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Abstract

The Hilbert ideal is the ideal generated by positive degree invariant polynomials of a finite group. For a
cyclic group of prime order p, we show that the image of the transfer lie in the ideal generated by invariants
of degree at most p − 1. Consequently we show that the Hilbert ideal corresponding to an indecomposable
representation is generated by polynomials of degree at most p, confirming a conjecture of Harm Derksen
and Gregor Kemper for this case.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

Let V denote a finite dimensional representation of a finite group G over a field F . Then there
is an induced action on V ∗ which extends to a degree preserving action by ring automorphisms
on the symmetric algebra S(V ∗). It is well known that the algebra of invariant polynomials

S(V ∗)G = {
f ∈ S(V ∗)

∣∣ g(f ) = f, ∀g ∈ G
}

is a finitely generated subalgebra. An important characteristic of S(V ∗)G is the Noether number,
β(V ), which is defined to be the smallest integer n such that S(V ∗)G is generated by homoge-
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neous polynomials of degree at most n. By a theorem due to Noether [8] in characteristic 0 and to
Fleischmann [2] and Fogarty [4] in general non-modular characteristic (|G| ∈ F ∗), β(V ) � |G|.
On the other hand, for any group G, Richman [9] constructed modular representations with ar-
bitrarily large β(V ). Therefore the restriction on |G| cannot be removed. It has been conjectured
that β(V ) � max{|G|,dim(V )(|G| − 1)}, [1, 3.9.10]. The Noether number for an arbitrary rep-
resentation of a cyclic group of prime order has been computed in [3]. We refer the reader to [6]
and [11] for an overview of known results on Noether numbers.

The Hilbert ideal which we denote by S(V ∗)G,+ · S(V ∗) is the ideal in S(V ∗) generated
by invariants of positive degree. Derksen and Kemper [1, 3.8.6 (b)] has made the following
conjecture.

Conjecture 1. The Hilbert ideal is generated by homogeneous elements of degree at most |G|.

Notice that the bound on β(V ) due to Noether, Fleischmann and Fogarty implies the assertion
of this conjecture for non-modular representations. As for modular representations, a reduced
Gröbner basis for the Hilbert ideal for several representations of a cyclic group of prime order
is given in [10] and in all cases considered there, calculations confirm Conjecture 1. Moreover,
if V is a permutation module Conjecture 1 is also known to be true, see [2, 4.1]. Here we study
the situation where G is a cyclic group of prime order. Our main result is that the image of the
transfer lie in the ideal in S(V ∗) generated by invariants of degree at most p − 1, see Theorem 4.
Consequently we recover the assertion of Conjecture 1 for indecomposable modules.

For the remainder of the paper, let F be a field of characteristic p for a prime number p and
let G be the cyclic group of order p and σ a generator of G. It is well known that there are
exactly p indecomposable G-modules V1,V2, . . . , Vp and the action of σ on Vn is afforded by a
Jordan block of dimension n with ones on the diagonal. Moreover Vp is the only indecomposable
module which is projective. Let Δ denote σ − 1. Moreover, define Tr = ∑p

l=1 σ l which we will
call the transfer map. Note that the space of fixed points V G

n has dimension one and that every
invariant in the free module Vp is in the image of the transfer since it is a multiple of the sum of
basis elements which are permuted by G.

We recommend [1] and [7] as a reference for invariant theory of finite groups.

Reductions in the Hilbert ideal

Consider the decomposition V ∗ = ⊕k
i=1 Wi of V ∗ into a direct sum of indecomposable mod-

ules. Let zi be a G-module generator for Wi and define di = dimWi . Then

{
Δjzi

∣∣ 1 � i � k, 0 � j � di − 1
}

is a basis for V ∗. Consider the subalgebra A in S(V ∗) generated by these basis elements except
the terminal variables, i.e.,

A = F
[{

Δjzi

∣∣ 1 � i � k, 1 � j � di − 1
}]

.

We use a graded reverse lexicographic with Δjzi > Δj+1zi for 0 � j � di − 1. Let m =
w1w2 · · ·wp−1 be a monomial of degree p − 1 in S(V ∗). Define Δm = u1u2 · · ·up−1, where
Δ(wi) = ui . Note that Δm is either 0 or a monomial of degree p − 1 in A. Also notice that
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for each monomial m′ ∈ A, there exists a monomial m ∈ S(V ∗) such that Δm = m′. For S ⊆
{1,2, . . . , p − 1}, define XS = ∏

j∈S wj and XS′ = m
XS

. For a monomial t in S(V ∗) define

Fm,t =
∑

S⊆{1,2,...,p−1}
(−1)|S|XS′ Tr(tXS).

Note that Fm,t is in S(V ∗)G,+ · S(V ∗). We will denote the leading term of a polynomial f with
LT(f ), and the subspace of A consisting of polynomials of degree i including 0 with Ai . The
following lemma includes a generalization of [3, 3.1, 3.2].

Lemma 2. The polynomial Fm,t has the following properties:

1. Fm,t = 0 if Δm = 0.
2. LT(Fm,t ) = −Δmt if Δm �= 0.
3. Fm,t ∈ Ap−1 · S(V ∗).

Proof. Note that

σ l(t)

(
p−1∏
j=1

(
wj − σ l(wj )

)) =
∑

S⊆{1,2,...,p−1}
(−1)|S|XS′σ l(tXS).

Summing over l ∈ F p yields

Fm,t =
∑
l∈Fp

σ l(t)

(
p−1∏
j=1

(
wj − σ l(wj )

))
.

Note that Δm = 0 if and only if ui = 0 for some 1 � i � p − 1. In this case wi − σ l(wi) = 0 for
all l ∈ F p . Hence all summands in Fm,t are zero. Now we consider the case Δm �= 0 and capture
the leading term of Fm,t from the summation above. Note that

LT
(
σ l(t)

) = t.

Furthermore since 1 − σ l = (1 + σ + σ 2 + · · · + σ l−1) · (1 − σ), it follows that wj − σ l(wj ) =
(1 + σ + σ 2 + · · · + σ l−1)(−uj ) and therefore we have

LT
(
wj − σ l(wj )

) = −luj .

Thus the lead term of σ l(t)(
∏p−1

j=1 (wj − σ l(wj ))) is (−l)p−1t
∏p−1

j=1 uj = lp−1Δmt . Therefore

the leading term of Fm,t is
∑

l∈Fp
lp−1Δmt = −Δmt .

For the last assertion, note that the variables that appear in wj − σ l(wj ) are in A. Thus Fm,t

is a sum of monomials all divisible by a product of p − 1 variables in A. �
Lemma 3. Ap−1 ⊆ S(V ∗)G,+ · S(V ∗).
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Proof. Let f be a polynomial in Ap−1 \ S(V ∗)G,+ · S(V ∗) with minimal leading monomial
m′. Choose t = 1. Since m′ ∈ A, there exists a monomial m ∈ S(V ∗) such that Δm = m′. From
the second part of the previous lemma the leading term of Fm,1 is −m′. Therefore the leading
monomial of m′ + Fm,1 is strictly smaller than m′. Furthermore we have m′ + Fm,1 ∈ Ap−1 by
the last assertion of the same lemma, which yields a contradiction. �

For a positive integer i, let S(V ∗)G,+
�i

·S(V ∗) denote the ideal in S(V ∗) generated by invariants
of positive degree at most i.

Theorem 4. The image of the transfer is contained in S(V ∗)G,+
�p−1 · S(V ∗).

Proof. Let h be a monomial in S(V ∗) of degree strictly greater than p − 1. Write h = mt ,
where m and t are monomials and the degree of m is p − 1. Since Fm,t ∈ Ap−1 · S(V ∗) and
Ap−1 ⊆ S(V ∗)G,+ · S(V ∗) from the previous two lemmas, it follows that Fm,t is contained in
S(V ∗)G,+

�p−1 · S(V ∗). Notice that

Fm,t = Tr(h) +
∑

S�{1,2,...,p−1}
(−1)|S|XS′ Tr(tXS).

For a proper subset S of {1,2, . . . , p − 1}, the degree of tXS is strictly smaller than the degree
of h. Therefore Tr(h) is contained in the ideal in S(V ∗) generated by S(V ∗)G,+

�p−1 and transfers
of strictly smaller degree. Thus the conclusion follows by induction on the degree of h. �
Proposition 5. Let V be an indecomposable G-module. Then

S(V ∗)G,+ · S(V ∗) = S(V ∗)G,+
�p

· S(V ∗).

Proof. Let z denote a G-module generator for V ∗. Consider the invariant polynomial N(z) =∏
l∈Fp

σ l(z). It is proven in [5, 2.9] that

S(V ∗) = B ⊕ N(z) · S(V ∗)

as G-modules, where B is the set of polynomials in S(V ∗) whose degree is strictly less than p as
a polynomial in z. Moreover by Lemma 2.10 from the same source, Bi , the set of polynomials of
degree i in B including 0, is a free G-module for i � p. It follows that an invariant polynomial
f of degree greater than p can be written as f = Tr(h) + N(z) · g, where g ∈ S(V ∗)G and
h ∈ S(V ∗). Therefore the result follows from Theorem 4 since the degree of N(z) is p. �
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