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Experimental Study of Linear Closed-Loop
Control of Subsonic Cavity Flow
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A study is presented of the modeling and implementation of different concepts for linear feedback control of a
single-mode resonance shallow cavity flow. When a physics-based linear model is used for cavity pressure oscilla-
tions, an H∞ controller was designed and tested experimentally. It significantly reduced the main Rossiter mode
for which it was designed, while leading to strong oscillations at other Rossiter modes. Other linear control methods
such as Smith predictor controller and proportional integral derivative (PID) controller exhibited similar results.
The ineffectiveness of using fixed linear models in the design of controllers for the cavity flows is discussed. A mod-
ification of the PID design produced a parallel-proportional with time-delay controller that remedied this problem
by placing zeros at the frequencies corresponding to other resonance states. Interestingly, it was observed that
introducing the same zero to the H∞ controller can also successfully avoid the strong oscillations at other Rossiter
modes otherwise observed in the single-mode-based design. The parallel-proportional with time-delay controller
was compared to a very effective open-loop method for reducing cavity resonance and exhibited superior robust-
ness with respect to departure of the Mach number from the design conditions. An interpretation is presented for
the physical mechanisms by which the open-loop forcing and the parallel-proportional with time-delay controllers
reduce the cavity flow noise. The results support the idea that both controls induce in the system a rapid switching
between modes competing for the available energy that can be extracted from the mean flow.

I. Introduction

I T is widely recognized that the main reason to use feedback
(closed-loop) control, as opposed to open-loop control, is to cope

with the uncertainty, that is, to stabilize and improve the performance
of a physical system under various operating conditions and mod-
eling errors.1 Recently, several attempts have been made to apply
closed-loop control methods to the control of flow phenomena.2−13

The current work is part of a multidisciplinary effort to develop tools
and methodologies for closed-loop aerodynamic flow control. Ini-
tially this is done by choosing as a benchmark problem the control of
the acoustic resonance of a flow over a shallow cavity.4−6 Although
flow-induced cavity resonance is a well studied problem, the effects
of the closed-loop dynamic control on the flow dynamics are not
yet well understood. A recent paper by Cattafesta et al.3 provides
a good review of the subject. Therefore, feedback controller design
for closed-loop cavity flow control is still an open challenge. The
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difficulty in the controller design lies in that the flow dynamics
are governed by the Navier–Stokes equations, which, in control
terminology, are infinite dimensional and highly nonlinear. These
equations cannot be solved sufficiently fast for any practical models,
and they cannot be used in any internal model control scheme.

Recently, a physics-based linear model was proposed and used
in control of cavity oscillations.12,13 In the present work, we show
that the parameters of this linear model can be optimized to match
the open-loop response of the cavity pressure fluctuations at a given
Mach number in a single-mode resonance case. Correspondingly, a
robust feedback controller can be derived based on the H∞ mixed
sensitivity minimization. The experimental results show that the
H∞ controller reduces the dominant tone for which it is designed
but introduces tones at other Rossiter modes. Similar observations
can be obtained for other linear control methods, for example, Smith
predictor control and proportional integral derivative (PID) control.
In general, the experimental results do not match the expected re-
sults from the linear feedback theory, whereas the open-loop (in the
absence of external forcing) system response of the linear model to
a white noise fits the experimental data very well. Thus, we con-
clude that fixed linear time-invariant models, which do not take into
account all possible Rossiter modes, are ineffective for controlling
cavity flow resonance.

The real-time control implementations show that a significant
improvement can be obtained by adding a tunable time delay be-
tween two proportional feedback loops, thus, placing a zero in the
neighborhood of the additional resonant frequencies. The resulting
parallel-proportional with time-delay controller is able to reduce
the resonant tone without exciting additional tones. Compared to an
equally effective open-loop system,14 it requires less control effort
and exhibits better robustness with respect to departure of the Mach
number from the design conditions. A physical interpretation of the
effect of both controllers on reducing the cavity flow resonance is
then explored.

A brief description of a linear model of the cavity flow based on
the physics of the system is given in Sec. II. The H∞ controller de-
sign is also given in the same section. In Sec. III, the experimental
apparatus and procedures used in this study and the characteristics
of cavity flow resonance are described. The real-time implemen-
tations of the linear control designs and a comparison of open-
loop and closed-loop control techniques can be found in Sec. IV.
Finally, in Sec. V, a physical interpretation of the mechanisms

929



930 YAN ET AL.

by which effective controllers reduce the cavity flow resonance is
presented.

II. Physics-Based Linear Model of the
Cavity Flow and H∞ Controller Design

The physics-based linear model introduced in Williams et al.12

and Rowley et al.13 involves separate linear transfer function blocks
for the shear layer G(s), scattering KS > 0, acoustic feedback, and
receptivity K R > 0, as shown in Fig. 1. The plant transfer function
contains two internal feedbacks: acoustic feedback and receptivity.
The shear layer can be taken to be a second-order system with a
time delay:

G(s) = ω2
0e−sτs

s2 + 2ζω0s + ω2
0

= G0(s)e
−sτs (1)

where ω0 > 0, 1 > ζ > 0, and τs > 0 are the parameters to be deter-
mined from the experimental data. If we define the acoustic feedback
as

A(s) = e − sτa /[1 − r(s)e − 2sτa ], τa > 0 (2)

r(s) = r/(1 + s/ωr )

where r > 0 and ωr > 0, and model the receptivity feedback and
scattering as constant gains, then the plant transfer function becomes

P(s) = KS G(s)A(s)

1 − K R KS G(s)A(s)
(3)

For more discussion on the physical meaning of the given param-
eters and possible ways to determine them, see Rowley et al.13 In
this study, the parameters are optimized to match the open-loop re-
sponse of single-mode resonance cavity pressure fluctuations at a
given fixed Mach number. That is, when the feedback controller is
taken out of the loop, the output power spectrum matches the power
spectrum of the pressure fluctuations measured at the cavity floor
center. Figure 2 shows this observation for the experimental data
collected at Mach 0.3. The parameters of the plant that generate the
response shown in Fig. 2 are listed in Table 1, where unity gains
Kv and Km are for the actuator and sensor dynamics.15 For these
specific parameter values, the plant is stable. Note again that similar
parameter tuning can be done at different Mach numbers, so that the
open-loop response of the linear system shown in Fig. 1 matches
the pressure fluctuations measured in the experiment (described in
the next section). Also note that small changes in the Mach number
may lead to relatively large changes in the optimized parameters
(especially when Mach number variations result in changes in the

Table 1 Parameters of the plant shown
in Fig. 1 to generate the results in Fig. 2

Parameter Value

ω0 18,000 rad/s
ζ 0.03
τs 0.0006 s
τa 0.0001 s
r 0.01
ωr 20,000 rad/s
K R 0.01
KS 5.0
Kv 1
Km 1

Fig. 1 Physics-based linear feedback system.

Fig. 2 Comparison of output power spectra: ——, SPL spectrum from
experimental data and ————, SPL spectrum predicted by linear model.

number of dominant modes, as will be shown later). Therefore, it
may be difficult to do gain scheduling for this set of models when
flow conditions are varying. As a result, in the remaining parts of
this section, for controller design purposes, we will assume that the
Mach number is fixed.

The H∞ controllers can be designed1 to reduce the effect of the
external noise on the system response. For cavity flow control, we
can define a sensitivity minimization problem to compare the open-
loop and closed-loop responses of the system shown in Fig. 1. The
open-loop system response is

|P( jω)| (4)

and the closed-loop response is

|P( jω)|
|1 + P( jω)C( jω)| (5)

and so we would like to minimize the weighted sensitivity over all
stabilizing controllers, the weight being the plant itself. Note that
the function (1 + PC)−1 is the sensitivity function of the feedback
system shown in Fig. 1. Similar techniques from linear robust con-
trol theory have been used for cavity flow control by Rowley and
Williams.16 They have discussed the effects of actuator saturation
as well, using describing function analysis.

To illustrate the H∞ design procedure, we consider the plant
whose parameters take the numerical values given in Table 1. The
plant is stable and can be written in the form

P(s) = No1(s)No2(s)Mn(s)

No2(s) = KS G0(s) = KS(
1 + 2ζ s

/
ω0 + s2

/
ω2

0

)
Mn(s) = e−h1s, h1 = τs + τa

No1(s) = [1 − K R No2(s)Mn(s) − r(s)M2(s)]
−1

M2(s) = e−2τa s (6)

Because the plant and the weight are infinite dimensional, there is
no direct and easy solution to this weighted sensitivity minimization
problem. For the case where the plant, or the weight, is finite di-
mensional, the problem can be solved using certain procedures from
operator theory.17 In this particular case, we approximate the weight
by another infinite-dimensional transfer function that captures the
essential dynamics within a large-frequency region. Then, by ex-
ploiting this special structure, we solved the problem as detailed by
Yuan et al.15 The controller is in the form

C(s) = C2(s)(1 − r(s)M2(s)) + K R (7)

where

C2(s) =
(

γ

γmin

− γmin

γ

)
No2(s)−1

(1 + as + bs2)

(
1

1 + H(s)

)
(8)

H(s) = HFIR(s) + HIIR(s) (9)
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These finite impulse response (FIR) and infinite impulse response
(IIR) filters, as well as all of the other parameters (including γ ,
γmin, a, and b) appearing in the preceding formula, can be explicitly
computed.15 Note that the controller is infinite dimensional, but it
can be implemented using finite-dimensional terms, delay blocks,
and an FIR filter. In fact, the controller was implemented easily
within the hardware restrictions (digital signal processing and in-
put/output capabilities) imposed by the dSPACE real-time control
system we used. See Sec. III for the detailed description of the ex-
perimental setup.

The numerical simulation result shown in Fig. 3 shows that when
the plant is taken to be the linear model as already defined, then the
H∞ controller is able to suppress the strong sinusoidal oscillations
seen at the output. Implementations of this type of controllers are
discussed in Sec. IV.

III. Experimental Apparatus and Analysis
In this section we briefly outline the experimental setup that is

described in more detail by Debiasi and Samimy.14 It consists of an
optically accessible, blowdown-type wind tunnel with a test section
of width W and height H equal to 50.8 mm. A cavity that spans the
entire width of the test section is recessed in the floor with a depth
D = 12.7 mm and length L = 50.8 mm for an aspect ratio L/D = 4.
The cavity shear layer is forced by a two-dimensional synthetic-jet-
type actuator issuing from a slot of height h = 1 mm embedded in
the cavity leading edge (Fig. 4). The angle of the actuator flow to the
main flow is 30 deg. This assembly has a mean actuator to main flow
momentum ratio Cμ = hu2/HU 2

∞ in the range 10−4–10−6, where u

Fig. 3 Prediction of H∞ controller performance for plant described
by linear model (linear simulation result): ——, SPL spectrum without
control, and ————, SPL spectrum with control.

Fig. 4 Facility cutout: converging nozzle, test section, cavity, actuator
coupling, and position of Kulite transducer in cavity floor.

is the rms value of forcing velocity at the actuator exit slot and U∞
is the velocity of the freestream in the test section above the cavity.

Pressure fluctuations were measured by Kulite dynamic pressure
transducers placed in different locations in the test section and at
the actuator exit. The Kulite signals were bandpass filtered between
200 and 20,000 Hz to remove spurious frequency components. A
dSPACE 1103 controller board connected to a Dell Precision Work-
station 650 computer was used to acquire at 50 kHz through a 12-bit
channel the signal from a transducer flush-mounted in the middle
of the cavity floor and to manipulate it to produce the desired con-
trol signal in a 14-bit output channel. To maximize the control board
performance, its processor was used exclusively for running the con-
trol routines. Simultaneous recordings of 32 blocks of 8192 points
(262,144 samples) were acquired at 200 kHz through a 16-bit reso-
lution acquisition board (National Instruments PCI-6036E) operat-
ing independently in the computer. With the Kulite sensitivity and
the amplifier gain setting accounted for, the voltage values of the
timetraces were converted to nondimensional pressure referenced to
the commonly used value of 20 μPa. Short-time Fourier transform
(STFT) was used to provide information on the time evolution of
the frequency content of the unsteady pressure signals. The STFT
of a signal x(t) is defined as18,19

STFT(t, f ) =
∫ ∞

−∞
x(τ )w(τ − t)e− j2π f τ dτ (10)

where w(t) is the window function (in the present analysis the Han-
ning window). The STFT power spectra were computed by split-
ting the signal into segments with about 95% overlap, windowing
each with the window function, calculating a 8192-point fast Fourier
transform (which provided a spectral resolution of about 24 Hz), and
converting them to sound pressure level (SPL) values. An important
consequence of the uncertainty principle is that the time–bandwidth
product is never less then 1/2:

�t · �ω ≥ 1/2 (11)

Thus, a compromise is required between time and frequency resolu-
tion. The values of sampling frequency and of the spectral resolution
utilized in the present work guarantee a time resolution �t of no
less that 3.3 ms. The corresponding spectrograms are visualized as
contour plots and provide a representation of the time-dependent
SPL values of the time series. Time averaging of the SPL values
obtained as described produced the SPL spectra (accurate within
±1 dB) presented in this study.

The instantaneous features of the flow in a streamwise plane at
the test section centerline were visualized by the scattering of a laser
light sheet from a Continuum Nd:YAG pulsed laser operating at a
wavelength of 532 nm and entering the test section from an optical
window on the top wall of the tunnel. Locally seeded smoke entering
the cavity from a streamwise slot at the floor of the cavity was used
for flow visualizations. Images were acquired using a Roper Scien-
tific intensified charge-coupled device camera. The camera and the
laser were synchronized to a reference acoustic signal from the flow
for acquisition of phase-locked images. For every flow condition
explored, eight sets of phase-locked images were obtained, each
corresponding to an incremental phase shift of one-eighth of the
resonant or forced period. Ensemble-average images were obtained
from the individual images of each set.

Debiasi and Samimy14 observed that the experimental facility
exhibits strong, single-mode resonance in the Mach number ranges
0.25–0.31 and 0.39–0.5 and multimode resonance in the Mach num-
ber range 0.32–0.38 as shown in Fig. 5, where dominant peaks are
represented by closed circles and open circles represent other peaks
that appear during multimode resonance. Shown also are the fre-
quencies predicted by the semi-empirical formula of Rossiter20 (also
see Ref. 21) and the cavity first longitudinal and transversal (ver-
tical) modes. In the same study, Debiasi and Samimy14 observed
that the frequency of sinusoidal forcing with the synthetic-jet-type
actuator has a major impact on the cavity flow resonance, whereas
the effect of the amplitude is relatively minor and affects the control
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Fig. 5 Frequencies function of flow Mach number: ————, Rossiter;
——, cavity first longitudinal and transversal; and �, measured.

Fig. 6 Effect of H∞ control on Mach 0.30 flow: ——, SPL spectrum
of uncontrolled flow and ————, SPL spectrum of controlled flow.

authority only at higher Mach numbers. This prompted the develop-
ment of a logic-based type of control that searches, in a closed-loop
fashion, the forcing frequencies that reduce the cavity flow resonant
peaks and then maintains the system in such conditions through an
open-loop, optimal frequency forcing (OPFF). The technique per-
formed well in the experimental trials and allowed identification
of optimal frequencies for the reduction of resonant peaks in the
explored Mach number range 0.25–0.5.

IV. Experimental Results
A. Linear Control Implementations on the Experimental Setup

We explore real-time implementations of linear feedback con-
trollers in Simulink/dSPACE systems. The H∞ controller was de-
signed for Mach 0.3, a flow dominated by strong single-mode reso-
nance at about 2800 Hz (thin line in Fig. 6). The controller diagram
for the real-time implementations is shown in Fig. 7. It suppressed
the main frequency of oscillation (third Rossiter mode), but it led
to strong oscillations with frequency about 1900 Hz (Fig. 3), which
corresponds to the second Rossiter mode for this flow (Fig. 5). Sim-
ilar results were obtained for other types of linear feedback con-
trollers, for example, Smith predictor and PID controller. We refer
to Yan et al.22 for details. Such behavior has been observed by other
researchers using linear feedback control.12,23,24

In the case of the PID controller, we noticed that the integral term
did not have any significant effect on the system response due to
the nature of the actuator. By replacing the derivative component
with a first-order filter with an adjustable cutoff frequency 1/τd , we

obtained a PD-like controller in the form

CPD(s) = K p + Kd [τd s/(τd s + 1)] (12)

Optimal parameters for elimination of the main frequency of oscil-
lation (third Rossiter mode) of the Mach 0.30 flow were found from
a brute force search method. They turn out to be K p = 8, Kd = 0.04,
and τd = 200, but these parameters led to strong oscillations in the
neighborhood of the second Rossiter mode, as shown in Fig. 8. The
signals P, D, and the control spectra correspond to voltage signals
produced by the controller and not to pressure fluctuation levels.
Nevertheless, for the sake of comparison, they are presented along-
side the SPL spectra from the Kulite transducers placed at the actu-
ator exit and in the middle of the cavity floor. Therefore, the decibel
levels in Fig. 8 refer only to the spectra of the Kulite signals.

These experimental observations confirm that the plant is
nonlinear and linear designs lead to results that cannot be predicted
from the linear analysis. Meanwhile, the linear controllers were de-
signed for the unforced, single-mode resonant flow, and thus, the
potential excitement of the other Rossiter modes was not taken into
account. We could address this issue by selecting the uncertainty
weight of the H∞ control to include sharp peaks at these Rossiter
modes (which do not appear in the open-loop response). However,
this will further complicate the H∞ design, which is already com-
plicated due to infinite dimensionality of the plant and weights. We
found a simple solution in the form of a parallel-proportional con-
trol with time delay and, thus, concentrate on this simple controller
in the rest of the paper. Observations of the control signals in Fig. 8
motivated us to add a tunable time delay h to the second term in
Eq. (12), which introduced a phase shift for signals operating in the
neighborhood of the second Rossiter frequency,

CPD(s) = K p + Kd [τd s/(τd s + 1)]e−hs (13)

Furthermore, having observed that, due to the relatively large value
of τd , this controller acts like a parallel-proportional (PP) control
with individual delay terms, we simplified the controller as

CPP(s) = K p(1 + e−hs) (14)

A schematic of such a controller as implemented in our experi-
mental setup is given in Fig. 9. We verified that the performance
of this controller is very much like the performance of the PD-like
controller with the same time delay.

A value of h = 260 μs was used to introduce a 180-deg phase shift
for signals operating in the neighborhood of the second Rossiter
mode, thus, effectively placing a zero at the corresponding fre-
quency. In fact, it is straightforward that

1 + exp(−2.6 × 10−42π1932 j) = 0 (16)

As a result, the performance of this controller is greatly improved, as
shown in Fig. 10a where, similar to Fig. 8, one can observe the spec-
tra of the signals in different points of the closed loop. In Fig. 10, both
controllers have 260-μs time delay between control channels. The
control signals were processed as the pressure transducers signals.
Reference decibel levels are provided only for the SPL spectra of the
pressure transducer signals. Combining the 260-μs phase-shifted P
signals produces the control signal whose spectrum is character-
ized by frequency cancellation at 1932 Hz and its odd harmonics,
whereas a modest reinforcement is produced at the even harmonics.
Note that the highest peak of the forcing signal at the actuator exit
occurs at a frequency of about 3800 Hz, a value close to 3920 Hz,
one of the optimal forcing frequencies for reducing the resonance
of the Mach 0.30 cavity flow.14

In a similar fashion, we also introduced the same zero of the PP
control in the H∞ controller

Ch inf(s) = C(s)(1 + e−hs) (17)

where C(s) defined in Eq. (7) is the H∞ controller designed for
single-mode resonance. As shown in Fig. 10b, this revised con-
troller can also successfully avoid oscillations at the second Rossiter
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Fig. 7 Diagram of H∞ controller.

Fig. 8 Spectra of Mach 0.30 cavity flow system excited by the PD-like (effectively a proportional) controller.

Fig. 9 Diagram of PP controller with time delay.
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a)

b)

Fig. 10 Spectra of Mach 0.30 cavity flow system controlled with a) PP with time delay control and b) H∞ with time delay control.

mode. This observation further confirms that the ineffectiveness of
using fixed linear models for controller design results from potential
excitations of other Rossiter modes.

B. Comparison of Optimal Forcing Frequency and PP Control
In the preceding section we have illustrated how the simple PP

controller with proper time delay between the two feedback loops is
effective in reducing the cavity flow resonance at Mach 0.3. Anal-
ogous results, not shown here, were also obtained at other Mach
numbers22 and provided peak noise reductions comparable with
those obtained using the OPFF control discussed in more detail by
Debiasi and Samimy.14

In this section, we compare the performance of these two methods
by using them to suppress the resonance of flows at different Mach
numbers and by assessing their robustness with respect to flow vari-
ations. For simplicity, we will not provide the comparison results on
the H∞ controller with time delay [Eq. (17)], which exhibits similar
closed-loop results to the PP with time-delay controller.

Figure 11 shows the effect of the OPFF control on flows close
to Mach 0.3, a flow condition that has been used as a benchmark
case in our studies.14 The OPFF forcing voltage was a sinusoidal
wave at 3920 Hz, 2.5 Vrms, which corresponds to one of the optimal
conditions for reducing the resonant peak of the Mach 0.30 flow
without introducing other strong spectral peaks. In Figs. 11a–11c,
the thin line is the SPL spectrum of the original unforced case,
whereas the thick line corresponds to the spectrum with OPFF. Be-

low Mach 0.30, the unforced flow exhibits a strong, single-mode
resonant peak at about 2800 Hz (Fig. 5), whereas above Mach
0.31, the resonance exhibits multimode behavior. OPFF forcing
significantly reduces the resonant peak at Mach 0.29 (Fig. 11a),
that is, a flow very close to the conditions for which OPFF was
tuned. This occurs without introduction of any peak other than the
forcing one, which, in any case, does not significantly exceed the
other spectral components. This is not the case at Mach number
slightly below or above these values. At Mach 0.27 (Fig. 11b), the
original resonant tone is reduced, but the forcing one exceeds the
other components by more than 9 dB. At Mach 0.31, a condition
where the unforced flow is transitioning to multimode resonance
(Fig. 11c), the forcing peak is strong and only marginally inferior to
the strongest unforced tone. Additionally, forcing has increased the
second Rossiter mode that is close to a subharmonic of the forcing
tone.

From Fig. 11, it is clear that OPFF, although a simple and effective
method that reduces the resonance at the Mach number for which it
is tuned, is very sensitive to variations in the flow conditions. This
behavior has been confirmed by repeating this experiment for flows
in the neighborhood of other Mach numbers for which the resonance
was suppressed with appropriate OPFF tuning.

Figure 12 presents the results of a similar trial using the PP with
time-delay controller whose parameters are optimized for reducing
the resonance of the Mach 0.30 flow. In Figs. 12a–12c, the thin lines
are the same SPL spectra for the unforced cases as in Fig. 11. Appli-
cation of the PP control to the Mach 0.29 flow (Fig. 12a) provides a
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a)

b)

c)

Fig. 11 Effect on different flows of OPFF control at 3920 Hz, 2.5 Vrms;
——, unforced flow SPL spectrum and ————, spectrum with OPFF con-
trol at a) Mach 0.29, b) Mach 0.27, and c) Mach 0.31.

reduction of the resonant peak similar to that of the OPFF control in
Fig. 11a. The PP control appears to have spread the acoustic energy
among the frequencies surrounding the Rossiter modes, and it has
not introduced a strong actuation peak. Interestingly, and in con-
trast with what was observed in Fig. 11 for the OPFF case, the same
general characteristics and benefits are maintained when the PP
control is applied to the Mach 0.27 and Mach 0.31 flows (Figs. 12b
and 12c). In both cases, the maximum spectral peak is lower than
that produced with OPFF and the PP control does not introduce a
strong forcing tone. Additional measurements, not presented here,
reveal that, whereas the performance of the PP controller remained
equally good at Mach numbers lower than 0.27, it deteriorated at
Mach numbers larger than 0.32.

Comparison of Figs. 11 and 12 clearly indicates that, unlike the
OPFF control, the PP with time-delay controller exhibits good ro-
bustness with respect to some departure from the design Mach num-
ber, that is, to variations that do not lead to big changes of the Rossiter
frequencies, for example, second and third Rossiter modes. This is

a)

b)

c)

Fig. 12 Effect on different flows of PP control with time delay tuned
for Mach 0.3; ——, unforced flow SPL spectrum and ————, spectrum
with PP control at a) Mach 0.29, b) Mach 0.27, and c) Mach 0.31.

not surprising because OPFF is an open-loop method, where the op-
timal frequency is tuned with the assumption that the input is always
a sinusoidal signal with given amplitude. In contrast, the PP method
is a feedback control design that is more impervious to changes of
the open-loop plant as long as these are relatively small. Finally,
note that the results presented in Fig. 11 for the OPFF control were
obtained with actuation at 2.5 Vrms, whereas those in Fig. 12 for the
PP controller were obtained operating the actuator at about 2 Vrms,
that is, with less than two-thirds of the power required in the OPFF
case (the power being proportional to the square of the rms volt-
age). These results compare well with Cattafesta et al.25 findings on
the adaptability and lower power consumption of the closed-loop
control in comparison with open-loop control.

V. Physical Interpretation
In this section, we provide an interpretation of the physical mech-

anisms by which the OPFF and the PP with time-delay control
techniques reduce the cavity-flow noise. Debiasi and Samimy14
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a)

b)

c)

Fig. 13 Single-mode resonating Mach 0.30 flow: a) SPL spectrum,
b) spectrogram, and c) phase-locked average laser light-scattering
image.

speculated that OPFF control induces in the system a state similar
to multimode resonance where rapid switching occurs between the
resonant and the forcing modes. Because this switching, although
rapid, is not instantaneous, part of the available energy either remains
in the mean flow or dissipates in the switching process, which pro-
duces a less efficient resonant system where no single mode locks
in to dominate the spectrum. In commenting on similar peak reduc-
tions obtained with open-loop forcing, Cattafesta et al.25 suggested
that a competition exists between the fundamental mode and the
forced mode for the available energy that can be extracted from the
mean flow. Here we want to verify this hypothesis more exactly and
investigate if a similar or a different mechanism also applies to the
case of PP control. To this end, we contrast the SPL spectra, spec-
trogram, and the average centerline laser light-scattering images of
representative single-mode resonating, multimode resonating, and
controlled flow cases.

Figure 13 presents the SPL spectrum (Fig. 13a) and the cor-
responding spectrogram (Fig. 13b) of the single-mode resonating
Mach 0.30 flow in the range 1–10 kHz. For ease of comparison, the
bar of the spectrogram intensity is placed next to the corresponding

a)

b)

c)

Fig. 14 Multimode resonating Mach 0.32 flow: a) SPL spectrum, b)
spectrogram, and c) phase-locked average laser light-scattering image.

spectrum values. The spectrogram confirms that, as expected, the
strong resonant tone is time independent in contrast with the lower
spectral components that change in time as evidenced by the spread
of dots for frequencies below the resonant one. Figure 13c is an av-
erage visualization of the centerline flow obtained by phase locking
the laser and the camera to the resonant peak. Both Fig. 13 and the
instantaneous images from which it was obtained show very clearly
the presence of three structures corresponding to the third Rossiter
mode at which this flow resonates.

Figure 14 presents the SPL spectrum, spectrogram, and phase-
averaged centerline image of the multimode resonating Mach 0.32
flow. Clearly visible in the spectrum (Fig. 14a) are the peak corre-
sponding to the longitudinal mode close to the third Rossiter mode at
about 3250 Hz and a broader peak around the second Rossiter mode
slightly above 2000 Hz. Visible is a very small peak at the fourth
Rossiter mode at about 4200 Hz, the stronger fifth Rossiter mode at
5200 Hz, and also a remnant at 2850 Hz of the third Rossiter mode
for slower flow conditions (Fig. 5). The spectrogram (Fig. 14b) re-
veals the rapid switching between these modes as evidenced by the
discontinuous time sequence of darker dots at these frequencies. Of
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a)

b)

c)

Fig. 15 Mach 0.30 flow with OPFF control at 3920 Hz, 2.5 Vrms: a)
SPL spectrum, b) spectrogram, and c) phase-locked average laser light-
scattering image.

particular interest is the unusually broad peak spanning the 1950–
2300-Hz region in the neighborhood of the second Rossiter mode.
As a result, the acoustic energy of this flow is well spread across
the spectrum and, save for the tones corresponding to the longi-
tudinal and fifth Rossiter modes, it approaches the ideal behavior
of a quieter, broadband flow. In contrast with the centerline image
of the Mach 0.30 flow, the phase-averaged centerline image of the
Mach 0.32 flow (Fig. 14c) does not reveal any significant shear layer
feature. This is attributable to either the inability to lock the laser
and camera to a steady peak or the lack of quasi periodicity of the
structures in the shear layer or a combination of the two because
structures were clearly observed in the instantaneous images.

Figure 15 presents the SPL spectrum, spectrogram, and average
centerline image of the Mach 0.30 resonance suppressed with the
OPFF at 3920 Hz, 2.5 Vrms control. This forcing frequency, which
is time independent as evident in the spectrogram (Fig. 15b) is very
close to the first harmonic of the second Rossiter mode of about
1900 Hz for this Mach number, as well as being close to the fourth

Rossiter mode at 4000 Hz (Fig. 5). As a result, the forcing tone
slightly enhances the second Rossiter mode that, thus, competes
with the third mode, establishing the mode switching between them
clearly visible in the spectrogram. This supports the idea that OPFF
induces a switching between resonant modes; these can be either the
Rossiter modes or other natural modes of the cavity. Different from
the preceding case, the average centerline image in this flow exhibits
four structures when locking the laser and the camera to the steady
forcing peak. We interpret this to be a result of the excitement of the
fourth Rossiter mode close to the forcing frequency that, unlike the
time-switching second and third modes, remains dominant in time.
The structures of this mode appear to be somewhat weaker than
those in Fig. 13 for the unforced flow.

Figure 16 presents the SPL spectrum, spectrogram, and average
centerline image of the Mach 0.30 resonance suppressed with use of
the PP with time-delay control. This flow has features very similar
to the Mach 0.32 case in Fig. 14 except that the frequencies of
the peaks above the third Rossiter mode do not correspond to any
of the resonant frequencies predicted in Fig. 5 for the Mach 0.30
flow. Inspection of the spectrogram (Fig. 16b) suggests that the PP
control with time delay induces a competition between sidebands
of the original resonant tone23 and a broad peak centered about the

a)

b)

c)

Fig. 16 Mach 0.30 flow with PP with time-delay control: a) SPL spec-
trum, b) spectrogram, and c) phase-locked average laser light-scattering
image.
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second Rossiter mode. The spreading of the acoustic energy across
the spectrum produces a quieter, broadband flow resembling the
Mach 0.32 case. Similarly, the average centerline image of this flow
is rather featureless due to the inability to lock the laser and camera
to a steady peak.

VI. Conclusions
We investigated closed-loop linear control for shallow cavity

flows. Our experimental results confirmed that linear controllers, for
example, H∞ controller, Smith predictor, and PID controller, de-
rived from a single dominant-mode plant model are able to suppress
the cavity oscillations at this frequency, but they shift the oscillations
to another Rossiter frequency, which was not visible in the unforced
case but could easily be excited, a phenomenon that has also been
observed by other research groups using linear controllers.12,23,24

Adding a zero to the controller at these hidden Rossiter frequen-
cies avoids this problem, and the resulting controller is very effec-
tive in reducing cavity noise without introducing strong additional
tones. This controller was compared to a very effective open-loop
method14 for reducing cavity resonance and exhibited superior ro-
bustness with respect to departure of the Mach number from the
design conditions. An additional benefit of the closed-loop control
method is the lower power requirement to achieve comparable sup-
pression of the resonance.

An interpretation is presented of the physical mechanisms by
which the open-loop forcing and the closed-loop, PP with time-delay
controller reduce the cavity flow noise. The results support the idea
that these controls induce in the system a state similar to multimode
resonance where rapid switching occurs between the resonant modes
and the modes induced with forcing. The competition between the
modes for the available energy that can be extracted from the mean
flow produces a less efficient resonant system where no single mode
locks in to dominate the spectrum.

An extension of this work is to consider switching of multiple
linear models dependent on the Mach number, as well as the input
applied. The long term goal of this research is to provide analytical
linear/nonlinear models for the cavity flow dynamics and design
feedback controllers accordingly.
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