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We resolve an old problem about the existence of hidden parameters in a three-dimensional quantum
system by constructing an appropriate Bell’s type inequality. This reveals the nonclassical nature of most
spin-1 states. We shortly discuss some physical implications and an underlying cause of this nonclassical
behavior, as well as a perspective of its experimental verification.
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The concept of quantum entanglement, as well as the
prospect of its applications in quantum computing, has
attracted a great deal of attention [1]. No doubt, its most
striking manifestation is quantum nonlocality, understood
here as a correlation beyond light cones of spatially sepa-
rated quantum systems, where no classical interaction
between them is possible. However, for quantum compu-
tation the magic ability of entanglement to bypass con-
straints imposed by the so-called classical realism is far
more important. The latter is understood here as the ex-
istence of hidden parameters, or equivalently a joint proba-
bility distribution of all involved quantum observables.
This property of entanglement can be modeled by no
classical device, which emphasizes a qualitative distinction
between classical and quantum information processing,
beyond a mere difference in their computational power.

Following Bell’s seminal works [2], the nonclassical
behavior is usually detected by violation of certain inequal-
ities, collectively named Bell’s conditions. Their experi-
mental test [3] left little or no doubt that entangled states
indeed override the classical constraints, in spite of ever-
lasting search for possible loopholes [4].

Initially Bell justified his constraints by locality argu-
ment that spacelike separated quantum systems can not
affect each other. This approach neither excludes the ex-
istence of nonlocal hidden parameters nor can be applied to
local systems. In this Letter we provide a test for hidden
variables in a local spin-1 system, where the original Bell’s
approach clearly fails. We found that every spin state is
nonclassical, except for coherent one j1i‘ with spin pro-
jection 1 onto some direction ‘.

To elucidate the physical difference between the coher-
ent state j1i and its antithetical counterpart j0i, called
neutrally polarized spin state, consider a decay of spin-1
system into two spin-1=2 components. The resulting two
particle state must be symmetric under the exchange of the
components and preserve the angular momentum. As a
result, the coherent state j1i decays into the separable
one j""i, while the neutrally polarized state j0i yields the
maximally entangled Bell state 1��

2
p �j"#i� j#"i�.

The problem we address here is whether one can detect
something nonclassical in the state j0i before the decay.

Recall that by the Kochen-Specker theorem [5] every spin-
1 state is incompatible with the so-called context-free
hidden variables model. The latter entertains the notion
of ‘‘hidden value’’ of an observable A revealed by its
measurement and independent of a measurement of any
other observable B commuting with A. Bell found no
physical ground for this hypothesis and eventually aban-
doned it in favor of inequalities based on locality rather
than noncontextuality. However, on the way he switched
from spin-1 system to system of two qubits, leaving the
problem of existence of contextual hidden parameters in
spin-1 system open. We resolve this problem below.

Our approach to hidden variables in spin systems is
similar to that of Fine [6] for two qubits with two mea-
surements A1, A2 and B1, B2 at sites A and B, respectively.
The hidden variables provide a joint probability distribu-
tion of all four observables A1, A2, B1, B2, compatible with
the distributions of commuting pairs Ai, Bj predicted by
quantum mechanics and available for experimental verifi-
cation. The arising general problem of existence of a joint
probability distribution of random variables x1; x2; . . . ; xn,
compatible with given partial distributions of some of
them, is known as the marginal problem [7]. Geometri-
cally it amounts to the existence of a ‘‘body’’ in Rn of a
non-negative density with given projections onto some
coordinate subspaces.

The problem was settled in the early 1960s [8]. Applying
the solution to observables Ai, i � 1; 2; . . . ; n in an arbi-
trary finite quantum system we arrive at the following
ansatz for testing classical realism [9]. Let ai be a variable
describing all possible outcomes of the observable Ai. We
will use the shortcuts AI for the subset of observables Ai,
i 2 I, and aI for the corresponding subset of variables ai,
i 2 I. Consider now a non-negative function of the form

 

X
AIcommute

fI�aI� � 0 (1)

and assume the existence of a hidden distribution of all
variable a1; a2; . . . ; an compatible with the distributions of
commuting observables aI predicted by quantum mechan-
ics. Then, taking the expectation value of Eq. (1) with
respect to the hidden distribution, we arrive at the Bell-
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type inequality for testing classical realism

 

X
AIcommute

h jfI�AI�j i � 0: (2)

It turns out that these inequalities are also sufficient for the
existence of hidden variables [8]. To make this criterion
effective, observe that the set of all functions given by
Eq. (1) form a polyhedral cone, called Vorob’ev–Kellerer
cone, and the conditions (2) should be checked for its
extremal edges only. The latter can be routinely found
using an appropriate software, e.g., CONVEX package [10].

As a result, we end up with a finite set of inequalities that
are necessary and sufficient for an extension of the partial
distributions of commuting observables AI to a hidden
distribution of all observables Ai, commuting or not. The
latter can be modeled by classical means like tossing dice.
This makes the quantum system indistinguishable from a
classical one.

Let us separate the extremal edges generated by a single
function fI�aI� � 0 vanishing everywhere except one
point. The corresponding Bell inequality is vacuous and
we call such extremal functions trivial.

For two qubits the ansatz gives eight nontrivial extremal
functions. The respective constraints can be obtained from
Clauser-Horne-Shimoni-Holt (CHSH) inequality [11]

 hA1B1i � hA1B2i � hA2B1i � hA2B2i � 2; (3)

by spin flips Ai � �Ai, Bj � �Bj. This criterion for
existence of hidden parameters was first proved by Fine
[6].

Returning to spin-1 system, consider a cyclic quintuplet
of unit vectors ‘i ? ‘i�1 with the indices taken modulo 5,
see Fig. 1. We call it a pentagram. The orthogonality
implies that squares of spin projection operators S‘i onto
directions ‘i commute for successive indices 	S2

‘i
; S2

‘i�1

 �

0. We find it more convenient to deal with the observables
Ai � 2S2

‘i
� 1 taking values ai � �1. They satisfy the

following inequality:

 a1a2 � a2a3 � a3a4 � a4a5 � a5a1 � 3 � 0: (4)

Indeed, the product of the monomials in the left-hand side
is equal to 1; hence, at least one term is equal to �1, and
the sum of the rest is no less than �4.

Assuming now the existence of a hidden distribution of
all observables ai, and taking the respective expectation
value of Eq. (4) we arrive at the inequality

 hA1A2i � hA2A3i � hA3A4i � hA4A5i � hA5A1i � �3;

(5)

that can be recast into the form

 hS2
‘1
i � hS2

‘2
i � hS2

‘3
i � hS2

‘4
i � hS2

‘5
i � 3

using the identity AiAi�1 � 2S2
‘i
� 2S2

‘i�1
� 3 easily de-

rived from Eq. (6) below. We call it the pentagram
inequality.

Initially the left-hand side of the inequality (4) was
found by a computer as an extremal function of the
Vorob’ev–Kellerer cone. The other nontrivial extremal
functions can be obtained from it by flips ai � �ai.
They, however, add no new physical constraints. For ex-
ample, a single flip Ai � �Ai in Eq. (5) yields the inequal-
ity hS2

‘i
i � hS2

‘i�2
i � hS2

‘i�2
i. Since in the pentagram

‘i�2 ? ‘i�2, then S2
‘i�2
� S2

‘i�2
� S2

ni � 2 for some direc-
tion ni ? ‘i�2, and the inequality becomes trivial hS2

‘i
i �

hS2
nii � 2.
In summary, the pentagram inequality, in contrast to the

Kochen-Specker theorem, provides a test for arbitrary
hidden variables model, context free or not. Moreover,
the inequality is sufficient for the existence of such a model
for the observables S2

‘i
. In addition, it reduces the number

of involved spin projection operators from 31, as in the
best-known noncontextual test due to Conway and Kochen,
to 5. As a drawback, the pentagram criterion is state
dependent.

A more careful analysis shows that there is no hidden
variables test for the three-dimensional quantum system
with less than 5 observables. Furthermore, every such test
with 5 observables Ai by an appropriate scaling Ai �
�iAi � �i can be reduced to the inequality (5) for a com-
plex pentagram ‘i ? ‘i�1 2H and Ai � 1� 2j‘iih‘ij,
cf. Eq. (6). We will provide the details elsewhere.

For further analysis of the pentagram inequality it is
convenient to identify Hilbert space of spin-1 particle
with complexification H � E3 � C of the physical
Euclidean space E3. The spin group SU(2), locally isomor-
phic to SO(3), acts on H by rotations in E3. The cross
product 	x; y
 � x� y turns Euclidean space E3 into Lie
algebra su�2� and allows us to express the spin projection
operator as follows: S‘ � i	‘;  
. It has three eigenstates,
one real j0i‘ � ‘ and two complex conjugate j�1i‘ �
�m� in�=

���
2
p

, where f‘;m; ng is as an orthonormal basis

l4
l1

l2

l

0

3

l5

FIG. 1. Regular pentagram defined by cyclic quintuplet of unit
vectors ‘i ? ‘i�1. State vector j i is directed along the symme-
try axis of the pentagram.
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in E3. So in this picture the neutrally polarized spin state
j0i‘ is represented by real vector ‘ 2 E3. The operators Ai
are now given by the equation

 A‘ � I � 2j‘ih‘j � 2S2
‘ � I; (6)

that allows us to recast the pentagram inequality into the
geometrical form

 

X
k mod5

jh‘kj ij2 � 2: (7)

Let us test it for a neutrally polarized spin state represented
by a real vector  directed along fivefold symmetry axis of
a regular pentagram, see Fig. 1. A simple calculation shows

that in this case jh‘kj ij2 � cos2d‘k � 1��
5
p , which violates

the pentagram inequality

 

X
k mod5

jh‘kj ij
2 �

���
5
p
 2:236> 2:

Thus the neutrally polarized spin states are nonclassical. If
one believes in invariance of physical laws with respect to
rotations around  axis, then the distributions of spin
projections onto all 5 directions ‘k of the regular penta-
gram must be the same, and only one of them should be
actually measured to refute any hidden variables model.
Such a reduction is possible only for the neutrally polarized
spin states, that exhibit the most extreme nonclassical
behavior. One cannot achieve that high symmetry in the
two qubits setting (3), and has to switch the spin projection
directions at both sites which may create a loophole [4].

As an example of the spin-1 system of some physical
interest, consider a p electron in an atom or a molecule
with respect to its orbital momentum, equal to 1, and
disregarding the spin. In the coherent state j1i, with orbital
momentum 1 in some direction, the electron density looks
like a classical Kepler orbit, while in the neutrally polar-
ized state j0i the electron splits itself into two blobs sepa-
rated by a plane of zero electron density. In the latter case
the electron is hopping between these two regions never
crossing the plane. This state, known as p orbital, plays a
crucial role in chemistry. The nonclassical nature of this
state, and the whole chemistry, can be detected by the
pentagram inequality.

It may be also instructive to look into the meaning of the
pentagram inequality for a composite spin-1 system
formed by two components A, B of spin-1=2. In this setting
S‘ � SA‘ � S

B
‘ and by substitution into Eq. (6) we get a

two-component version of the pentagram inequality valid
for symmetric states of two qubits

 hA1B1i � hA2B2i � hA3B3i � hA4B4i � hA5B5i � 1;

where we use the notations Ai � 2SA‘i , Bj � 2SB‘j to facili-

tate a comparison with CHSH inequality (3). The crucial
difference between them is in the directions of the spin
projection measurements at sites A and B which for the
pentagram version are always the same. This allows us to

detect entanglement in closely tight systems, like atoms or
molecules, where one may not see the separate compo-
nents. The latter conclusion holds true even if the compo-
nents A, B do not exist outside the system, like quarks or
quasiparticles.

These observations may suggest that the nonclassical
behavior of the spin-1 system detected by the pentagram
inequality originates from entanglement of its internal
degrees of freedom, whatever their physical nature could
be. This is in line with the Majorana picture of a high spin
state as a symmetric state of 2S virtual spin-1=2 compo-
nents readily visualized as a configuration of 2S points in
Bloch sphere [12]. A proper name for this nonclassical
effect would be spin state entanglement [13].

The above discussion may also clarify physical meaning
of a more general notion of ‘‘entanglement beyond sub-
systems,’’ promoted by some research groups [9,14,15].

Observe that every state of a general spin-1 system can
be transformed by a unitary rotation into the canonical
form

  � m cos’� in sin’;

where m, n are two fixed unit orthogonal vectors in E3.
Intrinsic properties of  are determined by the parameter
0 � ’ � �

4 . For example, Wootters’s concurrence c� �
[16] of spin state  , considered as a symmetric state of
two qubits, is equal to cos2’ and coincides with a measure
of entanglement for spin states introduced in [17]. The
extremal values c � 0 and c � 1 correspond to the coher-
ent j1i and the neutrally polarized j0i spin states,
respectively.

Note that a regular pentagram can detect nonclassical
nature of a spin-1 state  only for c� �> 1��

5
p . For a state

with a smaller positive concurrence one has to use an
appropriate skew pentagram. On the other hand, coherent
states pass the test for any pentagram, and hence they are
the only classical spin-1 states. We refer for details to
Ref. [15].

As a convenient physical model of spin-1 system suit-
able for experimental study consider a single mode bipho-
ton, i.e., a pair of photons in the same spatiotemporal
mode, so that they differ only in polarization [18]. The
photons obey Bose statistics; hence, their polarization
space is spanned by the symmetric triplet

 jvvi;
1���
2
p �jvui � juvi�; juui; (8)

corresponding to spin states j1i, j0i, j � 1i. Here v and u

represent left and right circularly polarized photons. The
biphoton is usually created via a nonlinear down conver-
sion process in a neutrally polarized state like the second
one in the above triplet.

For the biphoton system the concurrence c� � is closely

related to its degree of polarization P� � �
���������������������
1� c� �2

p
,

that can be literally seen in classical polarization dependent
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intensity measurements [19]. In contrast, the quantity
jh‘j ij2 � 1� h jS2

‘j i that enters into the pentagram
inequality (7) requires a quantum measurement in a spe-
cific setting of the Hanbury Brown–Twiss interferometer
described below.

The directions ‘ for the biphoton should be taken in the
polarization space R3

pol with Stokes parameters S1, S2, S3

as coordinates, rather than in the physical space E3. The
Hilbert state space of a biphoton is obtained by complex-
ification of the polarization space. The neutrally polarized
states correspond to real state vectors ‘ 2 R3

pol that can be
interpreted as follows. Let P, Q be orthogonal polarization
states of a photon described by the antipodal points �‘ of
the Poincaré sphere S2 � R3

pol. Then

 ‘ �
1���
2
p �jPQi � jQPi�: (9)

In this setting the quantity jh‘j ij2 is equal to the coin-
cidence rate in the Hanbury Brown–Twiss interferometer
feeded by biphotons in state  while polarization filters
inserted into its arms select photons in orthogonal polar-
ization states given by the antipodal points �‘ of the
Poincaré sphere.

As we have seen above, to test classical realism for a
neutrally polarized state  by a regular pentagram one
needs the coincidence rate for a single direction ‘ such

that jh‘j ij2 � cos2c‘ � 1=
���
5
p

, which corresponds to the

angle � � c‘  0:8383 radian. Quantum theory predicts
the coincidence rate 1=

���
5
p
 0:4472, while to refute hid-

den variables one needs the rate greater than 0.4. However,
the available raw experimental data from Fig. 8 of
Ref. [20], by some reason fall far below the theoretical
curve in a vicinity of � � 0:8383 and provide no evidence
for violation of classical realism in the biphoton system.
The data clearly lack the required precision.

Recently, nonclassical behavior has been detected in a
local two-qubit system formed by a single particle spin and
two of its spatial modes created by a beam splitter [21].
Since nonlocality here is not an issue, the authors interpret
the result as a test of noncontexuality. This may be an
underestimation: a violation of CHSH inequality refutes
any hidden parameters, context free or not [6].

In conclusion, we close the gap between two-
dimensional quantum systems, admitting hidden variables
description [2], and four-dimensional systems that are in-
compatible with such a model [6] by constructing a Bell’s
type inequality for a three-dimensional spin-1 system. We
shortly discuss some physical implications and an under-
lying cause of the nonclassical behavior in spin-1 systems,
as well as a perspective of its experimental verification.
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