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Using a single spin-1 object as an example, we discuss a recent approach to
quantum entanglement. [A.A. Klyachko and A.S. Shumovsky, J. Phys: Conf.
Series 36, 87 (2006), E-print quant-phl0512213]. The key idea of the approach
consists in presetting of basic observables in the very definition of quantum sys-
tem. Specification of basic observables defines the dynamic symmetry of the
system. Entangled states of the system are then interpreted as states with max-
imal amount of uncertainty of all basic observables. The approach gives purely
physical picture of entanglement. In particular, it separates principle physical
properties of entanglement from inessential. Within the model example under
consideration, we show relativity of entanglement with respect to dynamic sym-
metry and argue existence of single-particle entanglement. A number of physical
examples are considered.

KEY WORDS: entanglement; quantum measurements; nonlocality.
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1. INTRODUCTION

Recent development of quantum information technologies has led to a
number of successful and promising realizations of protocols based on the
use of quantum entanglement. For example, the quantum key distribution
has recently become an industrial product.() These developments caused
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a great burst of activity in investigation of quantum entanglement. During
the last decade, the applications of entanglement to quantum information
and quantum computing were discussed in a huge number of articles and
review papers, in particular in Foundations of Physics.?)

Nevertheless, the substance of entanglement still remains unclear,
especially beyond the simplest case of two-qubit systems. Moreover, there
is a certain muddle even in the very definition of entanglement because
important and inessential are often jumbled together.

In this paper, our aim is not to discuss the applications but the phys-
ics behind the quantum entanglement.

For example, entanglement is usually associated with quantum non-
locality or violation of classical realism.3 This simply means that
measurements on spatially separated parts of a quantum system may
instantaneously influence one another. Physically this is caused by the
quantum correlations between the parts of the system.®) Once created,
those correlations keep on existing even after the spatial separation of
parts.

On one hand, the nonlocality is probably the main distinguishing fea-
ture of quantum mechanics regarding classical physics. On the other hand,
this notion does not contain any quantification of distance between sep-
arated entangled parts of a quantum system. Thus, it seems to be natu-
ral to assume that quantum system with strongly correlated intrinsic parts
may manifest entanglement independent of distance between the parts and
hence even as a local object without spatial separation of parts.©¢-10

The quantum nonlocality is often expressed in terms of violation
of different Bell-type conditions of classical realism.®) This violation is
a characteristic feature of entanglement in two-qubit systems. However,
unentangled states of some systems beyond two qubits can also mani-
fest the violation of those conditions.(!!"13 For example, the difference
between entangled and unentangled states disappears for systems with
dynamic symmetry group SU(H) with dimension of the Hilbert space
dimH > 3 (see Ref. 14, cf. Ref. 15). As a matter of fact, violation of
Bell-type conditions generally indicates the absence of “hidden” classical
variables in quantum mechanics® rather than entanglement (also see
Appendix A).

This allows us to conclude that nonlocality and violation of classical
realism alone are not the essential sign of entanglement and that there is
no physical prohibition for the existence of entanglement of local objects
(particles) caused by quantum correlations of their intrinsic degrees of free-
dom.(6-10)

Another common opinion is that the entanglement of multipartite
systems defined in the Hilbert space H = His ® Hp ® ... can be
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associated with the nonseparability of states € ‘H with respect to the
parts of the system (e.g., see Ref. 16).

This statement, which is undoubtedly valid in the case of bipartite
systems, does not have a lucid sense for multipartite entanglement. Stress
that the notion of nonseparability is clearly useless in the case of single-
particle entanglement.®-10)

Three-qubit states, whose classification has been constructed in
Ref. 17 can be considered as an example. Namely, the states from the
class, specified by the nonseparable GHZ (Greenberger-Horne-Zeilinger)
state, manifest only three-partite entanglement with no correlations (entan-
glement) between pairs of qubits. In contrast, the nonseparable W-states
manifest entanglement only between pairs of qubits while they are unen-
tangled in the three-qubit sector. In turn, the so-called bi-separable states
(separable with respect to one of the parties) may manifest bipartite entan-
glement. For details, see Appendix B.

Thus, it seems reasonable to set aside the criteria of entanglement
based on nonlocality, violation of classical realism, and nonseparability,
and to focus attention on physical manifestations of entanglement in the
process of measurement of quantum observables.

Note first that there is a certain interdependence between quantum
correlations peculiar to entangled states and quantum uncertainties (fluc-
tuations) of local observables.(!'18:19) Consider as an illustrative example
the measurement of spin projection onto the quantization axis in the two-
qubit states [11) = | $1) and [ycg) = (| 1) + | L1)/+2. For the

correlation functions and variances (uncertainties), we get

(Wrrlof; oBlygy) =0, V<o§’§; Y1) =0,
(WeelodsoBlycp) =1, V(% ycr) = 1.

Here o2

2, azB denote the z-component of Pauli spin operator,

(Wlot; o Bly) = (wlotaBly) — (wlo A 1y) (vl Bly)

is the correlation function of local measurements, and

Vio; ) = (Wlo?ly) — (¥lo|y)?

is the variance of the observable o in the state . Thus, the correlation
functions and variances have similar behavior for the characteristic states
like WTT and YcE.

The natural question now is how many physical observables should
be measured in order to conclude that a given state of a certain sys-
tem is entangled.?® This question has extremely high importance for
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understanding of physical essence of entanglement and its quantification.
Besides that, this question has a quite practical meaning in connection
with test of sources of entangled states.2!)

In a recent approach(-11:22) (for recent review, see Ref. 6), it has been
proposed to begin the analysis of entanglement with the choice of inde-
pendent basic observables that can be associated with the orthogonal basis
of a certain Lie algebra £. The corresponding Lie group G = exp(iL)
defines the dynamic symmetry of the physical system under consideration.

It should be emphasized that the idea to specify a quantum system by
accessible observables is known for a long time (e.g., see Ref. 23). Unfor-
tunately, this principle idea is often set aside. As we show below in this
paper, this principle plays extremely important role in description of quan-
tum entanglement.

Within the approach of Refs. 7,11,22, the complete entanglement is
interpreted as manifestation of quantum uncertainties of all basic observ-
ables at their extreme. By complete entanglement we mean here the max-
imal entanglement that can be achieved by pure states.

Note that, for a given quantum system, it is enough to know the
completely entangled states because all other entangled states can be gen-
erated from those states through the use of SLOCC (stochastic local oper-
ations assisted by classical communications).(?+2>)

The dual objective of present paper is to discuss the characteristic fea-
tures of this approach, using a single qutrit (ternary quantum state) as
an illustrative example of some considerable interest, and hence to justify
existence of single-particle entanglement.

Qutrit is usually associated with ternary unit of quantum informa-
tion.2® Instructiveness of this example consists in the relativity of entan-
glement with respect to the choice of dynamic symmetry G of ternary
quantum physical system. Namely, one can choose either G = SU(3)Z7
or G’ = SU(2). Just the latter case of a single spin-1 system may manifest
entanglement without division of the system into separated parts.(-%10)

Stress that entanglement of a single photon has been discussed for a
long time.?®) The picture always involves an external qubit formed by two
possible paths owing to its propagation through a beam splitter. In con-
trast, our concept of the single-particle entanglement®19 considers parti-
cle itself independent of its environment (see also important discussions in
Refs. 9,8). In this case, quantum correlations peculiar to entanglement can
be associated with intrinsic degrees of freedom of a particle.

In the paper, we show that the single-particle entanglement has all
important properties of conventional two-qubit entanglement. In particu-
lar, its unentangled states are the spin-coherent states like those of two
qubits(!-12) (concerning spin-coherent states, see the basic works®® and
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monographs®?). In turn, the single-particle entangled states are squeezed
like the two-qubit entangled states (for relation between squeezing and
“conventional” multipartite entanglement, see Ref. 31).

Note that association of unentangled and coherent states on the one
hand and entangled and squeezed states on the other hand blends well
with the concept of entanglement as manifestation of quantum uncertain-
ties at their extreme.

We also reveal the mechanism of intrinsic quantum correlations hid-
den behind the single-qutrit entanglement.

The paper is organized as follows. In Sec. 2, the principles of the
dynamic symmetry approach to quantum entanglement are presented and
we show existence of the single-particle entanglement for spin-1 systems.
In Sec. 3, we discuss properties of that entanglement. Then, in Sec. 4, we
consider some physical realizations. The conclusions are given in Sec. 5.

2. ENTANGLEMENT AND QUANTUM FLUCTUATIONS

As we have said in introduction, specifying a given quantum sys-
tem, we should first choose the accessible independent physical observables
associated with dynamic symmetry of the system.(© 1D

For example, in the case of a qubit (spin 1/2) system, dynamic
symmetry is given by the group SU(2). The orthogonal basis of the
corresponding Lie algebra su(2) consists of three spin operators (Pau-
li matrices). Thus, a two-qubit system is characterized by the dynamic
symmetry G = SU(2) x SU(2), which corresponds to the six basic observ-
ables (three Pauli matrices for each part). For the two-qubit pure state, the
number of necessary measurements, providing information about entangle-
ment carried by this state, is reduced to three.*”) because of the local char-
acter of the measure of entanglement (concurrence) in this case.3?)

To illustrate special importance of the specification of quantum sys-
tem by basic observables, consider a qutrit (ternary unit of quantum infor-
mation) associated with a state

1 1
W)= D wls). D Il =1 (1)

s=—1 s=—1

in the three-dimensional Hilbert space H3. As we have mentioned in intro-
duction, there are at least two qualitatively different physical systems,
whose states are qutrits. Namely, one possible realization corresponds to
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the general symmetry G = SU(3) of the system, which implies eight basic
observables (Gell-Mann matrices)?)

0 1 0 0 —i 0 1 0 0
Am=11 0 0}, =11 0 0}, x»3=(0 -1 01},
0 0 0 0 0 0 0 0 0
0 0 1 0 0 —i 0 0 0
w=[0 0 o). as={0 o o). a=[0 0o 1),
1 0 0 i 0 0 0 1 0
0 0 0 /10 0
=0 0 —i). m=—[0 1 o). ?)
0 i 0 V3lo o -2

Hereafter we call the corresponding system the true qutrit system.
Another realization assumes reduced symmetry G’ = SU(2) of the

physical system, which requires only three basic observables (spin-1 oper-
ators)(10)

L /010 L0 =i 0
Se=—0=1(1 0 1), S=—7]|1i 0o —-i],
V2\o 1 o V2 \o 0
1 0 0
s.={0o o o). 3)
0 0 -1

We call this case the spin-qutrit system.

As we discuss in the next section, qutrit (1) may manifest entangle-
ment in the case of single spin-qutrit system, while single true qutrit can
never be entangled.

Before we begin to consider entanglement of a single qutrit, let us
briefly discuss the physical definition of entanglement of Refs. 7,11,22.

For a given state ¥ of a system with basic observables X;, we can
measure the expectation values (| X;|¥) and variances (uncertainties)

V(X W) = (WIXZ 1Y) — (WIXi19)2 @)

It is interesting that Wigner and Yanase®? have proposed a new
quantity to measure specific quantum information about a state i, that
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can be obtained from macroscopic measurement of the observable X; in
this state (the so called Wigner—Yanase skew information):

1
Twy (Xi p) = =5 Tr(/p, Xi1). Q)

In the case of pure state i/, the density matrix takes the form p = |¥) (|,

the quantity (5) simply coincides with the variance (4) (see Refs. 34 for

further discussion of Wigner—Yanase quantum “skew information”).
Following!!:7-22) introduce the rotal variance

V) = D V(Xis¥) (6)

calculated for all basic observables and all parts of the system (in the case
of multipartite systems). By definition, this quantity (6) is an invariant,
independent of the choice of basis of the Lie algebra £ of observables.
This quantity (6) can also be interpreted as the total amount of Wigner—
Yanase information peculiar to the state .

It was proposed in Refs. 7,11,22 that, complete entangled states ¥cg
of an arbitrary system can be defined in terms of maximum of total var-
iance:

V(cE) = aneaﬁ V(). (7

This definition has a simple physical meaning. It associates complete
entanglement with the maximal amount of quantum uncertainty in a given
system. Validity of this definition in some known cases of completely
entangled states of multipartite systems has been shown in a number of
papers (see Ref. 6 for references).

It is seen that Eq. (7) represents a certain variational principle, simi-
lar in a sense to the maximal entropy principle in statistical physics, which
is used to define equilibrium states.

At first glance, Eq. (7) defines only completely entangled states Yck.
In fact, it can be used to specify all entangled pure states of the system as
well. The point is that all entangled states of a given system are equivalent
to SLOCC.*29) Note that SLOCC are represented by operators from the
complexified dynamic symmetry group®)

SLOCC = g° € G° = exp(L ® C).
Thus, for the entangled states {g we get

WE) = g°I¥cE). ®)
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Note that in the case of compact Lie algebra (like SU(N)), the qua-
dratic form

ZX?:CH

i

is a scalar (Casimir operator). Then Eq. (6) takes the form

V() = Cr — D (YIXil¥)*. ©)

It is easily seen that the maximum of the total variance (9) is provided by
the condition

Vi (YcelXilvce) =0. (10)

This condition represents a set of algebraic equations for the complex
coefficients of the wave function |¢), which enables us to fairly simplify
the analysis of entanglement. Validity of this condition (10) for com-
pletely entangled qubit-states in quite general settings has been checked in
Ref. 18. Because the condition (10) deals directly with measurement of
physical observables, it has been proposed in Ref. 18 to use the condition
as an operational definition of complete entanglement.

Amount of entanglement carried by entangled states (8) can also be
measured by means of total variance as follows

_ IV(W) — Vinin
M(w) B Vimax — Vmin ’ (1 1)

Here V¢ and Vi, denote the total variance for completely entangled
and unentangled states, respectively. This measure coincides with the con-
currence® for pure states of an arbitrary bipartite system. It can also be
applied beyond bipartite systems. For unentangled states, u(y) = 0, while
for entangled states it lies in (0, 1], so that u(y¥cg) = 1.

3. ENTANGLEMENT IN A SINGLE SPIN-QUTRIT SYSTEM

Note that the definition of complete entanglement (7) and its equiv-
alent form (10) do not assume the multipartite character of quantum
systems.
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Does the single qubit obey the condition (10)? The answer is not. The
point is that the pure single-qubit state

v =alt)+bl), la?+ b =1

is in fact characterized by only two real parameters (|a| and arga —argb),
for which three Eq. (10) with Pauli matrices as basic observables have only
trivial solution.

For decades, qubits remain the main object of quantum information.
Therefore, nonexistence of single-qubit entanglement is frequently used as
a general argument against the single-particle entanglement (see nice dis-
cussion in Ref. 8).

We now turn to the qutrit (1), which is specified by five real parame-
ters. Equation (10) with eight basic observables (2) clearly have only trivial
solutions, so that single true qutrit system does not manifest entanglement
like single qubit system.

Situation changes qualitatively if qutrit (1) is considered as a state of
spin-qutrit system with only three basic observables (3).1!9) In this case, Eq
(10) with three spin-1 operators (3) have nontrivial solutions, so that com-
plete entanglement of a single spin qutrit system is allowed. In particular,
it is straightforward to calculate the measure (11) for the single spin-qutrit
state:

() = 2y_ 191 — ¥ /2l (12)

Thus, the state (1) of a single spin-1 system manifests entanglement if its
coefficients obey the condition

1
>y Py + ZWOF — W11l 1? cos(_1 + ¢1—2¢0)>0. (13)

FN.

Here ¢, = argy,. Complete entanglement is achieved when this form (13)
takes the value 1/4. For example, the states

[¥0) = [0) (14)
and
1
=—((x]|-1 15
[V+) \/§(| ) £ ) (15)

are completely entangled qutrit states of a single spin-qutrit system.
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Before we begin to discuss the precise meaning of the above obtained
result, let us stress the relativity of entanglement with respect to dynamic
symmetry of physical system. The same state (1) is unentangled if dynamic
symmetry of the system is G = SU(3) and entangled in the case of
reduced dynamic symmetry G’ = SU(2).

To interpret entanglement of single spin-qutrit system, let us compare
it with two-qubit entanglement that has been scrutinized thoroughly.

It is known that an entangled two-qubit state is associated with the
SU(2) squeezed states,®!) while unentangled states are the SU(2) coherent
states.!-12) We now show that this interpretation is valid for the entangled
and unentangled states of a single spin-qutrit as well.

Let us begin with the SU(2) coherent states that, for a spin s, are
defined in the following way(2?-30)

lo) = D(@)| —s), aeC, (16)
where
Dy = exp(aS+ — a*S_) 17)

and | — s) is the lowest state among the (2s + 1) states of spin-s system.
Here

Sy =S8, £iS,
are the spin rising and lowering operators, respectively.
In the “vacuum” state | — s), the spin has a given projection —s
onto the z-axis (—s|S,| — s) = —s, so that the corresponding variance

V(S;; —s) = 0. For the two other spin operators in the direction orthogo-
nal to the quantization axis z we get

(=s1Sx| — s} = (=s[Sy| —s5) =0,
V(S —s5) = V(Sy; —s) = 5/2,

so that the total variance (6) takes the from
V(—s) =s.
This is the minimal value of the total variance for the spin-s system under

consideration. Thus, in view of the definition of entanglement, given in the
previous section, the state | — s) is unentangled.
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According to Eq. (9), the maximum of the total variance of a single
spin-s system is

Viax = V(WCE) =s(s + 1)

This allows us to represent the measure of entanglement (11) for a single
spin-s system in the following form

1
n) = —vV@) —s. (18)

N

Thus, the measure (11) vanishes for coherent states.

It is easily seen that, in the case of a single qubit (s = 1/2), any state
of the system is a coherent one. While in the case of single spin-qutrit (s =
1), coherent states (16) have the form

eml 2 b+ €2 Gnlanlo
o) _T[ —cos2|a)]| + H_Esm( |])]0)

+%[1 + cosQlah]] — 1), (19)

where ¢ = argo. Substituting coefficients of the state (19) into Eq. (12),
we can see that the measure of entanglement vanishes like in the case of
state |—1). This is natural. The point is that the operator (¢S —a*S_) in
(17) belongs to the su(2) algebra, so that the displacement operator (17)
amounts to an SU(2) rotation. This means that every spin coherent state
(16) is just a state with minimal spin projection —s onto some direction,
which can be chosen as a new quantization axis. Thus, there is no princi-
ple difference between the spin coherent state and state |—s). In particular,
spin coherent state is as unentangled as the state | — s).

Consider now the spin squeezed state for the spin-qutrit system under
consideration.

Following Kitagawa and Ueda,®”) we call spin state £ to be squeezed
iff V, (&) < s/2 for some direction r L 5, where

5= Ex<Sx) + 2y(Sy> + Ez(sz>
is the direction of the average spin vector.

This means that in a coordinate system with the z-axis along the aver-
age spin vector §, we always have

Vi) +Vy(€) = s (20)
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in contrast to the spin-coherent state. It is easy to check that this condi-
tion of squeezing (20) is valid for the states (14) and (15), therefore they
are squeezed.

Some spin-squeezed states can be constructed by means of the squeez-
ing operator®”)

S(&) = expl(£*S% — £57)/2],
so that
&) = 8&) | —1) = —¢'?sin [£] |1) +cos|&| | —1).
Here ¢ = argé. The measure (11) for this state is

w(§) = Isin2[§D)].

Thus, this state is entangled if || £ kn/2, k=0,1,.... At £§ =n/4 + km,
this state coincides with (15) and hence manifests complete entanglement.

Note that in the case of a single qubit, the squeezing operator is sim-
ply the identity operator. The squeezed states of two qubits are usually
associated with a sort of “two-mode” squeezing?®!

Thus, for the single spin-qutrit system, coherent states are unentangled
while squeezed states manifest entanglement like in the case of conven-
tional two-qubit states. Stress that this correspondence stays within the
framework of the definition of entanglement based on Egs. (7) and (8).

At the very beginning of the paper, we have stated that the single-
particle entanglement is caused by quantum correlations between intrinsic
degrees of freedom of the particle. The general picture of those correla-
tions can be revealed through the use of well known formal correspon-
dence between the states of single spin-qutrit and two qubits, in other
words, of two spin-1/2 and single spin-1. This correspondence is given by
the Clebsch-Gordon decomposition:

Ho @ Hy = H3 ® Ha. (21)

Here H; denotes the two-dimensional Hilbert space of states of a single
spin-4, H3 is the three-dimensional Hilbert space of spin-1, corresponding
to the symmetric triplet of states in the basis of H; ® Hy, while H 4 corre-
sponds to the antisymmetric singlet in the basis of H, ® H>. Denoting the
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basis in H, by | 1) and | |), we obtain the basis in H3 in the following
form

| 1), projection of total spin s = 1
Is) = \/LEO )+ 1)), projection of total spin s =0 (22)
[ 44), projection of total spin s = —1

while the antisymmetric singlet is

1
V2

If we now assume that the singlet state (23) is forbidden because
of some physical reasons, then the system of two qubits becomes exactly
equivalent to the spin-qutrit system. Note, that one of the symmetric states
in (22) is completely entangled in the two-qubit sector. This state is clearly
equivalent to the state (14), which is completely entangled in the spin-
qutrit sector as well. On making the further assumption that spin-qutrit is
a local object (particle), we have to associate the two qubits with intrinsic
degrees of freedom of this object. Simply there is no alternative.

Thus, the single spin-qutrit entanglement can be interpreted in terms
of quantum correlations between the two intrinsic qubits under the follow-
ing conditions:

1A) = —=( ) = 14D (23)

1. The Hilbert space of two qubits does not contain antisymmetric
states.

2. System of two qubits is a local one, so that we can neglect the spa-
tial separation of the qubits and thus interpret them as intrinsic
degrees of freedom of a single “particle”.

In the next section, we turn to the discussion of possible physical real-
izations of spin-qutrit entanglement.

4. PHYSICAL REALIZATIONS OF SINGLE SPIN-QUTRIT
ENTANGLEMENT

Qubit systems are often associated with two-level atoms, where quan-
tum correlations between the atoms can be generated either by pho-
ton exchange or by means of dipole-dipole interaction. In the latter
case, decrease of the interatomic distance down to the lamb-Dicke limit
(interatomic separation becomes much shorter than the wavelength of
two-level transition) leads to an effective discard of the antisymmetric
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10)
AVAVAVAV.
<VVVV 2
)

[+)

Fig. 1. Interaction between A-type three-level atom and two cavity modes.

state.®® Thus, this two-qubit system behaves like a single spin-qutrit
object.
The nice feature of this example is that the reduction of symmetry

[SUQ) x SU@)(in 4 dimensions) ~ SU2)(in 3 dimensions)

and localization accompany each other.

Another example is provided by the so-called biphoton, i.e. by two
photons created at once and propagating along the same direction (see
Ref. 39 and references therein). With respect to polarization, this object
represents the SU(2) ternary system (spin-qutrit) and is as local as a sin-
gle photon. Antisymmetric state with respect to permutations is forbid-
den here by the Bosonic nature of photons. Undoubtedly, biphoton can
be split into spatially separated photons, carrying polarization qubits. But
before splitting, it should be considered as a local spin-qutrit object.

Apologists of the standpoint that entanglement is inherent to systems
with spatially separated parties can say that the above two examples do
not fit the notion of a single particle. Therefore, we now turn to examples
that definitely correspond to a single particle entanglement.

An important example of the SU(2) ternary system is provided by the
three-level atom with A-type transition shown in Fig. 1.

Here the highest excited level can be associated with the state |0) of
“spin” 1, while the two lower levels with the states |+1) and |—1), respec-
tively.

The Hamiltonian, describing interaction between the atom and two
cavity modes, has the form

Hipe = g1Ro1a1 + go2Ro—ar + H.c., (24)
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where g; denotes the corresponding coupling constant, Ry, = |b){c| is the
atomic operator, and a; is the photon annihilation operator for the field
mode i = 1,2. The spin operators (3) have the form

1
—(R40 + Ro+ + Ro— + R_p),

Sy = \/_
Sy f(R+0 + —Ro+ + Ro- — R—o), (25)
S;=Ryy —R__.

In view of the results of Sec. 3, the state |¥;,) = |0) ® |vac) of the
atom-field system, in which the atom is in excited state and cavity field
is in the vacuum state, is completely entangled with respect to the atomic
observables given by Eq. (25). Under influence of the atom—photon inter-
action (24), this state passes to the following normalized state

1
J&t+ &

and vice versa. This state (26) can be interpreted as the two-qubit state,
where one qubit is formed by the atomic states |£) and the second qubit
by the photon states |1;) and |1,). Clearly, this state is entangled, and the
corresponding concurrence®®) has the form

(g114+) ® |11) + g21—) ® |12)) (26)

_ 2lg182]
gl + g3

This example clearly illustrates decay of the single spin-qutrit entan-
gled state |¢;,) into the two-qubit entanglement. The atom and photon
qubits can be spatially separated by cavity leakage.

Another important example of the SU(2) entanglement of single par-
ticle is provided by the isotriplet of m-mesons. For detailed discussion of
this example we refer recent work.(®

The above example of meson isotriplet is similar to the Cooper pairs
in superfluid phases of *He. It is well known that the atoms of *He have
spin s = % each and that the total spin of a Cooper pair is s = 1, so that
the antisymmetric state of two atomic qubits is forbidden.*? Note that in
the BCS superconductors where s = 0, the only allowed pair wave func-
tion is given by the antisymmetric singlet state (23).

Another simple example of a single particle with spin 1, which can
manifest entanglement, is provided by the deuteron, which is a nucleus of
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a deuterium atom, consisting of weakly bounded proton and neutron.*!
Note that, unlike 7° meson, this is a stable particle. Each nucleon in the
deuteron can be considered as an intrinsic qubit with respect to its spin %
An experimental proof of the existence of entanglement in deuteron and
of the possible use of it for quantum teleportation of spin states of mas-
sive particles has been reported recently Ref. 42.

It is possible to find many other examples, from the spin-1 atoms like
87Rb and ?*Na, widely used in investigation of Bose-Einstein condensa-
tion, to the more exotic systems like vector mesons and three spin-1 gauge
bosons in the standard model*® in which spin-qutrit entanglement may
be realized.

5. CONCLUSION

We have argued existence of single spin-qutrit entanglement. The
instructive significance of this system is that it allows twofold consider-
ation as a single spin-1 object and as two qubits, defined in the symmetric
sector of the Hilbert space. This correspondence allows us to interpret
entanglement of single spin-qutrit as manifestation of quantum correla-
tions between the intrinsic qubit degrees of freedom. We have shown that
entanglement of single spin-qutrit particle may take place independent of
whether or not the intrinsic qubits can be separated. Thus, the single
spin-qutrit entanglement does not fit conventional requirements of nonsep-
arability and nonlocality. At the same time, the single spin-qutrit entan-
glement has all physical features of two-qubit entanglement. In particular,
entangled states of a single spin-qutrit are squeezed and unentangled states
are coherent like in the case of bipartite systems.

We have discussed a number of physical objects that can be prepared
in entangled spin-qutrit states. We have shown that the physical condi-
tion of complete entanglement as extreme of quantum fluctuations can
be important for understanding of low stability of entangled states of
particles.

The obtained result about the single-particle entanglement for the
spin-qubit system is clearly valid for all systems with high enough dynamic
symmetry SU(N) at N > 3.

The obtained results show distinctly that the physical definition of
entanglement® based on definition of basic observables and their quan-
tum fluctuations, is more general than the previous definitions that appeal
to nonlocality and nonseparability. As we have shown, using true and spin
qutrits as an illustrative example, the presetting of basic observables plays
crucial role in the description of entanglement. In particular, it defines
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specific relativity of entanglement with respect to dynamic symmetry of
physical system. The definition in terms of the variational principle (7)
can be used for investigation of entanglement of different physical objects,
including elementary particle, quasi-particle excitations in condensed mat-
ter and so on. Thus, it essentially broaden the applicability of this notion
beyond the bounds of quantum information. It is possible to say that the
association of entanglement with quantum uncertainties of basic observ-
ables makes this notion to be ubiquitous in physics.

The possibility of experimental observation of single-particle entan-
gled states represents a problem of high importance and deserves special
discussion. Let us only note that the decay of a single entangled SU(2)
qutrit into two entangled qubits may be used for this aim.

In our analysis, we have used a general approach to quantum entan-
glement,® which assigns the primary importance to the dynamic symme-
try properties of physical systems.

We have restricted our consideration by pure states. In the future, we
hope to extend our approach on the mixed states. In particular case of sin-
gle SU(2) qutrit, the mixed state entanglement can be quantified in the
same way as the two-qubit entanglement (see Appendix C). So far, the
measure of mixed-state entanglement is known only for two qubits (see the
first reference in Ref. 36). The principle difficulty here is that the total var-
iance of mixed states contains contributions of both quantum and classi-
cal (statistical) uncertainties. The problem of detachment of the two prin-
cipally different contributions deserves special discussion. The ideas related
to the Wigner—Yanase quantum information®3% may be useful here.
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APPENDIX A: CLASSICAL REALISM

The problem of classical realism can be formulated in the following
way. It is known that the measurement of a quantum mechanical observ-
able X; in a given state ¥ produces random quantity x; determined by
expectations (| f(X;)|y) of all functions f(x;) (it is usually enough to
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consider only moments f(x;) = x;' (see Ref. 44). In the case of commuting
quantum observables [X;, X;] = 0, the corresponding random quantities
x; and x; have the same joint probability distribution. Einstein’s idea of
classical realism.®) assumes that all quantum observables have the same
hidden joint distribution independent of whether they are commuting or
not.

Bell’s approach to prove nonexistence of hidden variables is based on
formulation of certain “classical” conditions on measurement of quantum
observables and check of their violation in quantum mechanics.) Note
that, from the mathematical point of view, problem of Bell’s conditions
lies within the problem of distributions with given margins(!!-13 and that
practically all known and many still unknown Bell-type inequalities were
obtained in mathematics even before the formulation of problem by Bell.

It has been proved in Ref. 11 that an irreducible quantum system with
dynamic symmetry group G of rank rk(G) > 2 is incompatible with clas-
sical realism, i.e. violates Bell-type conditions. Since rk(SU(n)) = n — 1,
state of a single true qutrit with the dynamic symmetry group G = SU(3)
violate Bell’s conditions of classical realism. It has been shown in Sec. 3
that the true qutrit states do not manifest entanglement.

APPENDIX B: THREE-QUBIT ENTANGLEMENT

Three-qubit states may manifest entanglement of two different types.
Namely, entanglement caused by correlations of all three qubits and
entanglement due to correlation between pair of parts.!? The three-qubit
entanglement is measured by means of 3-tangle,(!”-#> which for the gen-
eral state

1

1
W)= D Ykemlktm), D reml> =1,

k,,m=0 k,,m=0

has the form

T(¥) = HWi00Vin + Yom Viro + Yar0¥ion + VieoVor
= 2(Wooo¥oo1¥110¥111 + YoooYoro¥i01¥i11 + Yooow 100¥011v111
+ Yoo1¥oro¥101¥110 + Yoor¥iooVor1¥ito + Yoro¥i00¥o11¥io1)
+ 4(Wooo¥or1¥101¥110 + Yoo1 Yoro¥i00¥iin)l (B.1)
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According to classification by Miyake,(!” the following three states

1
GHZ) = —=(000) + |111)), B.2
| >f2(| )+ 1111)) (B.2)
1
W) = —(|011) + [101) + [110)), B3
W) ﬁ(l ) +1101) +[110)) (B.3)
1
Bi) = —(|011) + [101 B.4
| Bi) ﬁ(l ) +1101)) (B.4)

are generic for the three SLOCC-nonequivalent classes in the eight-dimen-
sional Hilbert space. The non-separable states from the GHZ class manifest
only three-partite entanglement (3-tangle (B.1) has nonzero values for the
states from this class), while any pair of qubits is unentangled. The lat-
ter can be checked by reduction of the three-qubit density matrix pggz =
|GHZ){GHZ| to the two-qubit mixed state p’GHZ = TrsinglePGHZ, Where
Trgingle denotes trace over one of the parts, with the subsequent calculation
of the concurrence, which in this case always have zero value.

In turn, the non-separable states from the W class always have zero
3-tangle and hence do not manifest three-partite entanglement. In turn,
any bipartite reduced state with the density matrix o'y = Tr(|W)(W|) has
nonzero concurrence and therefore shows bipartite entanglement.

Finally, the separable states from the Bi class are similar, in a sense, to
the W states. Namely, they always have zero 3-tangle while manifest bipar-
tite entanglement (for two given qubits only).

Thus, the nonseparability (separability) of the three-qubit states does
not indicate identically the presence (absence) of entanglement and its type
in contrast to the bipartite systems.

In the latter case, entanglement is usually associated with specific
behavior of entropy of the reduced state single-part state. Namely, entan-
glement of two qubits with statistical state psp exists if H(ps) = H(pp) #
0, where H(p) = —Tr(plog p) is the von Neumann entropy. The maximal
(complete) entanglement corresponds to the reduced states that have the

diagonal form
(120 B
M—(01m)”_A&

in a certain basis of the two-dimensional single-qubits space.(®)

In the above case of three-qubits, these conditions do not work. Con-
sider as an example the GHZ-type state of the form |¥) = x|000)+y|111),
x2+y2 =1. It is seen that 3-tangle (B.1) 7(¥) = 4x%y? = 4x%(1 — x?), so
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that the state is entangled (in the three-part sector) for all x € (0, 1). The
reduced two-qubit density matrix for any pair of qubits has the form

pr = x7100)(00] + (1 — XD 11)(11]
with the corresponding von Neumann entropy
H(pgr) = —xlogx? — (1 — x?) log(1 — x?).
Subsequent reduction of pg to the single-qubit state
— 2 2
prr = x7|0){0] + (1 — x")[1)(1]

obviously leads to the same von Neumann entropy H (pg) as pr, although
there is no two-qubit entanglement in the state. Similar behavior, showing
unfitness of the reduced state entropy as a general measure of entangle-
ment, is manifested by the W and Bi states of three qubits as well.
APPENDIX C: MIXED STATE ENTANGLEMENT

Amount of entanglement carried by a mixed single spin qutrit state

can be calculated in the same way as for two qubits through the use of
Wootters’ concurrence.®® Namely

wu(p) = max(0, A1 — Az — A3), (C.1)

where A; are the square roots of the eigenvalues of the (3 x 3) matrix
pFp*F, in decreasing order. Here the “spin-flip” transformation matrix F
is defined for the spin qutrit state as follows

0 0 -1
F=10 1 0
-1 0 0

It corresponds to the Wootters’” spin-flip transformation o, ® o, defined in
the symmetric sector of the four-dimensional Hilbert space.
For example, the concurrence (C.1) of the “symmetric” Werner state

pw = §(| 4+ 1) (1] 4 10)(0] 4 | — 1)(—1]) + (1 — x)|0)(0],
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which represents superposition of completely mixed and completely entan-
gled states, has the form

] —4x/3), at0<x<3/4
C@W)—{o, at3/d<x<1
Remind that in the case of conventional two-qubit Werner state®”) the
concurrence has the form

(1-3x/2), at0=<x<2/3

Cwmp=[a at2/3<x <1

Thus, entanglement of “symmetric” Werner state survives at higher admix-
ture of completely chaotic state than that of Werner state in the whole
space Hy ® Ha.

APPENDIX D: VIOLATION OF BELL-TYPE CONDITION BY
SINGLE SPIN 1

Spin 1 state space can be represented with complexification of Euclid-
ian space of H = R3®C where SU(2) ~ SO(3) acts on H by rotations R3.
It inherited from R3, the bilinear scalar and cross products are denoted
by (x,y) and [x, y] respectively. Spin projection onto direction ¢ € R3
becomes

Sey = il€, ¥].

Spin projection has one real eigenstate |0) = ¢ with eigenvalue 0 and two
imaginary eigenstates | £ 1) = %fz(m + in) with eigenvalues +1, where

(¢, m, n) is orthonormal basis of R? (e.g. coordinate vectors i, j, k).

Real vector |0) is completely entangled spin state, while complex ones
are coherent, as we discussed in the paper.

Let us define operator R, = 25% — 1. While S, has three eigenvalues,
Ry has only two eigenvalues +1. Observe that R% = 1 and operators Ry
and R,, commute iff ¢ L m. Then they have joint probability distribution,
and are simultaneously measurable observables.

Consider a cyclic quintuplet of unit vectors ¢; € R, i mod 5, such
that ¢; L ¢;11, and call it pentagram.

Put R; := Ry;. Then [R;, Ri+1] = 0 and for all possible eigenvalues
r; = £1 of observable R;

(r1r2) (r2r3) (r3ra) (rars)(rsry) = 1.
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Fig. 2. Regular planar pentagram.

Among those five monomials at least one is positive. So the following
inequality holds

riry +rar3 4 r3rg +rars +rsrp +3 > 0. (D.1)

If all R; would have a hidden joint distribution then taking average of
(D.1) one get Bell’s type inequality

(WIR1R2|¥) + (Y| R2R3|r) + (VIR3 Ra|r)
+(VIR4Rs|¥) + (WIRsRi[y) +3 =0 (D.2)

for testing classical realism.
Using the identity R; = 1—2|¢;)(¢;| one can recast it into geometrical
form

S P <2e D costai<2 a=Gy.  (D3)

i mod 5 i mod 5

Completely entangled spin states easily violate this inequality. Say for
regular pentagram (Fig. 2) and ¢ € R? directed along its axis of symmetry
one gets

5cos /5
3 costa = 8T 1903652,
1 +cosm/5

i mod 5
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It

turns out that every non-coherent spin state violates inequality (D.3) for

an appropriate pentagram, and the coherent states pass this test for any
pentagram, see the Ref. 14 for details.
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