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We examine the effect of multilevels on decoherence and dephasing properties of a quantum system con-
sisting of a nonideal two level subspace, identified as the qubit, and a finite set of higher energy levels above
this qubit subspace. The whole system is under interaction with an environmental bath through a Caldeira-
Leggett type coupling. The model that we use is an rf-SQUID under macroscopic quantum coherence and
coupled inductively to a flux noise characterized by an environmental spectrum. The model interaction can
generate dipole couplings which can be appreciable between the qubit and the high levels. The decoherence
properties of the qubit subspace is examined numerically using the master equation formalism of the system’s
reduced density matrix. We calculate the relaxation and dephasing times as the spectral parameters of the
environment are varied. We observe that, these calculated time scales receive contribution from all available
frequencies in the noise spectruiven well above the system’s resonant frequency sScalesssing the
dominant role played by the nonresonant transitions. The relaxation and dephasing and the leakage times thus
calculated, strongly depend on the appreciably interacting levels determined by the strength of the dipole
coupling. Under the influence of these nonresonant and multilevel effects, the validity of the two level ap-
proximation is dictated not by the low temperature as conveniently believed, but by these multilevel dipole
couplings as well as the availability of the environmental modes.
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[. INTRODUCTION these physical effects, and including the leakage factor, the
validity of the analytic techniques devised to approximate
Currently a large number of model approaches are preseffiese MLS in terms of simpler two-level model may become
for formulating the decoherence phenomena in the literaturesritically questionable. .
The original Caldeira-Leggett moddb based on a quantum  In this work, we look for the answers of the following
system under the influence of a double well tunneling potenb@sic questions(a) Can one understand the effect of the
tial with a linear coupling to an infinite bath of harmonic higher levels on decoherence in a MLS under interaction
oscillators. If the potential issufficiently smooth and the With an environment? an(b) what is the role played by the
separation between the qubit and the high energy levels Ignvwonmental spectrum in thg/o-levelednesef a MLS?
well above the environmental temperature, this original The MLS can itself be manifesthl-leveled or a truncated

. approximation of a larger system with much higher number
model IS norm_ally representeq as a two level syétéﬁhS) of levels. Examples of both cases have been well known. For
interacting with the bosonic environmengspin-boson

mode). An incomplete list of this wide literature is provided the former, organic molecules with certain discrete rotational
) ) . symmetries and low energy configurations of single polymer-
in Refs. 3-5. Another popular model of decoherence is th y 9y 9 gle poy

i . ' §zed chains are good examples. The vibrational energy spec-
central spin system in which central 2LS couples to a largg5 of atoms and molecules are good examples for the latter.
number of environmental two level systems. The pros angye remark however, that a concise treatment of the decoher-
cons of these two rival models have been extensivelyance effects based on such MLS has not been developed yet.
studied Realistic MLS can be found for instance in superconducting
Realistically, and aside from the genuine 2LS, a large masystems in the macroscopic quantum coherence regimes. In
jority of physical systems suggested as qubit is far from bethis work, we use an rf-SQUID in the flux regime to generate
ing ideal and include some number of higher energy levelsour model system Hamiltonian for a multileveled quantum
Higher levels in a multileveled systeWILS) can be effec- system. In the interaction with an environmental noise we
tive in the dynamics in two ways. The first is the leakage ofuse two scales which parametrize the low and high frequency
the information from qubit subspace to higher levels whichsectors of the noise spectrum.
can happen in the presence of some uncontrollable coupling In Sec. Il we give an introduction of the model MLS.
to a noise field with a sufficiently wide spectrum. PopulatingThere we concentrate on the properties of the environmen-
higher levels is basically thought to be a manifestation oftally induceddipole matrix elements between the levels. Sec-
resonant transitions at long times. On the other hand, for ation 1ll recalls the reduced density matrifRDM) master
arbitrary and wide noise spectrum, the same type of systenequation formalism and adopts it for the coupling of the
noise coupling can also induce nonresonant transitions whichLS to the environment. The noise correlator and the
affect the short time dynamics of the interaction and contribsystem-noise kernel, are defined in Sec. Illl. The results are
ute to the decoherence times. In the coupling of a multipresented together with the calculations for pure ZbSec.
leveled system to a wide environmental spectrum both eftl A) to allow a comparison with the earlier work. Most
fects should therefore be expected. As a consequence ofiginal results of the paper are included in Sec. Ill. The
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separately for the casdé=3, N=4, and 4<N. There, we

confirm the leakage effects and observe that the short time .
nonresonant transitions dominate the decoherence times. A 4" excited state
a consequence of these short time effects, we demonstrate |
Sec. Ill C that, nonresonant transitions introduce severe re g4 |
strictions in the validity of the two level approximation.

MLS with three or higher levels are examined in Sec. IlIB € \ /

3" excited state

Il. THE MODEL MULTILEVEL SYSTEM

Energy/(hQ,/2m)

2" excited state

The majority of the accepted methodsarticularly the 2

influence functional widely used in the literature is appli-

cable to the two-leveled dynamics. The results are generally /\

believed to be true for 2LS and at temperatures well below B

the energy separation of the qubit and the high le¥éBuch o Ground & 1° excited

two level approximations are tempting since they allow ex- 4 . e

plicit analytic expressions for the decoherence times as func =3 - 1 8

172
tions of the system’s parameters. Exact methods are alsu (enCOy/h) @

available on pure 2L$. - FIG. 1. The double-well potential and the eigenenergy configu-

If one does not take for granted the validity of such ap-ations corresponding to the singly degene(&®) case. Here the
proximations, a direct investigation of the MLS-environment,ymerical values of the dimensionless parameters for this SD con-
Intel’aCtIOI’l mUSt be made In a MLS a need f0r EXp|ICIt de“ﬁguration are'B: 1.616 and’y: 1.753. The harmonic energy Sca|e
pendence on number of levels and their mutual COUplingand the degeneracy factors are, respectivﬁ@ozlo‘S eV and
arises. To keep these dependencies, we represent here the-10".

MLS in its eigenenergy basis.
Our MLS is an rf-SQUID operating under macroscopic
quantum coherence conditions given by the dimensionlesggurations within the double well regime in which the
Hamiltonian SQUID potential is strongly agharmonic. An interesting case
here is to find highly degeneratkevels corresponding to the
Hd (o) = %[_ ai + (9~ Phiad ] + B COL ), (1) first two eigenstgteg forgthe symmetric doubﬁe-wellgpotential
whereQy=2m/\LC is the harmonic frequency with being  (i-€., ¥nias=0). This particular case has been extensively ex-
the inductance of the SQUID loop ar@ is the effective ~amined previously for 2LS using semiclassical methods with
capacitance of the Josephson junctiBe,E,/7%), is the di-  an arbitrarily weak tunneling between the wélfsAnother
mensionless ratio of the Josephson endigio the harmonic ~ configuration that turns out to be important in our calcula-
energy,y=fi\L/C(2m/dy)? is a dimensionless scale param- tions is the doubly degenera(®D) configuration for sys-
eter, ppia= 2P d Py is the effective bias in the flugap-  tems with 4<N in which the first four levels are pairwise
plicable in a current biased junctiprand p=27®/(yd,) is ~ degenerate with large degeneracy factors. The double-well
the flux (®) dependent dimensionless phageere ®, Potential and energies corresponding to both SD and DD
=hc/2e is the superconducting flux quantunThe Hamil- ponﬁguraﬂons which are_often used in the paper, are shown
tonian (1) is clearly an infinite level system. Truncating the iN Figs. 1 and 2, respectively.

eigenspace aXl levels, it becomes, in the energy basis _The rf-SQUID is shown to be a convenie@nd nonu-
niqgue model for studying multilevel effects due to the fact

that the transitional dipole couplings between the qubit sub-
He= 2 En(DlZnXEn], (2 space and the higher levels are non-negligible as shown in
n=0 Fig. 3. Any other physical Hamiltonian with similar features

where{ describes the set of system paramef@§ss, v, gpas ~ Would qualify for a model MLS. '

where E(¢), and |¢,n) are, respectively, the parameter de- In the rest of the paper the harmonic frequeriy
pendent eigenenergies and eigenvectors of the MLS. This set27/ VLC is a free parameter that we use for scaling energy
of parameters is sufficiently general to accommodate a var@nd time® _ o o _
ety of possible effects including the degeneracy of the lowest Coupling to noiseThe system-noise interaction is consid-
two levels (the qubit subspagethe symmetry of the wave ered to be of Caldeira-Leggett type linear coupling between
functions, etc[we define the degeneracy factor by=(E, tAhe SQUID’s macroscopic fluqo and the environmental flux
~E))/(E;-Ep) for MLS and #,=(E;+Ey)/(E;-E,) for  ®e arising from the finite inductance of the SQUID loop.
2LS]. These parametefy, B, ¢y CONtrol, respectively, the This coupling can tze exApanded in terms of the environmental
high energy harmonic, the low energy anharmonic spectrénodes ape==, (bl +by) wherek is the mode index. The
and the reflection symmetry of the rf-SQUID potential, re-system noise interaction is simph;,=(a/2)¢p. where a
spectively. At low energies, a simple numerical diagonalizatepresents the strength of the inductive coupliags to be
tion of (1) reveals that there are low lying eigenenergy con-normalized by ()). The interaction Hamiltonian is given by

N-1

115115-2



ROLE OF THE ENVIRONMENTAL SPECTRUM IN THE.

55 k 5" excited state i
4" excited state

& 35 ¢ 4
g
=
= nd L
(< 2" and 3" excited states
2
Im|

15 1

N Ground & I*
\_/ \/ excited states
_05 1 L L L 1
-3 -2 -1 0 1 2 3
(2rcQ) @

FIG. 2. The double-well potential and the eigenenergy configu-
rations corresponding to the doubly degenef&®) case. The nu-
merical values of the dimensionless parameters corresponding to
this DD configuration arg8=0.772 andy=2.187. The harmonic

energy scale and the degeneracy factors7ddg=1073 eV, 7,,7
=10P.

N-1

o ~
Hin =~ 2 (@)l 5K T e: €)
r,s=0
Here (¢),s=(Z,r|@|¢,s) are the noise inducedipole matrix
elements. For the model MLS described @y, the dipole
matrix is real and symmetric.

The rf-SQUID provides a sufficiently general example of

PHYSICAL REVIEW B 71, 115115(2005

SZ2

252275 2522
22552 522

<2

532252252 22225522
S rseessessssaii ity
e

S22
';. Z2

N\ rorsoess 2235222
o.;;:,o:.:z%; 3...:,.:.

$RR2752 2ez
"”0” 0‘0",- TRl AL
(R RR e RR AR
QL2 BRI RL AL\
CZS X2 2 -,

FIG. 4. The variation of (o) in (4) versusw and v for —1<v
<1 parametrized byA/T=10,50, 50, 10Qfrom the innermost to
the outermost surfaces, respectivyely

in contrast to the most popular models used in the literature.
On the other hand, when the potential is tilted, the parity
restriction is lifted by which diagonal system-noise couplings
are also generated.

In Fig. 3 the noise induced couplings for an asymmetric
potential corresponding t@,;,s=0.01 is plotted as a function
of the relevant level indices interacting with the dipole cou-
pling. Data indicate that the induced dipole strengths be-

a multileveled system by the finite dipole transition matriX 4y een the qubit and the higher energy states are comparable

elements for both the symmetiice., ¢p,s=0) and asymmet-

to those among the qubit states. Therefore, the high energy

ric (i.e., ¢pias7 0) potential configurations. In the symmetric yansitions cannot be trivially ignored. The high energy tran-

case even parity transitions vanish which results in mani

sitions normally appear as a result of the resonant interac-

festly off-diagonal system-noise coupling. Physically, this is(jsns with the high energy sector of the noise spectrum under

@

FIG. 3. A few nonzero dipole matrix element®),,, of the

coupling of the rf-SQUID to a flux noise versus the level index
[calculated in the eigenenergy basis @) for an asymmetric

potential.

long interaction times. However, in the reduced system these
transitions appear in the short time dynamics as well, and the
short time dynamics is dominated by the nonresonant pro-
cesses. Since decoherence is dominantly affected by the
short time behavior, the nonresonant processes should have
observable effects on decoherence. Indeed we observe these
effects in the solution of the master equatidSecs.
HA-IITC).

We next consider the environmental spectrum. Regarding
this, we take a thermal Gaussian with a low frequency tail
obeying a power law as

(o) = 0"\ coth(w/2T), (4)

where A is the effective noise cutoff frequency andde-
scribes the subohmi@.e., v<0), superohmic(i.e., v>0),
and ohmic(i.e., v=0) character of the spectrum. These two
parameters define the high and low frequency character of
the noise field as mentioned in the Introductit®ee. Fig. 4.

If the resonant processes were dominant in the noise-
induced transitions, one would then only concentrate on that
part of the spectrum where would be close to a relevant
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transition energ\AE. For —1< v (subohmig, the following e o QP S IS -

two regions are of particular importance) at sufficiently Kis (t,t") = Z{f(t‘t )L(@@t)nrsm= (@ )nr(@)sml

low temperatures and high cutoff corresponding te A, the

dominant mechanism of relaxation is through spontaneous + F* (=)@ @0 medn— (@0n (@)}
de-excitationg,we call this regiorregionl; (b) at high tem- '

peratures and high cutoff the regien< min(A,T) provides ()
a wider range of strong environmental couplings which we Here F(t—t')=F* (t'—t) is the complex noise correlation
call region II. If the character of the spectrum is more like fynction,

ohmic or superohmic, i.exy=0 or v=1, respectively, the o L

availability of the low frequency modes is not so high. F(t=1") =TT 0e) 0e(t’) pe(0)] = (@e(t)@e(t))  (8)
Therefore, in the ohmic and superohmic regimegion Il

would dominate the relaxation/dephasitRD) phenomena. and

Hence it is concluded that, if the resonant processes were N-1

dominant, one would maintain a sufficiently low environ- fpt: > (@) EEN £ KL ) (9)
mental temperature to largely eliminate the decoherence ef- k,€=0

fects for ohmic and superohmic cases. . _ . . . . .
Our calculations in this work however demonstrate that> the dipole operator in the interaction picture. Expanding

decoherence cannot be avoided at zero temperature and tﬂ?} n|0|;5_e f'gld_‘f’et'r:‘ the Imdepl_ebn_dent harmg?lt_: m:)hdestand
decoherence times are influenced not by the strength of th ((;ju ";: ing( I) In therma leqUIl fium one obtains the stan-
spectral coupling at the resonant transitions but by the whol ard thermal noise correlator,

spectral range. Flt-1) =2 lcoth{wd2T)cosw(t—t')
k

Ill. MASTER EQUATION AND THE REDUCED DENSITY o (t-1] 10
MATRIX FOR THE MLS I SIN wy .

. The noise spectrum is assumed to be continuous of which the
In the study of decoherence due to the weak environmen- . ; o
. : ; .~ real part is responsible for RD effects and is given by the
tal influence, one conventional way is to calculate the time S . . .
. . ; spectral density ir{4). In the numerical calculations we in-
dependent RDM by solving the master equation. This for- ; . g
. . .~ clude the noise correlation function'as
malism has been known since the works of Bloch, Redfield,
and FandBRF)® and widely applied to the current decoher- f”

2 2
ence problems for which many standard references &xist. F(t—t)=2 doo* e M coth(w/2T)cosw(t — t')
The standard BRF formalism assumes fully Markovian con-
ditions for the solution of the master equation, which leads to —isino(t-1)]. (17
analytically solvable results for 2L8. However, this as-
sumption is not free of drawbacks which was explored origi-
nally in Ref. 11 and lately in Ref. 12 as well as in Ref. 13 in
the context of spin magnetic resonance and relaxation.
The time evolution of the RDM is obtained by

0

Inserting(11) in (7) we obtain the system-noise kernel for
our model. A numerical upper frequency cutoff af, .,
=5A is used in the numerical integral {11).

The solution of(6) is determined in the weak system-

ds . noise interaction limit by the competition of three time
- |ﬁd—tp(t) =[p(t), Hint(D)], (5) scales:rg, noise correlation time scaleg and rp, the relax-
ation and dephasing time scait®f the reduced system,

where the tilde denotes the interaction picture. In the contextespectively. The noise correlation time scale is found
of decoherence, we will give more emphasis on the exponerfoughly from the thermal Gaussian bath spectral width as
tial time scales in the solution df). A convenient way to 75=1/A. The RD time scales are found by fitting the enve-
proceed is then to apply the Born-Oppenheimer approximalope in the solution of6) to the decaying exponentfal

tion in which the full density matrix is initially a product of 1 (O] = i (20)] + [ (0)] = |y (=) Jlexpl— /7)), (12)

the system and environmental ondse., 5(0)=pS(0)
®pe(0)] and at any later and sufficiently short time approxi-
mately separates ggt)=p(t) @ p(0). sl 1 dInfp;|
The iterative solution of5) including the second order in ! 1-|pij()lp(0)|  dt |
the interaction with the partial trace performed over the en-

vironmental degrees of freedom yields the master e uatioWhere in(12) and(13), i=j=1 is used in the calculation of
9 y 9 the relaxation rateérgel) andi=0, j=1 is used for the qubit

by the formula

(13

for the RDM, dephasing ratér;"). For the RDM at asymptotic times we
d t havep;1()=1/N and|p;o(>)|=0. The equatiorf13) breaks
Z~9(4) = — ’ =S+ -
dtan(t) = fo dt' X KL t)pt), ®  down when|p;;(0)|=|pj;()| which we stay away from by
ne appropriately choosing;;(0).
in which we adopt the model interaction Hamiltonigd) for In this work, the numerical solution @6) is performed by
the system-noise kernel. This kernel is found to be discretizing time in steps oAt=102Q;" (i.e., t=nAt, t'
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FIG. 5. Time dependence of the RDM in units(ogl for vari- FIG. 6. Time dependence of the RDM in the SD configuration
ous representative parameter sets &=0.1. For the model system with respect tov parameter. The width is taken as=1.
the potential is symmetric and the bare 2LS is in SD configuration.

be unfavored and the decoherence would be suppressed. The

=mAt). The time sum is then performed at each external stepoint that is often neglected in this popular argument is the
given by a fixedn in the discrete triangular regiom=n  contribution of the short time nonresonant transitions cov-
using the standard nonadaptive Euler algorithm. The Hermiered by the whole spectrum. The resonant transitions are
ticity and the normalization of the RDM at each time step isfavored when the system interacts with the environment at
controlled within a relative accuracy of 1. All calculated  sufficiently large timesThe system however relaxes differ-
energies as well as time scal@sarticularly the RD times  ently at short times by preferring to stay off-resonant in its
are also given in units ai{), and Qg", respectively. More-  interaction with the noise field thereby sampling all regions
over, we consider zero temperatuiie=0) results except one of the noise spectrum. This causes the strong dependence on
specific case in Sec. Il C ang=0.01 throughout the paper. A we observe at short times.

The major difference of the model interaction Hamil-
tonian in(3) from the standardo-type) spin-boson model is
in the manipulation of the potential. In contrast to the stan-
The solution of the 2LS is shown in Fig. 5 for a few dard spin-boson model, in our case only nondiagong|,

representative environmental parameters and for the SD cofiype coupling is present under the symmetric poterisak
figuration. The degeneracy parametemjis~ 10°.

The first observation is that, the results indicate that the 1.0 ; .
relaxation time scaley (read from the filled symbo)sand
the dephasing time scafge, (read from the hollow symbols !
are compatible. This result is in agreement particularly with 44 !
the recent exact 2LS calculations using the path integral in-
fluence functional formalisrhAs the asymptotic time behav-

A. RDM solutions for the 2LS

X
ior is concerned, for symmetric configuratiofmire o, cou- *E 06 |
pling), the density matrix converges to the maximum entropy >
(informationless limit 1/2, wherel is the unit matrix, irre- §
spgctive of Fhe spectral properties of the noise or the systemg 0a | ——ep,v=1 |
noise coupling. 3 O—Olpml,v;)—l

= —a p00 V:

We observe that all regions in the noise spectrum have
strong influence on RD phenomenon. For this observation,
one must compare Figs. 5-7 corresponding to different spec 02
tral widths. For instance, as shown in Fig. 5, for0.1, we
recover the under damped and weak dephasing limit of Ref h
3 for all v. 00 SEE VPP R e om e fe 2R T

A curious observation in Figs. 5-7 is the strong depen-
dence of RD time scales on the spectral width If the
resonant processes were dominant, one would naively expect FIG. 7. Ther behavior of the RDM is shown for a symmetric
that at very small temperatures, the resonant excitations wilbotential. The noise parameters are5 andv=-1, 0, 1.

time x Q,
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reduced density matrix
reduced density matrix

0 20 40 60 80 100
time x Q,

FIG. 8. Comparison of the effect of the spectral widtton the FIG. 9. Comparison of the effect of the spectral widtlon the
time dependence of the elemeptg and p;, between the 2LS and time dependence dpg;| between the 2LS and 3LS. The parameters
3LS. We usev=-1. The open symbols refer to the cdde2 and  are the same as in Fig. 8.
the solid symbols refer ttN=3. More specifically, circle is\=1,

square isA =10. perspective—is affected by a large frequency region in the

noise spectrum. Hence the high excitation levels of the quan-
Fig. 3. As a result, dramatic differences in the time depentum system are vulnerable to leakage and dephasing effects
dence of the reduced system are observed between the tWeduced by nonresonant short tinfenergy nonconserving
models. For instance, the diagonal coupling is standardlprocesses. We now study the decoherence of the simplest
considered for the study of pure dephasing. In this type ofnultilevel extension of a 2LS.
coupling the relaxation is manifestly forbidden and the initial
states do not change their populations. The diagonal coupling 1. N=3 case

also yields strongly temperature dependent dephasing rates From the quantum computational point of view, the three
with the rates vanishing &=0. On the other hand, when the |eve| systems can be as important as the two level ones.
system-noise coupling is not diagonal, the induced transirecently, we proposed a method to perform thgate op-

tions between the system states can probe the entire noigeations by radiation-free couplings within a three level
spectrum creating decoherence even at zero temperatuigstent®

These induced transitions are nonresonant and they should The solution of(6) for N=3 are shown in Figs. 8 and 9,
have observable effects on decoherel¥cEhe RD times ob- compared to thé&=2 case at\=1,10. We look at the sym-

served as the result of such system-noise coupling are exnetric potential in the SD configuration. For 3LS, the ob-
pected to be nonzero even at zero temperature. This charagaryed energies form A-shaped configuration and, in units
teristic behavior of the nondiagonal coupling is confirmed ingf Q,, are roughlyEy=E;~0.1 andE,~2.3. The degen-
our calculations both for the 2LS in Figs. 5-7 and for theeracy parameter=(E,~E,)/(E;~Ey) =10 and the third
MLS in the following sections. Recently, there are other|eyg| E, is above the double well barrier as shown in Fig. 1.
claims using realistic models on decoherence effects in me- When A < E,—-E; the resonant coupling of the first two

soscopic systerﬁéa_s well as a few experimental confirma- |eyels to the third level is very weak. At short observational
tions on the saturation of the RD rates at low temperattifes. fimes, the significant contribution should therefore come
from the nonresonant excitations. As<E,—-E; however,
these nonresonant transitions are also suppressed by the
Gaussian cutoff. As a result, the 3LS is basically confined to
As N increases the complexity of the formal methods de-ts highly degenerate qubit subspace. Fy-E;<A the
vised for 2LS, such as the noninteracting blip third level is allowed to participate in the transitions. A sig-
approximatior?, increases at each time stepM&rendering  nificant leakage should therefore be found inwe3 case in
the analytic sum over all virtual configurations in the pathcomparison with theN=2 (shown in Fig. 8 forA=1, 10 at
integral approach intractable. We have already observed that=-1). However, the dephasing rates are unaffe¢gmbwn
there are major pitfalls in the two-level approximation. Forin Fig. 9).
instance, the dependence of the decoherence rates for a 2LS,
as shown in Figs. 5-7, on the off-resonant energy scales such 2. N=4 case
asA has been overseen in this approximation. Therefore the We compare the 4LS with a 2LS in Figs. 10 and 11 for
short time behavior of a decohering system—which is thev=-1. In Fig. 10 the 4LS is compared to 2LS when both
most prominent regime in the quantum computationalsystems are in SD configuration.

B. MLS with 3=<N
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FIG. 12. Relaxation and dephasing rates against the number of
levels for different spectral widths @=0 andv=0. Note the loga-
righmic vertical axis. Small symbols refer to the singly degenerate

LS and the larger symbols refer to the doubly degenerate one. The
open and solid symbols refer to dephasing and relaxation times,
respectively.

FIG. 10. Comparison, ar=-1, of the effect of the spectral
width A on the time dependence of the elememys p11, and|pqj]
between the 2LS and 4LS. The symbols are the same as in Figs.
and 9. The figure describes the singly degenerate gas&CP.

For the singly degenerai&D) case, the qualitative fea-
tures between the 2LS and the 4LS are similar to the previ- In Fig. 11(@) the four level system is in DDsee Fig. 2
ously discussed case between 2LS and the 3LS. Here, v@onfiguration. The second set of curves is plotted in Fig.
observe for the diagonal elements, a much higher relaxatiohl(b) corresponding to the DD in Fig. ) but with envi-
rate(as well as leakageut of the qubit subspace during the ronmental modes in equilibrium at finite temperatures. In DD
observed time for the 4LS although a much less significaneonfiguration we define two degeneracy factorssas(E;
change is observed in the dephasing rates. For higher specEy)/(E;—Ep) and npp=(E3—-E,)/(E;—E;) where =3
tral widths such asA=30 (not included in the figurgs X 10° and 7pp=1CF. A strong suppression is observalisy
dephasing rates are also significantly different. almost two orders of magnitufiéen the RD rates at zero
temperature as shown in Fig. (B However the rates

strongly depend on the temperature.
4LS (DD) (a) 4LS (DD) (b)
1.0 1

3. Arbitrary N case

L L
o0 T=1, A=l _
08 k‘::_\::;*’;- o0 T=10,A=1 | |og In Fig. 12 the data are represented at zero temperature and
we |= = T=1, A=10 v=0. Three different curves stand fgbottom to top A

=0.1,1,10with the open symbols corresponding to dephas-

x

E 06 | o—e A=l 16 ing and the solid ones to the relaxation rates. Each set of data
z =——a A=10 is shown for SD as well as DD configurations separately.
g LI Also note that the vertical axis is logarithmic.

% 04 *%000qq] 04 Let us concentrate first on the SD configurations in Fig.
3 gt 12. In a largeA rangeN=4 andN~ 10 appear to be two

crucial points. For &N relaxation is approximately twice
102 faster than dephasing and both rates rapidly saturateMear
=10 and they are independentidffor 10<N. The onset of
saturation is naturally model dependent. In our case this on-
set coincides with the range of strong dipole transition matrix
elements of the model iflL) (see Fig. 3. Turning to the DD
configurations, we observe that for the same environmental

FIG. 11. (8) The rates at zero temperature amd—1 for the ~ Parameters and for a, decoherence rates for the DD case
doubly degenerate configuration=(E,—E,)/(E;—Eg)=3x 1P are strongly suppressed by nearly two orders of magnitude as
and 7pp=(E3~E,)/(E,—E;) = 10P. The curves indicate that relax- compared to the SD configuration. Currently we do not know
ation, dephasing, and leakage are greatly suppreésedhe ther-  the reason behind this strong suppression of decoherence
mal case at the indicatel, T values atv=-1. rates in doubly degenerate systems.

L L L L ¢ 0
0 20 40 60 80 0 20 40 60 80 100
time x Q, time x Q,
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1.00 1 1

—e 28 -t
e 3LS »_//_,,/“':7“,4” o1l — )
040 - H% 01 :;_/«/A* .,/./,AM FIG. 13. Scaling of the
@ @ ooty © Gaussian relaxation rates with
a, o~
0.01 . e 00 o 1 o 000p o ~ y the sp_ectral areal_eft column); _
1.00 % 910 100 3 gy Gaussian dephasing rates with
s ol /“‘; the spectral aredcentral col-
o o —
oo L % o1l . et § o1y umn); and Gaussian leakage
= - 3 001 rates (right column. In all col-
3 © | = g
-
. ® T o ‘ & oo . " umns from top to bottom, the
0.01 8 @ 0.
R 0.10 10 g 00! o1 g oo o1 1 plots correspond ta=1, »=0
o = 1 o 1l . ’
g et & /M; and v=-1. Log-Log axes in all
o1} raphs indicate that the slope is
0.10 | o1 | grap p
) 0ol | /‘ 0.5 impliying that both rates
© U scale as/A.
L 0.01 L L
001, 0 1 0.01 0.1 1 000% 01 0.1 1
spectral area A (spectral area)} A (spectral area)
C. Nonresonant short-time effects in the Gaussian regime interacting with the system is sufficiently wide to allow for

An important conclusion that we inferred during the pre_nonresonant transitiongb) The nonre_sonant _transitions in-_
ceding sections is the role of nonresonant transitions on dé&réase the decoherence rates practically without saturation.
coherence at short time scales. The nonresonant effects dr@" 9eneric MLS, the decoherence rates increase with in-
already visible in the exponentially time dependent region a§"€@sing nonresonant effects. The leakage effect is more pro-
shown there. Nevertheless, to predict the influence of th&ounced for a quantum system with higher number of levels
nonresonant processes more precisely, one must go to shorfétd interacting with a wide spectral noise. _
time scales than the exponential region where the time be- Here another general observation is that, decoherence in
havior is Gaussian. The solution €8) yields Gaussian en- MLS is more pronounced than that in the pure 2LS. A dis-
velope at sufficiently short times afz{t)~exp(—t2/¢é)";3(0) tinct counterexample to this is presented in the doubly de-

. . . ._generate MLS with 4&N. The RD rates are found to be
where 7¢ describes either the relaxation type or dephasin

i ! I uppressed by two orders of magnitude in comparison with
type Gaussan short t_'{“e scale. We show in F|g$a)1—113(f} the singly degenerate or nondegenerate systems for the same
these Gaussian ratég;) versus the spectral area for various

_ - - parameter set. As a side remark, we believe that understand-
v values. Curves corresponding to differencoincide com-  jng the true nature of this strong suppression in DD systems
pletely, demonstrating that it is the combined areal depenr—nay be a crucial development in building low-decoherence
dence that matters. Moreover, the log-log plots indicate th"‘ﬁubits.
power law 75~ VA where A |smthe area under the spectral * The decoherence is caused by interaction driven fluctua-
function I(w) as given byA=[odwl(w). This scaling indi-  tions where the number of excitations in the environment
cates the Strong and Unbiased inﬂuence Of a“ frequencies i"hctuates_ S|m||ar Zero temperature decoherence mecha_
the noise spectrum and is an evidence of the existing nomisms have been recently verified for dephasing in the me-
resonant frequencies in the transitions between the mU'“soscopic persistent current rings experimentélnd stud-
levels. _ _ _ ied theoretically!®-22In particular, the saturation observed in
In Figs. 139)-13(i) we depict the Gaussian leakage ratesthe dephasing time has been argued in favor of the zero
versus spectral area fors3N. The Gaussian leakage rates temperature intrinsic quantum fluctuations.
measure how rapidly the quantum information escapes into Finally we conclude that, the two-level approximation is
the higher levels demonstrating that the effect of the nonnot well-satisfied by conditions solely determined by the
resonant transitions is not a mere renormalizétgiithe two  temperature. Our study here suggests that the validity of the
level subsystem but a genuine multilevel effect. two-level approximation should be bestowed upon the envi-
ronmental spectrum but not on the sufficiently low tempera-
tures. It is also possible to examine these effects by using
IV. CONCLUSIONS much simpler models with different environmental spectra.

In this work, we examined the decoherence properties of Qur current eff(_)rt is devoted to an elaborate criticism of two
general multilevel system interacting with an environmentaf€veledness using such modéfs.
noise spectrum using non-Markovian master equation for-
malism.
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