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ON THE MINIMUM VOLUME COVERING ELLIPSOID OF
ELLIPSOIDS∗

E. ALPER YILDIRIM†

Abstract. Let S denote the convex hull of m full-dimensional ellipsoids in R
n. Given ε > 0

and δ > 0, we study the problems of computing a (1 + ε)-approximation to the minimum volume
covering ellipsoid of S and a (1 + δ)n-rounding of S. We extend the first-order algorithm of Kumar
and Yıldırım [J. Optim. Theory Appl., 126 (2005), pp. 1–21] that computes an approximation to the
minimum volume covering ellipsoid of a finite set of points in R

n, which, in turn, is a modification of
Khachiyan’s algorithm [L. G. Khachiyan, Math. Oper. Res., 21 (1996), pp. 307–320]. Our algorithm
can also compute a (1 + δ)n-rounding of S. For fixed ε > 0 and δ > 0, we establish polynomial-time
complexity results for the respective problems, each of which is linear in the number of ellipsoids
m. In particular, our algorithm can approximate the minimum volume covering ellipsoid of S in
asymptotically the same number of iterations as that required by the algorithm of Kumar and
Yıldırım to approximate the minimum volume covering ellipsoid of a set of m points. The main
ingredient in our analysis is the extension of polynomial-time complexity of certain subroutines in
the algorithm from a set of points to a set of ellipsoids. As a byproduct, our algorithm returns a
finite “core” set X ⊆ S with the property that the minimum volume covering ellipsoid of X provides
a good approximation to the minimum volume covering ellipsoid of S. Furthermore, the size of
the core set depends only on the dimension n and the approximation parameter ε, but not on the
number of ellipsoids m. We also discuss the extent to which our algorithm can be used to compute
an approximate minimum volume covering ellipsoid and an approximate n-rounding of the convex
hull of other sets in R

n. We adopt the real number model of computation in our analysis.

Key words. minimum volume covering ellipsoids, Löwner ellipsoids, core sets, rounding of
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1. Introduction. Given m full-dimensional ellipsoids E1, . . . , Em in R
n, let S

denote their convex hull. In this paper, we are concerned with the problems of approx-
imating the minimum volume covering ellipsoid (MVCE) of S, denoted by MVCE(S),
also known as the Löwner ellipsoid of S, and computing an approximate n-rounding
of S.

Ellipsoidal approximations of a compact convex set S ⊂ R
n with a nonempty

interior play an important role in several applications. By the Löwner–John theorem
(see Theorem 2.1), MVCE(S) provides a good rounding of the set S, which implies
that certain characteristics of S can be approximated using an ellipsoidal rounding as
long as MVCE(S) can be computed efficiently. For instance, an ellipsoidal rounding
of S can be used to efficiently compute lower and upper bounds for a quadratic
optimization problem over S (see Proposition 2.6).

The idea of approximating complicated objects using simpler ones is widely used
in computational geometry and computer graphics. A common approach is to replace
a complicated but more realistic model of a complex object with a simpler model of
a less complex object covering the original object such as a minimum volume box
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622 E. ALPER YILDIRIM

or a sphere. More recently, ellipsoidal models have been proposed in the literature
as they usually provide better approximations than bounding boxes or spheres (see,
e.g., [25, 26, 14, 10]). The key idea is to construct a so-called bounding volume
hierarchy [11], which is simply a tree of bounding volumes. The bounding volume at
a given node encloses the bounding volumes of its children. The bounding volume of
a leaf encloses a primitive. Such a data structure can be used for detection collision
or ray tracing. For instance, if a ray misses the bounding volume of a particular node,
then the ray will miss all of its children, and the children can be skipped. The ray
tracing algorithm traverses this hierarchy, usually in depth-first order, and determines
if the ray intersects an object. Therefore, if an ellipsoidal approximation is used, the
construction of a bounding volume hierarchy requires the computation of the MVCE
of a union of ellipsoids at every node.

There is an extensive body of research on MVCEs of a finite set of points. We
refer the reader to [15, 29, 18] and the references therein for a detailed account of
numerous applications and several algorithms. In contrast, we are not aware of any
specialized algorithms for the MVCE of ellipsoids in the literature. It is known that
the problem can be formulated as an instance of a convex determinant optimization
problem with linear matrix inequalities [5, 2, 6], which is amenable to theoretically
efficient algorithms proposed in [32, 31]. Our main objective in this paper is to estab-
lish that the problem of MVCE of ellipsoids admits a sufficiently rich structure that
enables us to extend the first-order algorithm of Kumar and Yıldırım [18], which, in
turn, is a modification of Khachiyan’s algorithm [15], that computes an approximate
MVCE of a finite set of points in an almost verbatim fashion to a set of ellipsoids. The
main ingredient in our analysis is the extension of polynomial-time complexity of cer-
tain subroutines in the algorithm of [18] from a set of points to a set of ellipsoids. We
mainly rely on the complexity results of Porkolab and Khachiyan [21] on semidefinite
optimization with a fixed number of constraints, which leads to the polynomial-time
complexity of quadratic optimization over an ellipsoid—one of the subroutines in our
algorithm (see Proposition 2.6). Throughout this paper, we adopt the real number
model of computation [4]; i.e., arithmetic operations with real numbers and compar-
isons can be done with unit cost.

Given ε > 0 and a compact convex set S ⊂ R
n, an ellipsoid E is said to be a

(1 + ε)-approximation to MVCE(S) if

E ⊇ S, vol E ≤ (1 + ε) vol MVCE(S),(1)

where vol E denotes the volume of E . Given δ > 0 and a compact convex set S ⊂ R
n,

an ellipsoid Ẽ is said to be a (1 + δ)n-rounding of S if

1

(1 + δ)n
Ẽ ⊆ S ⊆ Ẽ ,(2)

where the ellipsoid on the left-hand side of (2) is obtained by scaling Ẽ around its center
by a factor of 1/((1+δ)n). If S is centrally symmetric (i.e., S = −S), then we replace
the factor on the left-hand side by 1/

√
(1 + δ)n. In this paper, we extend the first-

order algorithm of [18] to compute a (1+ ε)-approximation to the MVCE of ellipsoids
for ε > 0. In particular, we establish that our extension has precisely the same
iteration complexity as that of the algorithm of [18] (see Theorem 4.7). Furthermore,
the overall complexity result is given by O(mnO(1)(log n+ [(1 + ε)2/n − 1]−1)), which
depends only linearly on the number of ellipsoids m (see Theorem 4.8). In addition,
our algorithm can also compute a (1 + δ)n-rounding of the convex hull of a finite
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MINIMUM COVERING ELLIPSOID OF ELLIPSOIDS 623

number of ellipsoids for δ > 0 in O(mnO(1)(log n + δ−1)) arithmetic operations (see
Corollary 5.1). In both complexity results, O(1) denotes a universal constant greater
than four that does not depend on the particular instance. Therefore, our algorithm
has polynomial-time complexity for fixed ε > 0 and for fixed δ > 0 and is especially
well-suited for instances with m � n and moderately small values of ε or δ.

As a byproduct, our algorithm computes a finite set X ⊂ ∪i=1,...,mEi with the
property that the convex hull of X , denoted by conv(X ), provides a good approxima-
tion of S = conv (∪i=1,...,mEi). Moreover, the size of X depends only on the dimension
n and the parameter ε but is independent of the number of ellipsoids m. In particular,
X satisfies

vol MVCE(X ) ≤vol MVCE(S) ≤vol E ≤(1 + ε)vol MVCE(X ) ≤(1 + ε)vol MVCE(S),

where E denotes the (1 + ε)-approximation to the MVCE of S computed by our algo-
rithm, which implies that E is simultaneously a (1 + ε)-approximation to MVCE(X )
and to MVCE(S) (see Proposition 4.9).

Following the literature, we refer to X as an “ε-core set” (or a “core set”) [8, 7,
17, 18] since conv(X ) provides a compact approximation to the input set S. Recently,
core sets have received significant attention, and small core set results have been es-
tablished for several geometric optimization problems such as the minimum enclosing
ball problem and related clustering problems [17, 8, 7, 9, 1, 18]. Small core set results
form a basis for developing practical algorithms for large-scale problems since many
geometric optimization problems can be solved efficiently for small input sets.

The paper is organized as follows. We define our notation in the remainder of this
section. In section 2, we present some preliminary results and discuss the complex-
ity of semidefinite feasibility and optimization. We then establish that the ellipsoid
containment problem can be cast as a linear matrix inequality and can therefore be
checked in polynomial time. Section 3 is devoted to a deterministic volume approx-
imation algorithm that will serve as an initialization stage for our algorithm. In
section 4, we present and analyze a first-order algorithm for the MVCE problem.
Section 5 establishes that our algorithm can also be used to compute an approximate
n-rounding. We discuss how to extend our algorithm to other input sets in section 6.
Section 7 concludes the paper with future research directions.

1.1. Notation. Vectors will be denoted by lowercase roman letters. For a vector
u, ui denotes its ith component. Inequalities on vectors will apply to each component.
e will be reserved for the vector of ones in the appropriate dimension, which will be
clear from the context. ej is the jth unit vector. Uppercase roman letters will be
reserved for matrices. Sn denotes the space of n × n real symmetric matrices. The
inner product in Sn is given by U • V := trace(UV ) =

∑
i,j UijVij for any U, V ∈ Sn.

Note that uTAu = A • uuT for any A ∈ Sn and u ∈ R
n. For A ∈ Sn, A 	 0 (A 
 0)

indicates that A is positive definite (semidefinite) (i.e., the eigenvalues of A are strictly
positive (nonnegative)). det(A) and rank(A) denote the determinant and the rank of
a square matrix A, respectively. The identity matrix will be denoted by I. For a finite
set of vectors V, span(V) denotes the linear subspace spanned by the vectors in V.
The convex hull of a set T ∈ R

n is referred to as conv(T ). For a function f : R
n → R,

we use x∗ = arg max f(x) and x∗ = arg min f(x) to denote a global maximizer and
a global minimizer of f , respectively. Superscripts will be used to refer to members of
a sequence of vectors or matrices. Lowercase Greek letters will represent scalars. i, j,
and k will be reserved for indexing purposes, and m and n will refer to the problem
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624 E. ALPER YILDIRIM

data. Uppercase calligraphic letters will be used for all other objects such as sets,
operators, and ellipsoids.

2. Preliminaries. A full-dimensional ellipsoid E in R
n admits a representation

that is specified by an n×n symmetric positive definite matrix Q and a center c ∈ R
n

and is defined as

E = {x ∈ R
n : (x− c)TQ(x− c) ≤ 1}.(3)

The matrix Q determines the shape and the orientation of E . In particular, the
axes of E are the eigenvectors d1, . . . , dn ∈ R

n of Q, and the length of each axis is
given by 1/

√
λ1, . . . , 1/

√
λn, where λ1, . . . , λn are the corresponding eigenvalues of Q.

Therefore, the volume of E , denoted by vol E , is given by

vol E = η det Q− 1
2 = η

(
1/
√

Πn
i=1λi

)
,(4)

where η is the volume of the unit ball in R
n [12]. Note that an ellipsoid E induces

a norm on R
n via ‖x‖E := (xTQx)1/2. Therefore, every ellipsoid can be viewed as a

translation of the unit ball in terms of the ellipsoidal norm induced by it.

Throughout this paper, we will assume that each of the input ellipsoids E1, . . . , Em
⊂ R

n is full-dimensional. Note that this assumption is without loss of generality
since any lower-dimensional ellipsoid can easily be approximated by a “thin” full-
dimensional one. We remark that this assumption is merely for technical convenience,
which allows us to have a uniform representation of each of the ellipsoids in the
form given by (3). In addition, this assumption guarantees that conv(∪m

i=1Ei) is
full-dimensional and leads to a simpler characterization of the ellipsoid containment
problem (see Proposition 2.7). In particular, the full-dimensionality assumption on
each of the ellipsoids can be relaxed by the weaker assumption that conv(∪m

i=1Ei) is
full-dimensional and our analysis would still carry over to this slightly more general
setting (see the discussion after Proposition 2.6). We refer the reader to [2] for further
discussions on extremal ellipsoids.

We start with a classical result on the quality of the approximation of MVCE(S)
of a convex set S ⊂ R

n.

Theorem 2.1 (Löwner–John [13]). Let S ⊂ R
n be a compact, convex set with a

nonempty interior. Then, MVCE(S) exists and is unique and satisfies

1

n
MVCE(S) ⊆ S ⊆ MVCE(S),(5)

where the ellipsoid on the left-hand side is obtained by scaling MVCE(S) around its
center by a factor of 1/n. Furthermore, if S is symmetric around the origin, then the
factor on the left-hand side of (5) can be improved to 1/

√
n.

We next state a well-known lemma that will be useful for our analysis.

Lemma 2.2 (Schur complement). Let

A =

[
B C
CT D

]

be a symmetric matrix with B ∈ Sα and D ∈ Sβ. Assume that D 	 0. Then, A 
 0
if and only if B − CD−1CT 
 0.
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MINIMUM COVERING ELLIPSOID OF ELLIPSOIDS 625

2.1. Complexity of semidefinite feasibility and optimization. Consider
the following feasibility problems:

1. (PF) Given A1, A2, . . . , Aκ ∈ Sn and β1, . . . , βκ ∈ R, determine whether
there exists a matrix X ∈ Sn such that

Ai •X ≤ βi, i = 1, . . . , κ, X 
 0.

2. (DF) Given B0, B1, . . . , Bκ ∈ Sn, determine whether there exist real numbers
y1, . . . , yκ such that

B0 + y1B1 + y2B2 + · · · + yκBκ 
 0.

The complexity of the problems (PF) and (DF) is still a fundamental open prob-
lem. In the real number model of computation, both problems are in NP since one can
check in polynomial time whether a given symmetric matrix is positive semidefinite
using Cholesky factorization. Ramana [22] proved that both problems belong to NP
∩ co-NP. Porkolab and Khachiyan [21] established the following complexity results,
which, in turn, are mainly based on the first-order theory of the reals developed by
Renegar [24].

Theorem 2.3. Problems (PF) and (DF) can be solved in κnO(min{κ,n2}) and

O(κn4) + nO(min{κ,n2}) operations over the reals, respectively.
In addition, let us consider the following optimization versions:
1. (PO) Given D,A1, A2, . . . , Aκ ∈ Sn and β1, . . . , βκ ∈ R, solve

α∗ := inf
X∈Sn

{D •X : Ai •X ≤ βi, i = 1, . . . , κ, X 
 0}.

2. (DO) Given B0, B1, . . . , Bκ ∈ Sn and d ∈ R
κ, solve

β∗ := sup
y1,...,yκ∈R

{
κ∑

i=1

diyi : B0 + y1B1 + y2B2 + · · · + yκBκ 
 0

}
.

The complexity results of Theorem 2.3 also extend to the optimization versions
(PO) and (DO) [21].

Theorem 2.4. For problems (PO) and (DO), each of the following can be solved

in κnO(min{κ,n2}) and O(κn4)+nO(min{κ,n2}) operations over the reals, respectively: (i)
feasibility, (ii) boundedness, (iii) attainment of the optimal value, and (iv) computation
of a least norm optimal solution.

One important consequence of Theorems 2.3 and 2.4 is that semidefinite feasibility
and semidefinite optimization can be solved in polynomial time if κ is fixed. We state
this as a separate corollary.

Corollary 2.5. Each of the four problems (PF), (DF), (PO), and (DO) can
be solved in polynomial time for fixed κ.

This result will play a key role in our algorithm as the semidefinite feasibility and
semidefinite optimization problems we will encounter will always satisfy the condition
of the corollary.

2.2. Ellipsoid containment. In this section, we study the problem of deciding
whether a given full-dimensional ellipsoid E is contained in another full-dimensional
ellipsoid E∗. Furthermore, we establish how to efficiently compute a point in E that
is furthest from the center of E∗ in terms of the ellipsoidal norm induced by E∗.
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626 E. ALPER YILDIRIM

We start with the following well-known result about polynomiality of quadratic
optimization over an ellipsoid (see, e.g., [34]). We remark that this result can be found
elsewhere in the literature (see, e.g., [27, 23, 28, 36, 6]). We mainly include it here
for the sake of completeness. Our treatment can be considered as a special case of
the more general proof of [28] and relies on the fact that the possibly nonconvex opti-
mization problem admits a tight semidefinite programming (SDP) relaxation, whose
optimal solution can be used to recover an optimal solution for the original problem.

Proposition 2.6. Any quadratic function f : R
n → R can be maximized over a

full-dimensional ellipsoid in O(nO(1)) operations, where O(1) is a universal constant
greater than three.

Proof. Let f(x) := xTAx + 2bTx + γ, where A ∈ Sn, b ∈ R
n, and γ ∈ R, and let

E ⊂ R
n denote a full-dimensional ellipsoid, which admits a representation given by

E := {x ∈ R
n : (x− c)TQ(x− c) ≤ 1}, where Q ∈ Sn is positive definite and c ∈ R

n.
We wish to solve

(P) max
x∈Rn

{f(x) : x ∈ E}.

We consider the following SDP relaxation:

(SP) max
X∈Sn+1

{F •X : G •X ≤ 0, En+1 •X = 1, X 
 0},

where

F :=

[
A b
bT γ

]
, G :=

[
Q −Qc

−cTQ cTQc− 1

]
, En+1 = en+1(en+1)T .

Note that (SP) is a relaxation of (P) since for any feasible solution x ∈ R
n of (P),[

x
1

]
[xT 1] =

[
xxT x
xT 1

]

 0

is a feasible solution of (SP) with the same objective function value. We claim that
the relaxation is exact in the sense that the optimal values of (P) and (SP) coincide
and an optimal solution of (SP) can be converted into an optimal solution of (P).

Consider the following Lagrangian dual of (SP):

(SD) min
λ,β

{β : λG + βEn+1 
 F, λ ≥ 0}.

We now make several observations about (SP) and (SD). Note that (SP) satisfies the
Slater condition since the solution given by

X̃ :=

[
ccT + αI c

cT 1

]

satisfies En+1 • X̃ = 1, G • X̃ = −1 + αQ • I < 0, for sufficiently small α > 0,
and X̃ 	 0, which implies that X̃ is a strictly feasible solution of (SP). Therefore,
strong duality holds between (SP) and (SD), and the optimal value is attained in
(SD). Furthermore, the feasible set of (SP) is bounded because the only solution to
the system

G • Y ≤ 0, En+1 • Y = 0, Y 
 0, Y ∈ Sn+1

is Y = 0 since Q 	 0. Therefore, the optimal value is also attained in (SP).
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MINIMUM COVERING ELLIPSOID OF ELLIPSOIDS 627

By Corollary 2.5, we can solve (SP) in O(nO(1)) time (one can replace the equality
constraint with two inequality constraints). Let X∗ and (λ∗, β∗) denote optimal
solutions of (SP) and (SD), respectively. It follows from optimality conditions that

X∗ • (λ∗G + β∗En+1 − F ) = 0, λ∗(G •X∗) = 0.(6)

Since G • X∗ ≤ 0, we can compute a rank-one decomposition of X∗ :=∑ρ
i=1 p

i(pi)T , where ρ := rank(X∗) ≥ 1 and pi ∈ R
n+1, pi �= 0, i = 1, . . . , ρ, in

O(n3) operations such that (pi)TGpi ≤ 0, i = 1, . . . , ρ [28, Proposition 3]. We now
construct a rank-one optimal solution of (SP) using this decomposition.

By (6),
∑ρ

i=1(p
i)T (λ∗G + β∗En+1 − F )pi = 0, which implies that

(pi)T (λ∗G + β∗En+1 − F )pi = 0, i = 1, . . . , ρ,(7)

by dual feasibility. Similarly, λ∗(G •X∗) = λ∗ ∑ρ
i=1(p

i)TGpi = 0, which implies that

λ∗(pi)TGpi = 0, i = 1, . . . , ρ,(8)

since (pi)TGpi ≤ 0, i = 1, . . . , ρ, and λ∗ ≥ 0.
Let j be any index in {1, 2, . . . , ρ} and let us define

pj =

[
xj

αj

]
,

where xj ∈ R
n and αj ∈ R. We claim that αj �= 0. Otherwise, 0 ≥ (pj)TGpj =

(xj)TQxj , which implies that xj = 0 since Q 	 0, contradicting the fact that pj �= 0.
We now let xj

∗ := (1/αj)pj . Since G • xj
∗(x

j
∗)

T ≤ 0 and En+1 • xj
∗(x

j
∗)

T = 1, it follows
from (7) and (8) that xj

∗(x
j
∗)

T is a rank-one optimal solution of (SP), which implies
that (1/αj)xj is an optimal solution of (P). (We remark that each of the indices in
{1, 2, . . . , ρ} can be used to compute a different optimal solution of (P).)

In fact, Proposition 2.6 holds true even if the ellipsoid defining the feasible region
of the optimization problem is lower-dimensional. In this case, one can restrict the
quadratic function f to the smallest affine subspace containing the ellipsoid and invoke
the same analysis in the proof. We now use Proposition 2.6 to give a simple proof of
the well-known characterization of the ellipsoid containment problem.

Proposition 2.7. Let E ⊂ R
n and E∗ ⊂ R

n denote two full-dimensional el-
lipsoids with representations given by E := {x ∈ R

n : (x − c)TQ(x − c) ≤ 1} and
E∗ := {x ∈ R

n : (x − c∗)TQ∗(x − c∗) ≤ 1}, where Q ∈ Sn and Q∗ ∈ Sn are positive
definite and c ∈ R

n and c∗ ∈ R
n. Then, E ⊆ E∗ if and only if there exists τ > 0 such

that

τ

[
Q −Qc

−cTQ cTQc− 1

]



[
Q∗ −Q∗c∗

−c∗TQ∗ c∗TQ∗c∗ − 1

]
.(9)

Proof. The statement follows directly from the S-lemma [33] (see also [20] for a
comprehensive treatment). However, we give a simple proof using standard duality
arguments.

If (9) is satisfied, then we must have τ > 0 since Q 	 0 and Q∗ 	 0. Consider

(P) max
x∈Rn

{(x− c∗)TQ∗(x− c∗) − 1 : (x− c)TQ(x− c) − 1 ≤ 0}.
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628 E. ALPER YILDIRIM

By an argument similar to that in the proof of Proposition 2.6, it follows that

(SP) max
X∈Sn+1

{F •X : G •X ≤ 0, En+1 •X = 1, X 
 0}

is a tight SDP relaxation of (P), where F ∈ Sn+1 and G ∈ Sn+1 are respectively
given by

F =

[
Q∗ −Q∗c∗

−c∗TQ∗ c∗TQ∗c∗ − 1

]
, G =

[
Q −Qc

−cTQ cTQc− 1

]
.

The dual of (SP) is

(SD) min
λ,β

{β : λG + βEn+1 
 F, λ ≥ 0}.

Let v(P ), v(SP ), and v(SD) denote the optimal values of (P), (SP), and (SD),
respectively. It follows from the proof of Proposition 2.6 that

v(P ) = v(SP ) = v(SD).(10)

Obviously, E ⊆ E∗ if and only if v(P ) ≤ 0. If (9) is feasible, then (λ, β) = (τ, 0)
is a feasible solution of (SD), which implies that v(P ) = v(SD) ≤ 0. Conversely,
if v(P ) ≤ 0, then let (λ∗, β∗) be an optimal solution of (SD) with optimal value
v(SD) = v(P ) = β∗ ≤ 0. Then

λ∗G 
 λ∗G + β∗En+1 
 F,

since En+1 
 0 and β∗ ≤ 0, which implies that λ∗ is a feasible solution of (9). This
completes the proof.

We close this subsection by giving an equivalent characterization of (9).
Lemma 2.8. Condition (9) is equivalent to

τ

⎡
⎣ Q −Qc 0

−cTQ cTQc− 1 0
0 0 0

⎤
⎦ 


⎡
⎣ Q∗ −Q∗c∗ 0

−c∗TQ∗ −1 c∗TQ∗

0 Q∗c∗ −Q∗

⎤
⎦.(11)

Proof. We use the notation of Lemma 2.2. After rewriting (11) as a constraint
of the form A 
 0, we let B denote the top left 2 × 2 block and define C and D
accordingly. The equivalence now simply follows from the Schur complement lemma
since D := Q∗ 	 0.

We remark that condition (9) (or, equivalently, condition (11)) is a semidefinite
constraint in a single variable. Therefore, it follows from Corollary 2.5 that ellipsoid
containment can be checked in polynomial time.

It follows from (11) that the problem of computing the MVCE of a set of m
full-dimensional ellipsoids can be formulated as a convex determinant maximization
problem (see, e.g., [5, 6, 2]) with m linear matrix inequalities of size (2n+1)×(2n+1),
m nonnegative variables τ1, . . . , τm, an n × n positive definite matrix variable Q∗

that determines the shape and the orientation of the optimal ellipsoid, and an n-
dimensional vector variable z∗ := Q∗c∗, from which the center of the optimal ellipsoid
can be recovered. As the dimension of the problem grows, the computational cost
of interior-point algorithms [32, 31] quickly becomes prohibitive. This is one of our
motivations to develop a specialized algorithm for the MVCE problem.
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MINIMUM COVERING ELLIPSOID OF ELLIPSOIDS 629

3. Initial volume approximation. Let E1, . . . , Em denote m full-dimensional
ellipsoids, which admit representations given by

Ei := {x ∈ R
n : (x− ci)TQi(x− ci) ≤ 1}, i = 1, . . . ,m,(12)

where Qi ∈ Sn is positive definite and ci ∈ R
n, i = 1, . . . ,m. We define S :=

conv (∪m
i=1Ei). In this section, we present a simple deterministic algorithm that iden-

tifies a finite subset X0 ⊂ ∪m
i=1Ei of size 2n such that vol MVCE(X0) is a provable

approximation to vol MVCE(S).
Algorithm 3.1 (volume approximation algorithm).

Require: Input set E1, . . . , Em ⊂ R
n

1: Ψ ← {0}, X0 ← ∅, k ← 0.
2: While R

n \ Ψ �= ∅ do
3: loop
4: k ← k+1. Pick an arbitrary unit vector bk ∈ R

n in the orthogonal complement
of Ψ.

5: x2k−1 ← arg maxi=1,...,m{(bk)Tx : x ∈ Ei}, X0 ← X0 ∪ {x2k−1}.
6: x2k ← arg mini=1,...,m{(bk)Tx : x ∈ Ei}, X0 ← X0 ∪ {x2k}.
7: Ψ ← span(Ψ, {x2k−1 − x2k}).
8: end loop
9: Output: X0

Lemma 3.1. Algorithm 3.1 terminates after O(mn3) arithmetic operations and
returns a subset X0 ⊂ ∪m

i=1Ei with |X0| = 2n such that

vol MVCE(S) ≤ n2nvol MVCE(X0).(13)

Proof. We first establish the running time of Algorithm 3.1. At step k, Ψ is given
by the span of k linearly independent vectors since S is full-dimensional. Hence,
upon termination, Ψ = R

n. It follows that |X0| = 2n. At each step, we optimize
a linear function over each of the m ellipsoids Ei. Let Qi = (U i)TU i, i = 1, . . . ,m,
denote the Cholesky factorization of Qi, i = 1, . . . ,m, which can be computed in
O(mn3) operations. Note that Ei = {x ∈ R

n : x = (U i)−1u + ci, ‖u‖ ≤ 1}, i =
1, . . . ,m. Therefore, at step k, each optimization problem has a closed form solution
given by x̃i,k

max,min := ci ± (1/‖(U i)−T bk‖)(U i)−1(U i)−T bk with an optimal value of

(bk)T ci± (1/‖(U i)−T bk‖)(bk)T (U i)−1(U i)−T bk. For each ellipsoid Ei, x̃i,k
max,min can be

computed in O(n2) operations since U i is upper triangular, which yields an overall
computational cost of O(mn3) operations after n steps. Therefore, Algorithm 3.1
terminates after O(mn3) arithmetic operations.

We now prove (13). It follows from the results of Betke and Henk [3] that vol S ≤
n! vol conv(X0). Combining this inequality with Theorem 2.1, we obtain

1

nn
vol MVCE(S) ≤ vol S ≤ n! vol conv(X0) ≤ n! vol MVCE(X0),

which implies that vol MVCE(S) ≤ n!nnvol MVCE(X0) ≤ n2nvol MVCE(X0).

4. A first-order algorithm. In this section, we present a first-order algorithm
to compute a (1 + ε)-approximation to the MVCE of the union of a set of full-
dimensional ellipsoids E1, . . . , Em ⊂ R

n for ε > 0. Our algorithm is a generalization of
the first-order algorithm presented in [18] to compute the MVCE of a finite set of m
points, which, in turn, is obtained from a modification of Khachiyan’s algorithm [15].
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630 E. ALPER YILDIRIM

Our treatment closely follows the interpretation of Khachiyan’s algorithm presented
in [18].

As a by-product, we establish the existence of a finite core set X ⊂ ∪i=1,...,m Ei
whose size depends on only the dimension n and the parameter ε, but is independent
of the number of ellipsoids m.

Algorithm 4.1 (a first-order algorithm that computes a (1 + ε)-approximation
to MVCE(S)).
Require: Input set of ellipsoids E1, . . . , Em ⊂ R

n given by (12) and ε > 0.
1: Run Algorithm 3.1 on E1, . . . , Em to obtain output X0 := {x1, . . . , x2n}.
2: u0 ← (1/2n)e ∈ R

2n.

3: w0 ←
∑2n

j=1 x
ju0

j .

4: (M0)−1 ← n
∑2n

j=1 u
0
j (x

j − w0)(xj − w0)T .

5: F0 ← {x ∈ R
n : (x− w0)TM0(x− w0) ≤ 1}.

6: x2n+1 ← arg maxi=1,...,m{(x− w0)TM0(x− w0) : x ∈ Ei}.
7: ε0 ← (x2n+1 − w0)TM0(x2n+1 − w0) − 1.
8: k ← 0.
9: While εk > (1 + ε)2/n − 1 do

10: loop
11: βk ← εk

(n+1)(1+εk) .

12: k ← k + 1.

13: uk ←
[

(1 − βk−1)u
k−1

βk−1

]
.

14: wk ←
∑2n+k

j=1 xjuk
j .

15: (Mk)−1 ← n
∑2n+k

j=1 uk
j (x

j − wk)(xj − wk)T .

16: Fk ← {x ∈ R
n : (x− wk)TMk(x− wk) ≤ 1}.

17: Xk ← Xk−1 ∪ {x2n+k}.
18: x2n+k+1 ← arg maxi=1,...,m{(x− wk)TMk(x− wk) : x ∈ Ei}.
19: εk ← (x2n+k+1 − wk)TMk(x2n+k+1 − wk) − 1.
20: end loop
21: Output:

√
1 + εk Fk, Xk

We now describe Algorithm 4.1. Given m full-dimensional ellipsoids E1, . . . , Em ⊂
R

n with representations given by (12), the algorithm calls Algorithm 3.1 and computes
a finite set X0 ⊂ ∪m

i=1Ei with |X0| = 2n. Next, a “trial ellipsoid” F0 is defined. Note
that the center w0 of F0 is simply the sample mean of X0 and M0 is the inverse of
the (scaled) sample covariance matrix of X0. εk measures the extent to which Fk

should be enlarged around its center in order to cover S := conv(∪m
i=1Ei). uk can be

viewed as a nonnegative weight vector whose components sum up to one. Note that
the dimension of uk increases by one at each iteration and is equal to |Xk|. Unless
the termination criterion is satisfied, the algorithm proceeds in an iterative manner
as follows: At Step 13, uk gets updated and is used to define wk and Mk for the next
trial ellipsoid Fk. Observe that x2n+k is precisely the farthest point in S from the
center of the trial ellipsoid Fk−1 in terms of its ellipsoidal norm. It is straightforward
to verify that

wk = (1 − βk−1)w
k−1 + βk−1x

2n+k, k = 1, 2, . . . ,(14)

and

(Mk)−1 = (1 − βk−1)(M
k−1)−1 + n(1 − βk−1)βk−1d

k(dk)T(15)
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MINIMUM COVERING ELLIPSOID OF ELLIPSOIDS 631

for k = 1, 2, . . . , where dk := x2n+k−wk−1. It follows that the next trial ellipsoid Fk is
obtained by shifting the center of Fk−1 towards x2n+k, and its shape is determined by
a nonnegative combination of (Mk−1)−1 and a rank-one update. This update can be
viewed as “enriching the eigenspace of (Mk−1)−1 in the direction dk := x2n+k−wk−1.”
We refer the reader to [18, section 4.3] for a related discussion. The parameter βk−1 ∈
[0, 1) solves the following line search problem as observed by Khachiyan [15]:

(LS(k)) max
β∈[0,1]

log det
[
(1 − β)(Mk−1)−1 + n(1 − β)βdk(dk)T

]
for k = 1, 2, . . . , where dk := x2n+k − wk−1. Algorithm 4.1 terminates when the
desired accuracy is achieved.

Algorithm 4.1 is an extension of the one proposed in [18] that computes a (1+ ε)-
approximation to the MVCE of a finite set of m points in R

n, which, in turn, is a
modification of Khachiyan’s algorithm [15]. The algorithm in [15] can be viewed as
a sequential linear programming algorithm (or, equivalently, as a Frank–Wolfe algo-
rithm [29]) for the nonlinear optimization problem arising from the dual formulation
of the MVCE problem (cf. (D(X0)) in the proof of Theorem 4.1) for a finite set of
points (see, e.g., the discussion in [18, section 4.1]). Algorithm 4.1 is motivated by
the simple observation that the union of a set of ellipsoids in R

n can be viewed as
an infinite set of points. Despite the fact that the finite-dimensional optimization
formulation on which Khachiyan’s algorithm is based no longer carries over to this
more general setting, our main goal in this paper is to establish that essentially the
same framework can be used with proper modifications to approximate the MVCE of
the union of a finite number of ellipsoids. Since the algorithm is driven by linearizing
the nonlinear objective function of the dual optimization formulation, we continue to
refer to Algorithm 4.1 as a first-order algorithm. We remark that the interior-point al-
gorithms of [32, 31] also rely on the second-order information arising from the Hessian
of the objective function.

We next analyze the complexity of Algorithm 4.1. Our analysis resembles those
of Khachiyan [15] and Kumar and Yıldırım [18]. The key ingredient in the complex-
ity analysis is to demonstrate that Algorithm 4.1 produces a sequence {Fk} of trial
ellipsoids with strictly increasing volumes. We utilize Lemma 3.1 to show that vol F0

is already a provable approximation to vol MVCE(S). The analysis will then be
complete by establishing that each step of Algorithm 4.1 can be executed efficiently.

We start by proving that vol F0 is a provable approximation to vol MVCE(S).
Theorem 4.1. The ellipsoid F0 ⊂ R

n defined in Algorithm 4.1 satisfies

log vol F0 ≤ log vol MVCE(S) ≤ log vol F0 + 2n log n +
n

2
log 2.(16)

Proof. We first establish that

log vol F0 ≤ log vol MVCE(X0),(17)

where X0 = {x1, . . . , x2n} denotes the set of 2n points returned by Algorithm 3.1.
Consider the following dual formulation to compute MVCE(X0) (see, e.g., [15] or
[29]):

(D(X0)) maxu log det Π0(u)

s.t. eTu = 1,

u ≥ 0,
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632 E. ALPER YILDIRIM

where u ∈ R
2n is the decision variable and Π0 : R

2n → Sn+1 is a linear operator given
by

Π0(u) :=

2n∑
j=1

uj

[
xj(xj)T xj

(xj)T 1

]
.

MVCE(X0) can be recovered from an optimal solution u∗ of (D(X0)) [18, Lemma 2.1].
Furthermore, the optimal value of (D(X0)) satisfies

log vol MVCE(X0) = log η +
n

2
log n +

1

2
log det Π0(u

∗),(19)

where η is the volume of the unit ball in R
n.

Let us consider the feasible solution u0 := (1/2n)e ∈ R
2n of (D(X0)). We have

Π0(u
0) =

[
(1/2n)

∑2n
j=1 x

j(xj)T w0

(w0)T 1

]
,

=

[
I w0

0 1

] [
(1/n)(M0)−1 0

0 1

] [
I 0

(w0)T 1

]
,

(20)

which implies that

log det Π0(u
0) = −n log n + log det(M0)−1 = −n log n + 2 log det(M0)−1/2.(21)

However, log vol F0 = log η+log det(M0)−1/2. Combining this equality with (21), we
obtain

log vol F0 = log η +
n

2
log n +

1

2
log det Π0(u

0).

Since u0 is a feasible solution for the maximization problem (D(X0)), it follows from
(19) that log vol F0 ≤ log vol MVCE(X0).

Since X0 ⊂ S, we clearly have log vol MVCE(X0) ≤ log vol MVCE(S), which
proves the first inequality in (16). To prove the second inequality, let

B := [x1, . . . , x2n] ∈ R
n×2n.

Then, w0 = (1/2n)Be and it is easy to verify that (M0)−1 = (1/2)BPBT , where P :=
I − (1/2n)eeT is an orthogonal projection matrix onto the orthogonal complement of
the vector e. Note that Pej = ej − (1/2n)e, j = 1, . . . , 2n. Therefore, for any
j = 1, . . . , 2n, we have

(xj − w0)TM0(xj − w0) = 2(ej − (1/2n)e)TBT (BPBT )−1B(ej − (1/2n)e),

= 2(Pej)TPBT (BP 2BT )−1BP (Pej),

≤ 2‖Pej‖2,

=
2n− 1

n
,

< 2,

where we used P = P 2 on the second line and the fact that PBT (BP 2BT )−1BP
is an orthogonal projection matrix to derive the first inequality. Consequently, the
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MINIMUM COVERING ELLIPSOID OF ELLIPSOIDS 633

ellipsoid G := {x ∈ R
n : (x− w0)T (1/2)M0(x− w0) ≤ 1} covers X0. Therefore,

log vol MVCE(X0) ≤ log vol G,
= log η +

n

2
log 2 + log det(M0)−1/2,

=
n

2
log 2 + log vol F0,

which implies that log vol F0 ≥ log vol MVCE(X0) − (n/2) log 2. By Lemma 3.1, we
have log vol MVCE(X0) ≥ log vol MVCE(S)−2n log n. Combining these two inequal-
ities, we obtain log vol F0 +2n log n+(n/2) log 2 ≥ log vol MVCE(S) as desired.

The next lemma relates log vol Fk to log vol MVCE(S).
Lemma 4.2. For any k = 0, 1, 2, . . . , we have

log vol Fk ≤ log vol MVCE(S) ≤ log vol Fk +
n

2
log(1 + εk).(22)

Proof. By definition of εk,
√

1 + εk Fk ⊇ S, where
√

1 + εk Fk is given by expand-
ing Fk around its center wk by a factor of

√
1 + εk. Therefore, log vol MVCE(S) ≤

log vol Fk + (n/2) log(1 + εk), which proves the second inequality in (22).
We follow an argument similar to that in the proof of Theorem 4.1 to establish

the first inequality (cf. (20), (21), and (19)). At step k of Algorithm 4.1, uk ∈ R
2n+k

is a feasible solution of the optimization problem (D(Xk)). Therefore,

log vol Fk = log η +
n

2
log n +

1

2
log det Πk(u

k),

≤ log η +
n

2
log n +

1

2
log det Πk(u

k
∗),

= log vol MVCE(Xk),

where uk
∗ denotes the optimal solution of (D(Xk)) and Πk : R

2n+k → Sn+1 is a linear
operator given by

Πk(u) :=

2n+k∑
j=1

uj

[
xj(xj)T xj

(xj)T 1

]
.(23)

Since Xk ⊂ S, the first inequality follows.
The following corollary immediately follows from Lemma 4.2.
Corollary 4.3. For any k = 0, 1, 2, . . . , εk ≥ 0. Furthermore, if Algorithm 4.1

does not terminate at step k, then εk > (1 + ε)2/n − 1.
So far, we have established the following results: (i) vol F0 is a provable ap-

proximation to vol MVCE(S) and (ii) the sequence of ellipsoids Fk generated by
Algorithm 4.1 yields a sequence of lower bounds on vol MVCE(S). Our next goal is
to demonstrate that {vol Fk}, k = 0, 1, . . . , is a strictly increasing sequence, which im-
plies that Algorithm 4.1 produces increasingly sharper lower bounds to vol MVCE(S).
At this stage, it is worth noticing that the line search problem LS(k) precisely com-
putes the next trial ellipsoid which yields the largest increase in the volume for the
particular updating scheme of Algorithm 4.1.

Proposition 4.4. For any k = 0, 1, 2, . . . ,

log vol Fk+1 ≥ log vol Fk +

⎧⎨
⎩

1
2 log 2 − 1

4 > 0 if εk ≥ n+1
n ,

1
16ε

2
k if εk < n+1

n .
(24)D
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634 E. ALPER YILDIRIM

Proof. Our proof mimics Khachiyan’s argument [15]. By the definition of εk, we
have 1+ εk = (x2n+k+1−wk)TMk(x2n+k+1−wk). Let zk := x2n+k+1−wk. It follows
from (15) that

log det(Mk+1)−1 = log det
{
(1 − βk)

[
(Mk)−1 + nβkz

k(zk)T
]}
,

= n log(1 − βk) + log det
[
(Mk)−1

(
I + nβkM

kzk(zk)T
)]
,

= log det(Mk)−1 + n log(1 − βk) + log [1 + nβk(1 + εk)],

= log det(Mk)−1 − n log

(
1 +

βk

1 − βk

)
+ log

(
1 +

(
n

n + 1

)
εk

)
,

= log det(Mk)−1 − n log

(
1 +

εk
(n + 1)(1 + εk) − εk

)

+ log

(
1 +

(
n

n + 1

)
εk

)
,

≥ log det(Mk)−1 −

(
n

n+1

)
εk

1 +
(

n
n+1

)
εk

+ log

(
1 +

(
n

n + 1

)
εk

)
,

where we used the definition of βk in the last two equalities and the inequality
log(1 + ζ) ≤ ζ for ζ > −1. Since log vol Fk = log η + log det(Mk)−1/2 = log η +
(1/2) log det(Mk)−1, it follows that

log vol Fk+1 ≥ log vol Fk +
1

2
log

(
1 +

(
n

n + 1

)
εk

)
−

(
n

n+1

)
εk

2
(
1 +

(
n

n+1

)
εk

) .
The assertion follows from the observation that f(ν) := (1/2) log(1+ν)−ν/[2(1+ν)]
is a strictly increasing function for ν ≥ 0 and f(ν) ≥ ν2/16 for ν ∈ [0, 1].

We are now ready to analyze the iteration complexity of Algorithm 4.1. To this
end, we define the following parameters:

τρ := min

{
k :

(
n

n + 1

)
εk ≤ 1/2ρ

}
, ρ = 0, 1, 2, . . . .(25)

The next lemma establishes certain properties of τρ.
Lemma 4.5. τρ satisfies the following relationships:

τ0 = O(n log n),(26)

τρ − τρ−1 ≤ n2ρ+5, ρ = 1, 2, . . . .(27)

Proof. By Theorem 4.1, log vol F0 ≤ log vol MVCE(S) ≤ log vol F0 + 2n log n +
(n/2) log 2. At every iteration k with εk > (n + 1)/n, we have log vol Fk+1 −
log vol Fk ≥ (1/2) log 2 − 1/4 > 0 by Proposition 4.4. Therefore, τ0 = O(n log n).

Let us now consider τρ−τρ−1, ρ ≥ 1. For simplicity, let γ := τρ−1. By definition of
τρ−1, it follows from Lemma 4.2 that log vol Fγ ≤ log vol MVCE (S) ≤ log vol Fγ +
(n/2) log(1 + [(n + 1)/n]2−(ρ−1)) ≤ log vol Fγ + (n + 1)2−ρ. By Proposition 4.4,

log vol Fk+1 − log vol Fk ≥ [(n + 1)/n]22−(2ρ+4) ≥ 2−(2ρ+4) at every iteration k with
εk > [(n + 1)/n]2−ρ. Therefore, τρ − τρ−1 ≤ [(n + 1)2−ρ]/2−(2ρ+4) = (n + 1)2ρ+4 ≤
n2ρ+5, which completes the proof.

Lemma 4.5 enables us to establish the following result.
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MINIMUM COVERING ELLIPSOID OF ELLIPSOIDS 635

Lemma 4.6. Let μ ∈ (0, 1). Algorithm 4.1 computes an iterate with εk ≤ μ in
O(n(log n + μ−1)) iterations.

Proof. Let σ be a positive integer such that [(n+1)/n]2−σ ≤ μ ≤ [(n+1)/n]21−σ.
Therefore, after k = τσ iterations, we already have εk ≤ [(n+1)/n]2−σ ≤ μ. However,

τσ = τ0 +

σ∑
ρ=1

(τρ − τρ−1) ≤ τ0 + 64n

σ∑
ρ=1

2ρ−1 ≤ τ0 + 64n2σ ≤ O

(
n log n +

n

μ

)
,

where we used Lemma 4.5 and the inequality 2σ ≤ 4/μ.
We are now in a position to establish the iteration complexity of Algorithm 4.1.
Theorem 4.7. Let ε > 0. Algorithm 4.1 computes a (1 + ε)-approximation to

MVCE(S) after at most O(n(log n + [(1 + ε)2/n − 1]−1)) iterations.
Proof. We first establish that Algorithm 4.1 returns a (1 + ε)-approximation to

MVCE(S) upon termination. Let κ denote the index of the final iterate. We have
εκ ≤ (1 + ε)2/n − 1. The trial ellipsoid Fκ satisfies S ⊆

√
1 + εκ Fκ, which together

with Lemma 4.2 implies that

vol Fκ ≤ vol MVCE(S) ≤ vol
√

1 + εκFκ = (1 + εκ)n/2vol Fκ ≤ (1 + ε)vol Fκ.

Therefore,
√

1 + εκ Fκ is indeed a (1 + ε)-approximation to MVCE(S).
We now prove the iteration complexity. If ε ≥ [2+(1/n)]n/2−1, then (1+ ε)2/n−

1 ≥ (n + 1)/n, which implies that at most τ0 = O(n log n) iterations already suffice.
Otherwise, the result follows from Lemma 4.6.

Remark 1. The iteration complexity of Algorithm 4.1 is asymptotically identi-
cal to that of the algorithm of Kumar and Yıldırım [18] that computes a (1 + ε)-
approximation to the MVCE of a finite set of m points.

We now establish the overall complexity of Algorithm 4.1.
Theorem 4.8. Algorithm 4.1 computes a (1 + ε)-approximation to MVCE(S) in

O
(
mnO(1)(log n + [(1 + ε)2/n − 1]−1)

)
operations, where O(1) denotes a universal constant greater than four.

Proof. We already have the iteration complexity from Theorem 4.7. We need
only analyze the computational cost of each iteration.

Let us start with the initialization stage. By Lemma 3.1, Algorithm 3.1 runs in
O(mn3) operations. w0 and (M0)−1 can be computed in O(n2) and O(n3) opera-
tions, respectively. The furthest point x2n+1 from the center of F0 can be determined
by solving m separate quadratic optimization problems with a single ellipsoidal con-
straint. By Proposition 2.6, each optimization problem can be solved in O(nO(1)+n3)
operations. Finally, it takes O(n2) operations to compute ε0. Therefore, the overall
complexity of the initialization step is O(m(nO(1) + n3)) operations. Similarly, at
iteration k, the major work is the computation of the furthest point x2n+k+1, which
can be performed in O(m(nO(1)+n3)) operations. Therefore, the overall running time
of Algorithm 4.1 is given by O(mnO(1)(log n + [(1 + ε)2/n − 1]−1)) operations.

Remark 2. The overall complexity of Algorithm 4.1 is linear in m, the number
of ellipsoids. This suggests that, in theory, Algorithm 4.1 is especially well-suited for
instances of the MVCE problem that satisfy m � n and for moderate values of ε. In
addition, if ε ∈ (0, 1), we have (1+ ε)2/n−1 = Θ(ε/n), in which case the running time
of Algorithm 4.1 can be simplified to O((1/ε)mnO(1)) operations, where O(1) is now
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636 E. ALPER YILDIRIM

a universal constant greater than five. Note that the running time of Algorithm 4.1
is polynomial for fixed ε.

We close this section by establishing that the convex hull of the finite set of points
collected by Algorithm 4.1 serves as a reasonably good approximation to S in the sense
that their respective MVCEs are closely related.

Proposition 4.9. Let κ denote the index of the final iterate of Algorithm 4.1.
Then, Xκ satisfies

vol MVCE(Xκ) ≤ vol MVCE(S) ≤ (1 + ε)vol MVCE(Xκ).(28)

In addition,

|Xκ| = O
(
n(log n + [(1 + ε)2/n − 1]−1)

)
.(29)

Proof. We first prove (28). Note that the first inequality is obvious since Xκ ⊂ S.
The second inequality follows from the relationships vol Fκ ≤ vol MVCE(Xκ) ≤
vol MVCE(S) (see the proof of Lemma 4.2) and vol MVCE(S) ≤ (1 + ε)vol Fκ (see
the proof of Theorem 4.7).

Since |Xκ| = 2n + κ, (29) simply follows from Theorem 4.7.

Remark 3. Proposition 4.9 establishes that Algorithm 4.1 computes a finite set
of points Xκ ⊂ S whose MVCE is related to MVCE(S) via (28). In addition, |Xκ|
depends only on the dimension n and the approximation factor ε but is independent
of the number of ellipsoids m. Furthermore, for ε ∈ (0, 1), we have |Xκ| = O(n2/ε).
Therefore, Xκ serves as a finite core set for S. Viewed from this perspective, Proposi-
tion 4.9 is an addition to the previous core set results for other geometric optimization
problems [17, 8, 7, 9, 1, 18].

Remark 4. In [18], a similar core set result has been established for the MVCE
problem for a finite set of m points in R

n. It is remarkable that asymptotically the
same result holds regardless of the difference in the underlying geometric structures
of the two input sets. In particular, the main ingredient in [18] that leads to the
improved complexity result over Khachiyan’s algorithm [15] as well as the core set
result is the initial volume approximation. In a similar manner, the counterpart of
this initialization stage (cf. Algorithm 3.1) enables us to extend the algorithm of
Kumar and Yıldırım to a set of ellipsoids. Khachiyan’s algorithm cannot be extended
to a set of ellipsoids as it relies on the finiteness property of the input set at the
initialization stage.

5. Rounding. In this section, we establish that Algorithm 4.1 can also be used
to compute a (1 + δ)n-rounding of S := conv(∪m

i=1Ei), where E1, . . . , Em ⊂ R
n are

full-dimensional ellipsoids and δ > 0. We assume that S is not symmetric around the
origin.

Our analysis closely follows Khachiyan’s treatment for an input set of a finite
number of points in R

n [15]. At iteration k of Algorithm 4.1, let qj := [(xj)T , 1]T ∈
R

n+1, j = 1, . . . , 2n+k, and let Qk := conv({±q1, . . . ,±q2n+k}), which is a centrally
symmetric polytope in R

n+1 (i.e., Qk = −Qk).

Let uk ∈ R
2n+k denote the iterate at iteration k of Algorithm 4.1. Let us define

a full-dimensional ellipsoid Gk ⊂ R
n+1 given by

Gk := {y ∈ R
n+1 : yTΠk(u

k)−1y ≤ 1},(30)
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MINIMUM COVERING ELLIPSOID OF ELLIPSOIDS 637

where Πk : R
2n+k → Sn+1 is a linear operator defined by (23). Since uk is a feasible

solution of (D(Xk)), it follows from [15, Lemma 2] that Gk ⊆ Qk. Furthermore, for
any qj , j = 1, . . . , 2n + k, we have

(qj)TΠk(u
k)−1qj = [(xj)T 1]

[
I 0

−(wk)T 1

] [
nMk 0

0 1

][
I −wk

0 1

][
xj

1

]
,

= n(xj − wk)TMk(x
j − wk) + 1,

≤ n(1 + εk) + 1,

which, together with the previous inclusion, implies that

Gk ⊆ Qk ⊆
√

1 + n(1 + εk)Gk;(31)

i.e.,
√

1 + n(1 + εk)Gk is a
√

(1 + δ̃)(n + 1)-rounding of Qk, where δ̃ := (nεk)/(n+1).

Let Hk := {x ∈ R
n : [xT 1]T ∈

√
1 + n(1 + εk)Gk ∩ Λ}, where

Λ := {y ∈ R
n+1 : yn+1 = 1}.(32)

Note that Hk ⊂ R
n is a full-dimensional ellipsoid. By [15, Lemma 5],

1

(1 + εk)n
Hk ⊆ conv(Xk) ⊆ Hk;(33)

i.e., Hk ⊂ R
n is a (1 + εk)n-rounding of conv(Xk). However, it is straightforward to

verify that x ∈ Hk if and only if (x− wk)TMk(x− wk) ≤ 1 + εk, which implies that
Hk =

√
1 + εk Fk. Since conv(Xk) ⊆ S ⊆

√
1 + εk Fk, it follows from (33) that

1

(1 + εk)n
Hk ⊆ conv(Xk) ⊆ S ⊆ Hk;(34)

i.e., Hk is simultaneously a (1 + εk)n-rounding of conv(Xk) and of S. Therefore, in
order to obtain a (1+ δ)n-rounding of S, it suffices to run Algorithm 4.1 until εk ≤ δ.
We summarize this result in the following corollary, whose proof follows directly from
Lemma 4.6.

Corollary 5.1. Given δ > 0, Algorithm 4.1 computes a (1 + δ)n-rounding of S
in

O(mnO(1)(log n + δ−1))

arithmetic operations, where O(1) is a universal constant greater than four. In addi-
tion, upon termination of Algorithm 4.1, the ellipsoid computed by Algorithm 4.1 is
also a (1+ δ)n-rounding of the convex hull of a finite subset Xk ⊂ S with the property
that

|Xk| = O
(
n(log n + δ−1)

)
.(35)

Remark 5. Upon termination of Algorithm 4.1 with a (1 + δ)n-rounding of S,
Corollary 5.1 establishes that Xk is an ε̃-core set for S, where ε̃ := (1 + δ)n/2 − 1. In
fact, Khachiyan’s algorithm [15] is motivated by first computing a (1 + δ)n-rounding
of S and then choosing δ in such a way that the ellipsoid computed by the algorithm
is a (1 + ε)-approximation to the MVCE.

We close this section by noting that Corollary 5.1 can be improved if S is centrally
symmetric. In this case, we no longer need to “lift” the vectors in Xk to R

n+1. A
similar argument can be invoked to establish that Hk :=

√
1 + εk Fk satisfies

1√
(1 + εk)n

Hk ⊆ conv({±x1, . . . ,±x2n+k}) ⊆ S ⊆ Hk.
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638 E. ALPER YILDIRIM

6. Extensions to other sets. In this section, we discuss the extent to which
Algorithm 4.1 can be used to compute an approximate MVCE and an approximate
n-rounding of other input sets. Let T1, T2, . . . , Tm denote m objects in R

n and let T :=
∪m
i=1Ti. In order to extend Algorithm 4.1, we identify the following two subroutines

that need to be implemented efficiently:

1. Subroutine 1: Optimizing a linear function over T .
2. Subroutine 2: Maximizing a quadratic function over T .

Note that Subroutine 1 is required by Algorithm 3.1. Similarly, the computation
of the furthest point from the center of a trial ellipsoid (in its ellipsoidal norm) is
equivalent to Subroutine 2. All of the other operations of Algorithm 4.1 can be
performed efficiently for any input set T .

Let us now consider specific examples of input sets. Clearly, a finite set of points
and a finite set of balls would be special cases of a finite set of ellipsoids. Therefore,
Algorithm 4.1 would be trivially applicable in these cases. We just remark that certain
subroutines can be implemented more efficiently for these input sets. For a finite set
of points, Subroutines 1 and 2 can be performed in O(mn) and O(mn2) operations,
respectively. We then recover the algorithm of Kumar and Yıldırım [18]. For a
finite set of balls, while Subroutine 1 can still be implemented in O(mn) operations,
Subroutine 2 would require the same computational cost as that required by a set of
ellipsoids. Therefore, the running time of Algorithm 4.1 would asymptotically remain
the same for a finite set of balls. A similar argument also holds for an input set of
ellipsoids, each of which is defined by the same matrix Q = Qi, i = 1, . . . ,m, since
such an input set can be a priori transformed into a set of balls.

6.1. Set of half ellipsoids. Let Ti := {x ∈ R
n : (x − ci)TQi(x − ci) ≤

1, (f i)Tx ≤ αi}, where ci ∈ R
n and Qi ∈ Sn are positive definite, f i ∈ R

n with
f i �= 0, and αi ∈ R, i = 1, . . . ,m. Ti is simply given by the intersection of a full-
dimensional ellipsoid and a half-space. We will refer to each Ti as a half-ellipsoid. To
avoid trivialities, we assume that each Ti has a nonempty interior. It follows from
the results of Sturm and Zhang [28] that the problem of optimizing any quadratic
(hence linear) objective function over Ti can be cast as an equivalent SDP problem
with a fixed number of constraints using a technique similar to that used in the proof
of Proposition 2.6. Since both Subroutines 1 and 2 naturally decompose into a lin-
ear and quadratic optimization problem over each Ti, respectively, it follows from
Corollary 2.5 that both of them can be implemented in polynomial time. Therefore,
Algorithm 4.1 can compute an approximate MVCE and an approximate n-rounding
of a set of half-ellipsoids in polynomial time.

6.2. Set of intersections of a pair of ellipsoids. Let Ti := {x ∈ R
n : (x −

ci)TQi(x − ci) ≤ 1, (x − hi)TQi(x − hi) ≤ 1}, where ci ∈ R
n, hi ∈ R

n, and Qi ∈ Sn

are positive definite, i = 1, . . . ,m. Note that each Ti is given by the intersection
of two ellipsoids defined by the same matrix Qi with different centers. Similarly to
the previous case, Sturm and Zhang [28] establish that the problem of optimizing
any quadratic (hence linear) objective function over Ti can be decomposed into two
quadratic (linear) optimization problems over a half-ellipsoid, each of which can be
solved in polynomial time. Therefore, Algorithm 4.1 can compute an approximate
MVCE and an approximate n-rounding of a set of intersections of a pair of ellipsoids
in polynomial time. We remark that the complexity of solving a general quadratic
optimization problem over the intersection of two arbitrary ellipsoids is still an open
problem.
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MINIMUM COVERING ELLIPSOID OF ELLIPSOIDS 639

6.3. Other sets and limitations. Based on the previous examples, it is clear
that Algorithm 4.1 can be applied to any input set as long as Subroutines 1 and 2
admit efficient implementations. While Subroutine 1 can be performed efficiently for
a rather large class of input sets (e.g., classes of convex sets that admit efficiently
computable barrier functions [19]), Subroutine 2 can be efficiently implemented only
in very special cases, some of which have been outlined in this section.

For instance, if T is given by the union of polytopes Ti := {x ∈ R
n : Aix ≤ bi},

where Ai ∈ R
m×n and bi ∈ R

m, i = 1, . . . ,m, then Subroutine 1 reduces to linear
programming, which can be solved efficiently using interior-point methods combined
with a finite termination strategy [35]. However, maximizing a convex quadratic
function over a polytope is in general an NP-hard problem. Therefore, even in the
case of a single polytope defined by linear inequalities, the problem of computing an
approximate MVCE is computationally intractable. We remark that the maximum
volume inscribed ellipsoid in a polytope defined by linear inequalities can be efficiently
approximated (see, e.g., [16]).

In summary, the extent to which Algorithm 4.1 can be applied to other input sets
is largely determined by whether Subroutine 2 can be implemented efficiently. Since
quadratic optimization over various feasible regions is an active area of research [28,
36], further progress in establishing polynomial complexity may widen the domain of
input sets to which Algorithm 4.1 can be applied.

7. Concluding remarks. In this paper, we established that the first-order al-
gorithm of Kumar and Yıldırım [18] that computes an approximate MVCE of a finite
set of points can be extended to compute the MVCE of the union of finitely many
full-dimensional ellipsoids without compromising the polynomial-time complexity for
a fixed approximation parameter ε > 0. Moreover, the iteration complexity of our
extension and the core set size remain asymptotically identical. In addition, we estab-
lish that our algorithm can also compute an appproximate n-rounding of the convex
hull of a finite number of ellipsoids. We discuss how the framework of our algorithm
can be extended to compute an approximate MVCE and an approximate n-rounding
of other input sets in polynomial time and present certain limitations. Our core set
result is an addition to the recent sequence of works on core sets for several geometric
optimization problems [17, 8, 7, 9, 1, 18].

While our algorithm has a polynomial-time complexity in theory, it would be
especially well suited for instances of the MVCE problem with m � n and moderately
small values of ε. In particular, our algorithm would be applicable to the problem of
constructing a bounding volume hierarchy as the objects lie in three-dimensional space
(i.e., n = 3) and a fixed parameter ε usually suffices for practical applications. To the
best of our knowledge, this is the first result in the literature towards approximating
the convex hull of a union of ellipsoids by that of a finite subset whose size depends
on only the dimension n and the parameter ε.

On the other hand, our algorithm would probably not be practical if a higher
accuracy (i.e., a smaller ε) were required or if the dimension n were large. In addition,
it is well known that first-order algorithms in general suffer from slow convergence
in practice, especially for smaller values of ε. Our preliminary computational results
indicate that both of the first-order algorithms of [15, 18] for an input set of points
tend to take an excessive number of iterations as ε is decreased, which suggests that
the practical performance of these algorithms is indeed closely related to the worst-
case theoretical complexity bounds. Motivated by the core set result established in
this paper and the encouraging computational results based on a similar core set
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640 E. ALPER YILDIRIM

result for the minimum enclosing ball problem [17], we intend to work on a column
generation algorithm for the MVCE problem with an emphasis on establishing an
upper bound on the number of subproblems solved to obtain a desired accuracy.

Very recently, Todd and Yıldırım [30] proposed a modification of the algorithm of
Kumar and Yıldırım [18] that computes an approximate MVCE and an approximate
n-rounding of a finite set of points. Their modification allows “dropping” points from a
working core set throughout the algorithm and maintains the same complexity bound
as that of the algorithm of [18]. As such, it has the potential of computing smaller
core sets in practice. We remark that the same idea can easily be incorporated into
our algorithm for a set of ellipsoids without any increase in the asymptotic complexity
bound.
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