides a sufficiently general example of
a multileveled system by the finite dipole transition matrix
elements for both the symmetricsi.e.,wbias=0d and asymmet-
ric si.e., wbiasÞ0d potential configurations. In the symmetric
case even parity transitions vanish which results in mani-
festly off-diagonal system-noise coupling. Physically, this is

in contrast to the most popular models used in the literature.
On the other hand, when the potential is tilted, the parity
restriction is lifted by which diagonal system-noise couplings
are also generated.

In Fig. 3 the noise induced couplings for an asymmetric
potential corresponding towbias=0.01 is plotted as a function
of the relevant level indices interacting with the dipole cou-
pling. Data indicate that the induced dipole strengths be-
tween the qubit and the higher energy states are comparable
to those among the qubit states. Therefore, the high energy
transitions cannot be trivially ignored. The high energy tran-
sitions normally appear as a result of the resonant interac-
tions with the high energy sector of the noise spectrum under
long interaction times. However, in the reduced system these
transitions appear in the short time dynamics as well, and the
short time dynamics is dominated by the nonresonant pro-
cesses. Since decoherence is dominantly affected by the
short time behavior, the nonresonant processes should have
observable effects on decoherence. Indeed we observe these
effects in the solution of the master equationsSecs.
III A–III C d.

We next consider the environmental spectrum. Regarding
this, we take a thermal Gaussian with a low frequency tail
obeying a power law as

Isvd = v1+ne−v2/4L2
cothsv/2Td, s4d

where L is the effective noise cutoff frequency andn de-
scribes the subohmicsi.e., n,0d, superohmicsi.e., n.0d,
and ohmicsi.e., n=0d character of the spectrum. These two
parameters define the high and low frequency character of
the noise field as mentioned in the Introduction.sSee. Fig. 4.d

If the resonant processes were dominant in the noise-
induced transitions, one would then only concentrate on that
part of the spectrum wherev would be close to a relevant

FIG. 2. The double-well potential and the eigenenergy configu-
rations corresponding to the doubly degeneratesDDd case. The nu-
merical values of the dimensionless parameters corresponding to
this DD configuration areb.0.772 andg.2.187. The harmonic
energy scale and the degeneracy factors are"V0=10−3 eV, h2,h
.106.

FIG. 3. A few nonzero dipole matrix elementsswdnm of the
coupling of the rf-SQUID to a flux noise versus the level index
fcalculated in the eigenenergy basis ofs1d for an asymmetric
potentialg.

FIG. 4. The variation ofIsvd in s4d versusv andn for −1øn
ø1 parametrized byL /T=10,50, 50, 100sfrom the innermost to
the outermost surfaces, respectivelyd.

ROLE OF THE ENVIRONMENTAL SPECTRUM IN THE… PHYSICAL REVIEW B 71, 115115s2005d

115115-3



transition energyDE. For −1&n ssubohmicd, the following
two regions are of particular importance:sad at sufficiently
low temperatures and high cutoff corresponding toT!L, the
dominant mechanism of relaxation is through spontaneous
de-excitations,7 we call this regionregion-I; sbd at high tem-
peratures and high cutoff the regionv!minsL ,Td provides
a wider range of strong environmental couplings which we
call region II. If the character of the spectrum is more like
ohmic or superohmic, i.e.,n.0 or n.1, respectively, the
availability of the low frequency modes is not so high.
Therefore, in the ohmic and superohmic regimes,region II
would dominate the relaxation/dephasingsRDd phenomena.
Hence it is concluded that, if the resonant processes were
dominant, one would maintain a sufficiently low environ-
mental temperature to largely eliminate the decoherence ef-
fects for ohmic and superohmic cases.

Our calculations in this work however demonstrate that
decoherence cannot be avoided at zero temperature and the
decoherence times are influenced not by the strength of the
spectral coupling at the resonant transitions but by the whole
spectral range.

III. MASTER EQUATION AND THE REDUCED DENSITY
MATRIX FOR THE MLS

In the study of decoherence due to the weak environmen-
tal influence, one conventional way is to calculate the time
dependent RDM by solving the master equation. This for-
malism has been known since the works of Bloch, Redfield,
and FanosBRFd8 and widely applied to the current decoher-
ence problems for which many standard references exist.9

The standard BRF formalism assumes fully Markovian con-
ditions for the solution of the master equation, which leads to
analytically solvable results for 2LS.10 However, this as-
sumption is not free of drawbacks which was explored origi-
nally in Ref. 11 and lately in Ref. 12 as well as in Ref. 13 in
the context of spin magnetic resonance and relaxation.

The time evolution of the RDM is obtained by

− i"
d

dt
r̂̃std = fr̂̃std,H̃intstdg, s5d

where the tilde denotes the interaction picture. In the context
of decoherence, we will give more emphasis on the exponen-
tial time scales in the solution ofs5d. A convenient way to
proceed is then to apply the Born-Oppenheimer approxima-
tion in which the full density matrix is initially a product of

the system and environmental onesfi.e., r̂̃s0d= r̂̃sSds0d
^ r̂̃es0dg and at any later and sufficiently short time approxi-

mately separates asr̂̃std= r̂̃sSdstd ^ r̂̃es0d.
The iterative solution ofs5d including the second order in

the interaction with the partial trace performed over the en-
vironmental degrees of freedom yields the master equation
for the RDM,

d

dt
r̃nm

sSdstd = −E
0

t

dt8o
r,s

Krs
nmst,t8dr̃rs

sSdst8d, s6d

in which we adopt the model interaction Hamiltonians3d for
the system-noise kernel. This kernel is found to be

Krs
nmst,t8d =

a2

4
hFst − t8dfsŵ̃tŵ̃t8dnrds,m − sŵ̃t8dnrsŵ̃tdsmg

+ F * st − t8dfsŵ̃t8ŵ̃tdmsdr,n − sŵ̃tdnrsŵ̃t8dsmgj.

s7d

HereFst− t8d=F* st8− td is the complex noise correlation
function,

Fst − t8d = Trefŵ̃estdŵ̃est8dres0dg = kŵ̃estdŵ̃est8dl s8d

and

ŵ̃t = o
k,,=0

N−1

sŵdk,e
−isEk−E,dtuz,klkz,,u s9d

is the dipole operator in the interaction picture. Expanding
the noise fieldŵe in the independent harmonic modes and
calculatings8d in thermal equilibrium one obtains the stan-
dard thermal noise correlator,

Fst − t8d = 2o
k

hk
2fcothsvk/2Tdcosvkst − t8d

− i sinvkst − t8dg. s10d

The noise spectrum is assumed to be continuous of which the
real part is responsible for RD effects and is given by the
spectral density ins4d. In the numerical calculations we in-
clude the noise correlation function as15

Fst − t8d = 2E
0

`

dvv1+ne−v2/4L2
fcothsv/2Tdcosvst − t8d

− i sinvst − t8dg. s11d

Insertings11d in s7d we obtain the system-noise kernel for
our model. A numerical upper frequency cutoff ofvmax
=5L is used in the numerical integral ins11d.

The solution ofs6d is determined in the weak system-
noise interaction limit by the competition of three time
scales:tB, noise correlation time scale,tR andtD, the relax-
ation and dephasing time scales14 of the reduced system,
respectively. The noise correlation time scale is found
roughly from the thermal Gaussian bath spectral width as
tB.1/L. The RD time scales are found by fitting the enve-
lope in the solution ofs6d to the decaying exponential3

uri jstdu . uri js`du + furi js0du − uri js`dugexps− t/ti jd, s12d

by the formula

ti j
−1 . −

1

1 − uri js`d/ri js0du
Ud lnuri j u

dt
U

t=0
, s13d

where ins12d and s13d, i = j =1 is used in the calculation of
the relaxation ratestR

−1d and i =0, j =1 is used for the qubit
dephasing ratestD

−1d. For the RDM at asymptotic times we
haver11s`d=1/N and ur10s`du=0. The equations13d breaks
down whenuri js0du= uri js`du which we stay away from by
appropriately choosingri js0d.

In this work, the numerical solution ofs6d is performed by
discretizing time in steps ofDt=10−2V0

−1 si.e., t=nDt, t8
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=mDtd. The time sum is then performed at each external step
given by a fixedn in the discrete triangular regionmøn
using the standard nonadaptive Euler algorithm. The Hermi-
ticity and the normalization of the RDM at each time step is
controlled within a relative accuracy of 10−25. All calculated
energies as well as time scalessparticularly the RD timesd
are also given in units of"V0 andV0

−1, respectively. More-
over, we consider zero temperaturesT=0d results except one
specific case in Sec. III C anda=0.01 throughout the paper.

A. RDM solutions for the 2LS

The solution of the 2LS is shown in Fig. 5 for a few
representative environmental parameters and for the SD con-
figuration. The degeneracy parameter ish2,106.

The first observation is that, the results indicate that the
relaxation time scaletR sread from the filled symbolsd and
the dephasing time scaletdep sread from the hollow symbolsd
are compatible. This result is in agreement particularly with
the recent exact 2LS calculations using the path integral in-
fluence functional formalism.4 As the asymptotic time behav-
ior is concerned, for symmetric configurationsspuresx cou-
plingd, the density matrix converges to the maximum entropy

sinformationlessd limit Î /2, whereÎ is the unit matrix, irre-
spective of the spectral properties of the noise or the system-
noise coupling.

We observe that all regions in the noise spectrum have
strong influence on RD phenomenon. For this observation,
one must compare Figs. 5–7 corresponding to different spec-
tral widths. For instance, as shown in Fig. 5, forL=0.1, we
recover the under damped and weak dephasing limit of Ref.
3 for all n.

A curious observation in Figs. 5–7 is the strong depen-
dence of RD time scales on the spectral widthL. If the
resonant processes were dominant, one would naively expect
that at very small temperatures, the resonant excitations will

be unfavored and the decoherence would be suppressed. The
point that is often neglected in this popular argument is the
contribution of the short time nonresonant transitions cov-
ered by the whole spectrum. The resonant transitions are
favored when the system interacts with the environment at
sufficiently large times. The system however relaxes differ-
ently at short times by preferring to stay off-resonant in its
interaction with the noise field thereby sampling all regions
of the noise spectrum. This causes the strong dependence on
L we observe at short times.

The major difference of the model interaction Hamil-
tonian ins3d from the standardssz-typed spin-boson model is
in the manipulation of the potential. In contrast to the stan-
dard spin-boson model, in our case only nondiagonal,sx,
type coupling is present under the symmetric potentialssee

FIG. 5. Time dependence of the RDM in units ofV0
−1 for vari-

ous representativen parameter sets atL=0.1. For the model system
the potential is symmetric and the bare 2LS is in SD configuration.

FIG. 6. Time dependence of the RDM in the SD configuration
with respect ton parameter. The width is taken asL=1.

FIG. 7. Then behavior of the RDM is shown for a symmetric
potential. The noise parameters areL=5 andn=−1, 0, 1.
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Fig. 3d. As a result, dramatic differences in the time depen-
dence of the reduced system are observed between the two
models. For instance, the diagonal coupling is standardly
considered for the study of pure dephasing. In this type of
coupling the relaxation is manifestly forbidden and the initial
states do not change their populations. The diagonal coupling
also yields strongly temperature dependent dephasing rates
with the rates vanishing atT=0. On the other hand, when the
system-noise coupling is not diagonal, the induced transi-
tions between the system states can probe the entire noise
spectrum creating decoherence even at zero temperature.
These induced transitions are nonresonant and they should
have observable effects on decoherence.16 The RD times ob-
served as the result of such system-noise coupling are ex-
pected to be nonzero even at zero temperature. This charac-
teristic behavior of the nondiagonal coupling is confirmed in
our calculations both for the 2LS in Figs. 5–7 and for the
MLS in the following sections. Recently, there are other
claims using realistic models on decoherence effects in me-
soscopic systems17 as well as a few experimental confirma-
tions on the saturation of the RD rates at low temperatures.18

B. MLS with 3 ÏN

As N increases the complexity of the formal methods de-
vised for 2LS, such as the noninteracting blip
approximation,3 increases at each time step asN2 rendering
the analytic sum over all virtual configurations in the path
integral approach intractable. We have already observed that
there are major pitfalls in the two-level approximation. For
instance, the dependence of the decoherence rates for a 2LS,
as shown in Figs. 5–7, on the off-resonant energy scales such
asL has been overseen in this approximation. Therefore the
short time behavior of a decohering system—which is the
most prominent regime in the quantum computational

perspective—is affected by a large frequency region in the
noise spectrum. Hence the high excitation levels of the quan-
tum system are vulnerable to leakage and dephasing effects
induced by nonresonant short timesenergy nonconservingd
processes. We now study the decoherence of the simplest
multilevel extension of a 2LS.

1. N=3 case

From the quantum computational point of view, the three
level systems can be as important as the two level ones.
Recently, we proposed a method to perform theq-gate op-
erations by radiation-free couplings within a three level
system.19

The solution ofs6d for N=3 are shown in Figs. 8 and 9,
compared to theN=2 case atL=1,10. We look at the sym-
metric potential in the SD configuration. For 3LS, the ob-
served energies form aL-shaped configuration and, in units
of V0, are roughlyE0.E1<0.1 andE2<2.3. The degen-
eracy parameterh=sE2−E1d / sE1−E0d.106 and the third
level E2 is above the double well barrier as shown in Fig. 1.

When L,E2−E1 the resonant coupling of the first two
levels to the third level is very weak. At short observational
times, the significant contribution should therefore come
from the nonresonant excitations. AsL,E2−E1 however,
these nonresonant transitions are also suppressed by the
Gaussian cutoff. As a result, the 3LS is basically confined to
its highly degenerate qubit subspace. ForE2−E1,L the
third level is allowed to participate in the transitions. A sig-
nificant leakage should therefore be found in theN=3 case in
comparison with theN=2 sshown in Fig. 8 forL=1, 10 at
n=−1d. However, the dephasing rates are unaffectedsshown
in Fig. 9d.

2. N=4 case

We compare the 4LS with a 2LS in Figs. 10 and 11 for
n=−1. In Fig. 10 the 4LS is compared to 2LS when both
systems are in SD configuration.

FIG. 8. Comparison of the effect of the spectral widthL on the
time dependence of the elementsr00 andr11 between the 2LS and
3LS. We usen=−1. The open symbols refer to the caseN=2 and
the solid symbols refer toN=3. More specifically, circle isL=1,
square isL=10.

FIG. 9. Comparison of the effect of the spectral widthL on the
time dependence ofur01u between the 2LS and 3LS. The parameters
are the same as in Fig. 8.

T. HAKIOĞLU AND K. SAVRAN PHYSICAL REVIEW B 71, 115115s2005d

115115-6



For the singly degeneratesSDd case, the qualitative fea-
tures between the 2LS and the 4LS are similar to the previ-
ously discussed case between 2LS and the 3LS. Here, we
observe for the diagonal elements, a much higher relaxation
ratesas well as leakaged out of the qubit subspace during the
observed time for the 4LS although a much less significant
change is observed in the dephasing rates. For higher spec-
tral widths such asL=30 snot included in the figuresd
dephasing rates are also significantly different.

In Fig. 11sad the four level system is in DDssee Fig. 2
configurationd. The second set of curves is plotted in Fig.
11sbd corresponding to the DD in Fig. 11sad but with envi-
ronmental modes in equilibrium at finite temperatures. In DD
configuration we define two degeneracy factors ash=sE2

−E1d / sE1−E0d and hDD=sE3−E2d / sE2−E1d where h.3
3106 andhDD.106. A strong suppression is observablesby
almost two orders of magnituded in the RD rates at zero
temperature as shown in Fig. 11sad. However the rates
strongly depend on the temperature.

3. Arbitrary N case

In Fig. 12 the data are represented at zero temperature and
n=0. Three different curves stand forsbottom to topd L
=0.1,1,10with the open symbols corresponding to dephas-
ing and the solid ones to the relaxation rates. Each set of data
is shown for SD as well as DD configurations separately.
Also note that the vertical axis is logarithmic.

Let us concentrate first on the SD configurations in Fig.
12. In a largeL rangeN=4 andN,10 appear to be two
crucial points. For 4,N relaxation is approximately twice
faster than dephasing and both rates rapidly saturate nearN
.10 and they are independent ofN for 10,N. The onset of
saturation is naturally model dependent. In our case this on-
set coincides with the range of strong dipole transition matrix
elements of the model ins1d ssee Fig. 3d. Turning to the DD
configurations, we observe that for the same environmental
parameters and for allN, decoherence rates for the DD case
are strongly suppressed by nearly two orders of magnitude as
compared to the SD configuration. Currently we do not know
the reason behind this strong suppression of decoherence
rates in doubly degenerate systems.

FIG. 10. Comparison, atn=−1, of the effect of the spectral
width L on the time dependence of the elementsr00, r11, and ur01u
between the 2LS and 4LS. The symbols are the same as in Figs. 8
and 9. The figure describes the singly degenerate caseh.106.

FIG. 11. sad The rates at zero temperature andn=−1 for the
doubly degenerate configurationh=sE2−E1d / sE1−E0d.33106

and hDD=sE3−E2d / sE2−E1d.106. The curves indicate that relax-
ation, dephasing, and leakage are greatly suppressed.sbd The ther-
mal case at the indicatedL, T values atn=−1.

FIG. 12. Relaxation and dephasing rates against the number of
levels for different spectral widths atT=0 andn=0. Note the loga-
rithmic vertical axis. Small symbols refer to the singly degenerate
MLS and the larger symbols refer to the doubly degenerate one. The
open and solid symbols refer to dephasing and relaxation times,
respectively.
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C. Nonresonant short-time effects in the Gaussian regime

An important conclusion that we inferred during the pre-
ceding sections is the role of nonresonant transitions on de-
coherence at short time scales. The nonresonant effects are
already visible in the exponentially time dependent region as
shown there. Nevertheless, to predict the influence of the
nonresonant processes more precisely, one must go to shorter
time scales than the exponential region where the time be-
havior is Gaussian. The solution ofs5d yields Gaussian en-

velope at sufficiently short times asr̂̃std,exps−t2/tG
2 dr̂̃s0d

where tG describes either the relaxation type or dephasing
type Gaussian short time scale. We show in Figs. 13sad–13sfd
these Gaussian ratesstG

−1d versus the spectral area for various
n values. Curves corresponding to differentn coincide com-
pletely, demonstrating that it is the combined areal depen-
dence that matters. Moreover, the log-log plots indicate the
power law tG,ÎA where A is the area under the spectral
function Isvd as given byA=e0

`dvIsvd. This scaling indi-
cates the strong and unbiased influence of all frequencies in
the noise spectrum and is an evidence of the existing non-
resonant frequencies in the transitions between the multi-
levels.

In Figs. 13sgd–13sid we depict the Gaussian leakage rates
versus spectral area for 3øN. The Gaussian leakage rates
measure how rapidly the quantum information escapes into
the higher levels demonstrating that the effect of the non-
resonant transitions is not a mere renormalization3 of the two
level subsystem but a genuine multilevel effect.

IV. CONCLUSIONS

In this work, we examined the decoherence properties of a
general multilevel system interacting with an environmental
noise spectrum using non-Markovian master equation for-
malism.

With regard to the two basic questions in the Introduction
which motivated this work, we have thatsad it is mainly the
nonresonant transitions which affect the short time dynamics
of a quantum system interacting with an environment. At
short observation times, the multileveledness is unavoidable
if there is finite coupling between the levels; and, if the noise

interacting with the system is sufficiently wide to allow for
nonresonant transitions.sbd The nonresonant transitions in-
crease the decoherence rates practically without saturation.
For generic MLS, the decoherence rates increase with in-
creasing nonresonant effects. The leakage effect is more pro-
nounced for a quantum system with higher number of levels
and interacting with a wide spectral noise.

Here another general observation is that, decoherence in
MLS is more pronounced than that in the pure 2LS. A dis-
tinct counterexample to this is presented in the doubly de-
generate MLS with 4øN. The RD rates are found to be
suppressed by two orders of magnitude in comparison with
the singly degenerate or nondegenerate systems for the same
parameter set. As a side remark, we believe that understand-
ing the true nature of this strong suppression in DD systems
may be a crucial development in building low-decoherence
qubits.

The decoherence is caused by interaction driven fluctua-
tions where the number of excitations in the environment
fluctuates. Similar zero temperature decoherence mecha-
nisms have been recently verified for dephasing in the me-
soscopic persistent current rings experimentally18 and stud-
ied theoretically.20–22In particular, the saturation observed in
the dephasing time has been argued in favor of the zero
temperature intrinsic quantum fluctuations.

Finally we conclude that, the two-level approximation is
not well-satisfied by conditions solely determined by the
temperature. Our study here suggests that the validity of the
two-level approximation should be bestowed upon the envi-
ronmental spectrum but not on the sufficiently low tempera-
tures. It is also possible to examine these effects by using
much simpler models with different environmental spectra.
Our current effort is devoted to an elaborate criticism of two
leveledness using such models.23

ACKNOWLEDGMENTS

This research is supported by the Scientific and Technical
Research Council of TurkeysTÜBİTAK d Grant No. TBAG-
2111s101T136d. The authors thank I. O. Kulik and E. Mese
for critical comments.

FIG. 13. Scaling of the
Gaussian relaxation rates with
the spectral areasleft columnd;
Gaussian dephasing rates with
the spectral areascentral col-
umnd; and Gaussian leakage
rates sright columnd. In all col-
umns from top to bottom, the
plots correspond ton=1, n=0,
and n=−1. Log-Log axes in all
graphs indicate that the slope is
0.5 impliying that both rates
scale asÎA.
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