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Abstract. We study the coherent transport in a one-dimensional lead with two side-coupled quantum dots
using the Keldysh’s Green function formalism. The effect of the interdot Coulomb interaction is taken into
account by computing the first and second order contributions to the self-energy. We show that the Fano
interference due to the resonance of one dot is strongly affected by the fixed parameters that characterize
the second dot. If the second dot is tuned close to resonance an additional peak develops between the peak
and dip of the Fano line shape of the current. In contrast, when the second dot is off-resonance and its
occupation number is close to unity the interdot Coulomb interaction merely shifts the Fano line and no
other maxima appear. The system we consider is more general than the single-dot interferometer studied
experimentally by Kobayashi et al. [Phys. Rev. B 70, 035319 (2004)] and may be used for controlling
quantum interference and studying decoherence effects in mesoscopic transport.

PACS. 73.23.Hk Coulomb blockade; single-electron tunneling – 85.35.Ds Quantum interference devices –
85.35.Be Quantum well devices – 73.21.La Quantum dots

1 Introduction

The level structure of quantum dot systems is very sen-
sitive to the potentials applied on the metallic gates that
define them. In particular, one can match a discrete level
of the quantum dot to the continuous spectrum of the in-
cident electrons from leads. This tunability is nowadays
widely used to study resonant transport and quantum in-
terference effects in various structures (for recent reviews
see Refs. [1,2]). A typical example is the experiment of
Kobayashi et al. [3] in which the measured conductance
of a quantum wire with a side-coupled quantum dot shows
asymmetric Fano line shapes [4] as a function of the gate
potential Vg applied on the latter. This effect is due to the
interference between two types of electronic trajectories
within the system: the forward scattered electronic waves
and the more complicated paths involving scattering at
the dot, i.e., resonant tunnelling processes. A similar ef-
fect was previously observed in single-dot Aharonov-Bohm
rings [5].

The recent observation of the Fano-Kondo effect [6] in
mesoscopic interferometers with a side-coupled quantum
dot stimulated many theoretical investigations on strongly
correlated transport. Various non-perturbative methods
were used to study the formation of the Kondo correlated
states in systems composed of a quantum dot which on
one hand is coupled to two leads and on the other hand
has a second side-coupled dot.

a e-mail: valim@infim.ro

Kim and Hershfield [7] considered the electronic trans-
port through such a system by including the on-site
Coulomb interaction in the side-coupled dot, while ne-
glecting both the interdot interaction and the Coulomb re-
pulsion on the central dot. The interaction self-energy was
computed within the non-crossing approximation (NCA)
and the spectral functions of the two dots were analyzed.
The Kondo scattering was shown to reduce the conduc-
tance of the system at low bias. Franco et al. [8] used the
X-boson method for the single-impurity model in order to
compute the conductance of side-coupled dot systems for
weak and strong lateral coupling. Later on Cornaglia and
Grempel [9] studied the same system using both numer-
ical renormalization group techniques (NRG) and slave-
boson mean-field theory (SBMFT). The temperature de-
pendence of the conductance was discussed for the case in
which the dots are half-filled or when the total charge of
the dot is odd or even. We stress that in the approach con-
sidered there the Coulomb interaction exceeds all the tun-
neling couplings appearing in the problem and therefore
the main physical processes are due to spin fluctuations,
the occupation on each dot being close to unity.

Another interacting regime was investigated by Wu
et al. [10] still within SBMFT. In their model the cen-
tral dot (i.e., the one which is connected to the leads)
operates in the Kondo regime, the side-coupled dot be-
ing instead noninteracting. The formula for the density of
states was decomposed into a broad Breit-Wigner reso-
nance term and a Fano line shape contribution. A com-
parison between interacting and noninteracting Fano line
shapes of the current in a T -network was presented by
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Fig. 1. A schematic representation of the double T -shaped
interferometer. The 4-site structure is coupled to two semi-
infinite leads with chemical potentials μL and μR. Electron-
electron interactions are allowed only between the side-coupled
dots (dark sites). The other two (grey sites) are noninteracting
and provide the ’background’ component in the transport.

Aharony et al. [11] In the case of an infinite interaction
it turns out that a strong destructive interference appears
at T = 0. In a recent work [12] the correlation functions
for a strongly correlated double quantum dot were also
computed within the renormalization group approach.

In this work we consider the Fano effect in a more
complex system, namely a double T -shaped interferome-
ter composed of a one-dimensional lead to which two side-
coupled dots are attached (see Fig. 1 for a schematic de-
scription). We also focus on the strong coupling regime
with respect to the leads and take into account the inter-
dot Coulomb interaction. Such a system can also be easily
realized in experiments and should provide important in-
sights on the control of quantum interference and on the
decoherence induced by the mutual Coulomb interaction
between the dots. In the case of the double T -shaped inter-
ferometer the possibility of individually tuning the quan-
tum dot levels is expected to bring different and more
complex transport regimes, as each dot can be set to in-
terfere with the forward scattered electrons in the lead.
Studying this interplay is the main goal of this work.

We wish to mention also that the effect of electron-
electron interaction on the Fano interference in a double
quantum dot coupled to two leads in a parallel configura-
tion was investigated recently in a series of papers [13,16]
for various regimes. Within the equation of motion method
Sztenkiel et al. [13] used both the Hartree-Fock approxi-
mation (valid at temperatures higher than the Kondo tem-
perature) and the Ng ansatz (valid at low temperatures)
to compute the spectral densities and the conductance
of this system. They have focused on the Kondo spinless
anomaly and emphasized the role of the interdot coupling
in the Fano interference. The Kondo regime for single-dot
Aharonov-Bohm interferometer was considered within a
perturbative approach by Son et al. [14] The role of infi-
nite intradot interaction and long-range Coulomb interac-
tion in AB interferometers with two embedded dots was
considered within a slave-boson approach by Ma et al. [15]

We believe that our perturbative approach on the
interaction effects in a double T -shaped interferometer
should complement the existing results, especially in the
context of decoherence induced by inelastic scattering pro-
cesses which cannot be captured in a mean-field approach.

The paper is organized as follows: Section 2 sets the
notation and gives the relevant transport equations within

the Keldysh formalism. Section 3 presents the numerical
results and their discussion. We conclude in Section 4.

2 Formalism

At the theoretical level, the quantum transport in in-
teracting nanostructures is suitably described within the
Keldysh’s Green function formalism [17,18] which pro-
vides, along a well established scheme, the steady-state
current through a mesoscopic system (S) which is adi-
abatically coupled to noninteracting biased leads (L) in
the remote past. Since in the long-time limit the initial
correlations are negligible, at the formal level the electron-
electron interaction and the coupling to the leads are both
established in the remote past [18]. Then the Hamiltonian
quite generally reads:

H(t) = HS + HL + χ(t)(HT + HI), (1)

where χ(t) is a smooth switching function which is chosen
such that χ(−∞) = 0 and χ(t) = 1 for t > 0.

The system we shall consider here is sketched in Fig-
ure 1 and is described by the following tight-binding
Hamiltonian (h.c. denotes Hermitian conjugate and n.n
indicates nearest neighbor summation):

HS =
∑

i=1,2

εia
†
iai +

∑

ν=α,β

ενa†
νaν

+

⎛

⎝tLa†
αaβ +

∑

i,ν∈n.n

tiνa†
iaν + h.c.

⎞

⎠ (2)

HT = tL(c†0L
aα + c†0R

aβ + h.c), HI = Ua†
1a1a

†
2a2 (3)

HL =
∑

l=L,R

∑

m,n∈n.n

tL(c†ml
cnl

+ h.c) ml, nl = 0, ...∞.(4)

HS describes a non-interacting 4-site central region. The
lower sites describe single-level quantum dots and εi (i =
1, 2) is the on-site energy. Each quantum dot is side-
coupled to another site ν (ν = α, β) which in turn is con-
nected to a semi-infinite lead via the tunneling term HT .
The operators a†, a create and annihilate particles in the
central system, respectively. c†0L

, c†0R
are creation opera-

tors in the endpoint sites 0L and 0R of the left (L) and
right (R) leads that connect to the system. tiν are hop-
ping coefficients, U is the interaction strength between the
quantum dots and tL is the hopping energy on leads and
between the sites α and β. The transport is generated by
a finite bias applied on the leads which are described by
the Hamiltonian HL. As usual this bias is introduced as
the difference between the chemical potentials of the two
leads eV = μL − μR. For simplicity we take the on-site
energy of the leads to be zero.

In actual experiments the two dots can be quite close to
one another such that the Coulomb interaction is expected
to modify transport properties. In this work we shall
consider only the effect of the interdot electron-electron
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interaction while neglecting the interaction between the
electrons in the dots and the ones in the wire (we discuss
this aspect further in Sect. 2). We mention that in this
setup the dots are coupled to the lead in different loca-
tions, but we could also consider an alternative geometry,
in which the dots are placed symmetrically with respect
to the lead and share the same contact site.

A standard application of the Langreth rules leads to
the following formula for the steady-state current in the
left lead (see [19] for details):

JL =
et2L
�

∫ 2tL

−2tL

dE (2πρ2|GR
αβ |2(fL − fR)

−ρ
(
GRIm

(
2ΣR

I fL + Σ<
I

)
GA
)
αα

, (5)

where GR is the 4× 4 matrix of the retarded Green func-
tion of the coupled and interacting system and ρ(E) =√

4t2L − E2/(2πt2L) is the density of states at the endpoint
of the leads. For simplicity we omit showing the energy
dependence in equation (5). The second term in the cur-
rent formula is the diagonal element of a matrix prod-
uct containing the imaginary parts of the retarded and
lesser interaction self-energy ΣI . One can easily recognize
a Landauer form in the first term in equation (5), in spite
of the fact that the Green function there embodies both
the interaction and leads’ self-energies. The second term
is a nontrivial correction whose effect in dephasing was
discussed in our recent works [19,20]. fL and fR are the
Fermi functions in the left and right leads, respectively.

We further denote by GR,<
0 the retarded and lesser

noninteracting Green functions of the coupled system.
These quantities can be easily computed by taking ad-
vantage of the fact that the retarded and lesser leads’ self-
energies are known (note that only the diagonal elements
of ΣL are nonvanishing and that E ∈ [−2tL, 2tL]):

ΣR
L,αα = ΣR

L,ββ =
1

2t2L

(
E − i

√
4t2L − E2

)
, (6)

Σ<
L,αα = 2πit2Lρ(E)fL(E), Σ<

L,ββ =2πit2Lρ(E)fR(E). (7)

At the second step the interaction self-energy is computed
perturbatively up to the second order in the interaction
strength U , namely ΣI = Σ1

I + Σ2
I . A standard analysis

of the Feynman diagrams for the contour-ordered Green
functions gives (the bar denotes complex conjugation):

ΣR,1
I,12 =

iU

2π

∫
dE′ G<

0,12(E − E′) = Σ
R,1

I,12 (8)

ΣR,1
I,11 = − iU

2π

∫
dE′ G<

0,22(E
′), (9)

ΣR,1
I,22 = − iU

2π

∫
dE′ G<

0,11(E
′) (10)

Σ<,1
I,ij = Σ<,1

I,iν = Σ<,1
I,μν = 0, i, j = 1, 2 μ, ν = α, β, (11)

Σ<,2
I =

U2

2π2

∫
dE1 dE2

×G<
0 (E − E1)G<

0 (E2)G>
0 (E2 − E1). (12)

We remark that the diagonal elements of the first order
interacting self-energy are real and that ΣR

I,12 has also an
imaginary part but does not depend on energy (the depen-
dence on E can be eliminated by a change of variable). The
lesser Green function in the above equations is to be com-
puted from the Keldysh equation G<

0 = GR
0 Σ<

L GA
0 . The

second order retarded self-energy is related to the lesser
and greater self-energies by the identity (see [21] ):

ΣR,2
I (E) = lim

ε→0+

i

2π

∫
dE′ Σ>,2

I (E′) − Σ<,2
I (E)

E − E′ + iε
. (13)

Using the Dyson equation for the retarded Green func-
tion of the central region GR = GR

0 + GR
0 ΣR

I GR one can
write GR = (Heff − z)−1 where we introduce the following
effective single-particle Hamiltonian:

Heff =

⎛

⎜⎜⎜⎜⎝

ε1 − ΣR
I,11 −ΣR

I,12 t1α 0

−ΣR
I,21 ε2 − ΣR

I,22 0 t2β

tα1 0 εα − t2Le−ik tL

0 tβ2 tL εβ − t2Le−ik

⎞

⎟⎟⎟⎟⎠
.

(14)
The exponential terms in the lower right 2 × 2 block are
due to the leads’ self-energy and k is the momentum of
the incident electrons from leads, defined by the usual re-
lation E = 2tL cos k. The upper left 2 × 2 block describes
the interacting isolated dots. In order to discuss the vari-
ous tunneling processes in the system we write down the
relevant Green function GR

αβ using the blockwise inversion
formula:
(

A B

C D

)−1

=

(
M−1 −M−1BD−1

−D−1CM−1 D−1 + D−1CM−1BD−1

)
,

where M = A−BD−1C is the so-called Schur complement
of the lower right block D. We shall apply this formula for
(Heff − E)−1. To this end we need a few more notations.
We first define

Gb =

(
(ε̃α − E)−1 −tLΔ−1

−tLΔ−1 (ε̃β − E)−1

)
=:

(
Gb

αα Gb
αβ

Gb
βα Gb

ββ

)
,

(15)
with

Δ = (εα − t2Le−ik − E) · (εβ − t2Le−ik − E) − t2L, (16)

ε̃α = εα − t2Le−ik − t2L(εβ − t2Le−ik − E)−1, (17)

ε̃β = εβ − t2Le−ik − t2L(εα − t2Le−ik − E)−1. (18)

Gb is the inverse of the upper left 2×2 block in the matrix
Heff −E and describes the forward scattering of electrons
(i.e., the so-called background signal, which does not de-
pend either on ε1 or on ε2). The renormalized energies of
the contact sites ε̃α,β contain the leads self-energy and also
the effect of the coupling between the two sites. Note that
the coupling to the leads introduces an imaginary part
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in the denominators of Gb so that there is no singularity
there.

The Schur complement is defined as Gd = (Hd − z)−1,
and the Hamiltonian Hd has the following form:

Hd =

(
ε̃1 −ΣR

I,12 − t1αGb
αβtβ2

−ΣR
I,21 + t2βGb

βαtα1 ε̃2

)
,

(19)
in which we introduced the notations:

ε̃1 = ε1 − ΣR
I,11 − t1αGb

ααtα1 (20)

ε̃2 = ε2 − ΣR
I,22 − t2βGb

ββtβ2. (21)

From the physical point of view, Gd is an effective Green
function of the two side-coupled dots which takes into ac-
count the effect of the lead-dot coupling and of the in-
teraction. From the diagonal elements one infers that the
levels of the disconnected dots become resonances when
the dots are side-coupled to the leads. Then the Green
function GR

αβ that enters the equation for the current is
the sum of several terms, each of them describing a class
of electronic trajectories:

GR
αβ = Gb

αβ + Gb
ααtα1G

d
11t1αGb

αβ + Gb
αβtβ2G

d
22t2βGb

ββ

+Gb
ααtα1G

d
12t2βGb

ββ + Gb
αβtβ2G

d
21t1αGb

αβ . (22)

In order to have a more intuitive picture of the interfer-
ence effects one should write first the Schur complement
as Gd = (Hd

0 + T − z)−1 where Hd
0 is the diagonal part of

Hd and T is given by the off-diagonal part. If we introduce
the notation Gd

0 = (Hd
0 − z)−1 a Dyson expansion for Gd

in terms of T reads:

Gd = Gd
0 + Gd

0TGd
0 + .... (23)

Replacing this structure in equation (22) one recovers all
electronic trajectories within the T -shaped system. For ex-
ample, the first term in Gd describes single tunneling pro-
cesses in which electrons entering the system from the left
lead tunnel through one dot only, before escaping into the
right lead. The second contribution to Gd describes double
resonant tunneling processes, in which both quantum dots
are involved (e.g., the electron tunnels first through QD1

and then through QD2). It is important to observe that in
the presence of electron-electron interaction the exchange
term also switches between the dots.

The on-site occupation number of the dots is given as
usual by the relation:

Ni = − i

2π

∫ 2tL

−2tL

dE ImG<
ii (E), i = 1, 2. (24)

We end this section by discussion a little bit more on
the electron-electron interaction between the dots and the
electrons in the wire (that is, between sites 1 and α and
between sites 2 and β). By including this interaction one
would have to add one more Hartree shift to each retarded
self-energies ΣR,1

I,11 and ΣR,1
I,22. The two shifts contain the

occupation numbers of the non-interacting contact sites
(i.e their lesser Green functions G<

αα and G<
ββ) which in

the steady state are equal. Otherwise stated, the retarded
self-energies acquire the same contribution from the corre-
sponding contact site and the main difference is still given
by the occupation numbers of the two dots which changes
when we vary the gate potential on QD1 or the on-site
energy ε2. In what concerns the Coulomb interaction be-
tween the sites α and β we can argue as well that it will
not lead to qualitative changes in the results. Indeed, we
shall have additional Hartree terms in the renormalized
energies ε̃α,β but these contributions are smaller than the
one coming from the leads’ self-energy – recall that we
consider a strong coupling to the leads and then tL < U .

3 Results and discussion

The parameter space for the system we consider here is
considerably richer than in the case of a single-dot inter-
ferometer. The two couplings of the lateral dots control
independently the widths of the two resonances ε̃1 and ε̃2.
Moreover, their location can be tuned by varying the on-
site energies ε1 and ε2 simulating thus the application of
plunger gate potentials to each dot. These resonances add
a significant contribution to the current only if Reε̃i ∼ E,
for some energy values within the bias window. We con-
sider here a symmetric bias with respect to the equilibrium
chemical potential of the leads μ0 and we set μ0 = 0, that
is μL,R = ±V/2. In the numerical simulations the bias,
the energy, the hopping constants on the leads, the cou-
pling and interaction strengths will be expressed in terms
of the hopping energy tL which is chosen as the energy
unit. The current is given in etL/h units.

As for the on-site energies of the upper sites we take
εα = εβ = −1.5.

Before discussing the numerical results let us dis-
cuss the interference processes that lead to the Fano
effect in the double T -shaped interferometer. The elec-
tronic trajectories within the interferometer fall within
one of the following classes: (i) simple forward scatter-
ing in which electrons pass freely from one lead to an-
other – this contribution is given by the term Gb

αβ in
equation (22); (ii) resonant tunneling through one dot only
(QD1 or QD2) and (iii) multiple tunneling processes im-
plying both dots. If only one resonance (say ε̃1) contributes
to the transport, the interference is given essentially by
|Gb

αβ + Gb
ααtα1G

d
11t1αGb

αβ |2 since the other terms from
equation (22) are small. One recovers therefore the usual
Fano line shape as a function of ε1 (see the discussion of
Fig. 2 below). In the following we shall investigate how this
Fano line changes when the second quantum dot brings its
own contribution to the transport. We find in particular
that in the presence of the interdot Coulomb interaction
the renormalized level of the second dot enters the bias
window and provides a new transport channel.

In order to compare later on the effects of the first and
second order contributions to the interaction self-energy
we have performed first numerical simulations taking into
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Fig. 2. (Color online) Fano line shapes of the current as a
function of ε1 for different values of U at ε2 = 0.25. U = 0.3 –
solid line, U = 0.2 – long-dashed line, U = 0.1 – dashed line,
U = 0 – dotted line. One notices the appearance of a second
maxima on the right side of the Fano peak in the interacting
case. (b) Occupation numbers on the dots N1 and N2 in inter-
acting and noninteracting cases as a function of ε1. Solid line
– N1 at U = 0.1, dashed line – N1 at U = 0, long-dashed line
– N2 at U = 0.1, dotted line – N2 at U = 0. The bias V = 0.5
and t1α = t2β = 0.25.

account only Σ1
I . The effect of Σ2

I will be discussed in
relation to Figures 5 and 6.

Figure 2a shows the current through the interferome-
ter for different values of the interaction strength. We fix
ε2 = 0.25 and t1α = t2β = 0.25. When U = 0 the usual
Fano resonance is observed (the dotted line). The peak
corresponds to constructive interference while the dip is
associated with destructive interference between the back-
ground signal and the resonant contribution.

When the interaction strength is U = 0.1 (dashed line)
a second peak appears in the middle of the Fano line. The
location of this peak changes with the interaction strength
and the position of the Fano dip does not vary signifi-
cantly. Also, on the left side of the peak the background
signal is shifted to higher values. At first sight this addi-
tional peak is unexpected because it cannot be associated
with the resonance in QD1. Another point which seems
rather surprising is that on the right side of the Fano dip

the interacting and noninteracting currents coincide while
on the left side they do not.

In order to explain these results we give in Figure 2b
the occupation numbers N1 and N2 of the two dots as a
function of ε1 for U = 0 and U = 0.1. The occupation
number of the first dot N1 stays close to unity as long
as ε1 is far from the bias window (which covers the range
[−0.25 : 0.25]) and then decreases to zero. This behavior is
typical for resonant tunneling: as the resonance enters the
bias window the quantum dot participates in transport
and finally empties when the resonance is pushed above
the bias window. It is also clear that in the noninteract-
ing case the second dot is almost empty (N2 is less than
0.1) and cannot bring an important contribution to the
interference pattern.

The behavior of N2 in the interacting case reveals
more interesting features. Let us consider first the region
ε1 < −0.5 when QD1 is off-resonance and almost filled.
Since the leading order in ΣR

22 is proportional to N1 the
level of the second dot acquires a shift due to the interdot
interaction. The important point here is that if the dis-
tance between the ‘bare’ level ε2 and the bias window is
comparable to ΣR

22 the ‘renormalized’ level is brought close
to the bias window and therefore the transport regime of
QD2 changes. One gets a supplementary contribution to
the current which manifests itself as the up-shift of the
background signal on the left side of the Fano resonances
shown in Figure 2a. Also, the second dot accommodates
more charge N2 ∼ 0.3.

The physics becomes more complicated as the first dot
is tuned to resonance (i.e when ε1 is located within the
bias window). On one hand the electrons escape into the
the right lead after tunneling through the first dot. On
the other hand, after tunneling out from QD1 a second
resonant tunneling through QD2 is possible. This picture
is confirmed by Figure 2b which shows that in the inter-
acting case N2 increases and then decreases in Figure 2b.
Finally, when the first dot empties the parameters of the
second dot become the noninteracting ones because the
contribution of the interaction self-energy ΣI,22 vanishes
since it is proportional to N1.

The above discussion suggests that the additional peak
in Figure 2a is a consequence of a second interference pro-
cess which involves both dots. The Fano line still devel-
ops when the level in QD1 enters the bias window and
opens therefore a resonant path which interferes with the
background component. However, as long as N1 is large
enough the resonance ε̃2 is still located inside the bias win-
dow and therefore provides another resonant component
of the transport to interfere with.

Indeed, note that the location of the second peak in
Figure 2a coincides with the peak in the occupation num-
ber of the second dot in Figure 2b. We have checked that
as the interaction increases the second resonance enters
further into the bias window, which explains why the dis-
tance between the two peaks decreases in Figure 2a. In the
noninteracting case there is no second maximum in the
current because the only visible interference at ε1 = 0.25
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Fig. 3. (Color online) (a) The current through the interferom-
eter as a function of ε1 for different values of U . U = 0.3 – solid
line, U = 0.2 – long-dashed line, U = 0.1 – dashed line, U = 0
– dotted line. (b) Occupation number on the dots N1 and N2

as a function of ε1 at ε2 = −0.5. Solid line – N1 at U = 0.3,
long-dashed line N1 at U = 0.2, dashed line – N1 at U = 0.1,
dotted line – N2 at U = 0.1 (similar curves are obtained for
other values of U). The other parameters are as in Figure 2.

involves the background signal and the resonant level in
QD1.

The same values of the interaction strength are used
to draw the curves in Figures 3a and 3b, but the level of
the second dot is now set to ε2 = −0.5 which is well below
the bias window. The current shows a totally different
behavior, the interaction effect being mainly a shift of the
Fano line and a reduction of the background signal on the
left side of the resonance. The occupation numbers are
presented in Figure 3b. Clearly in this case the second dot
is completely occupied and does participate in transport
because the noninteracting level ε2 is too ‘deep’ and the
renormalization induced by the interaction is not sufficient
to make it active.

The numerical results presented above were obtained
by taking into account the first order contribution to the
interacting self-energy which describes only the elastic
scattering processes. A natural question is what happens
when higher order terms are included in the calculation.
In the following we discuss the effect of the second order
term. It is known that this term contains the bubble dia-
gram that describes inelastic scattering involving electron-
hole pairs. This fact is also seen at the formal level in
the 2nd order contribution in the lesser self-energy which
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Fig. 4. (Color online) The effect of the second order contri-
bution to the interaction self-energy. We show also the indi-
vidual contribution of the second term in equation (5). Solid
line – the total current, long-dashed line – the Landauer-like
contribution, dashed line – the correction term, dotted line –
noninteracting total current. (a) ε2 = 0.25, (b) ε2 = −0.5. The
interaction strength here is U = 0.2. The bias V = 0.5 and
t1α = t2β = 0.25.

depends on energy. Theoretical calculations show [19,21]
that the suppression of the Aharonov-Bohm oscillations
and of the Fano line shape observed [22] in single-dot
rings Coulomb-coupled to charge detectors can be qual-
itatively reproduced including just this second order con-
tribution in the calculation. In the experimental setup of
Buks et al. [22] the dephasing was observed only when
the charge detector is subjected to a finite bias. Otherwise
stated, as long as there is no charge transport in the detec-
tor the decoherence cannot appear. In order to understand
the role of the intradot interaction on the Fano interfer-
ence in a single dot or Coulomb coupled T -shaped inter-
ferometers we have recently adapted the random-phase
approximation for the Keldysh formalism. [23]

The double T -shaped geometry considered here dif-
fers from the ones considered in reference [23]. There is no
well defined detector, as both dots belong to the same sys-
tem and they are allowed to exchange particles; also, the
dots are driven out of equilibrium by the same bias. On
the other hand, the Π structure we are investigating here
offers complex electronic trajectories. We find some inter-
esting aspects related to the role of inelastic scattering
in transport for this system as well. In Figure 4 we show
the current obtained by using the first and second order
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Fig. 5. (Color online) The imaginary part of the retarded in-
teraction self-energy −ΣR

I,11 – (a) and −ΣR
I,22 – (b) computed

up to the second order in U , as a function of E and ε1. We use
the same parameters as in Figure 4a.

terms in the interaction self-energy. We first take ε4 = 0.25
(Fig. 4a), a value at which the second dot provides a sec-
ond background contribution. With the inclusion of the
second order self-energy the additional peak is higher and
broader than the one in Figure 2a. This is mainly due
to the correction term in equation (5) which adds to the
Landauer-like current. It is important to observe that the
contribution of this term significantly increases in the re-
gion of the additional peak, where both dots are active.
As a consequence, the interference with the second back-
ground is the only one affected, the leftmost Fano peak
being not modified. Figure 4b presents the currents for
ε4 = −0.5. In this case the second dot is almost filled (i.e.,
N4 ∼ 1), does not contribute to the transport and the
correction term is smaller. The two current curves do not
differ much and it is clear that the effect of the second
order interaction self-energy could be disregarded.

To complete our analysis we have also investigated the
imaginary part of the second order retarded self-energy as
a function of energies E and ε1 at ε2 = 0.25. Figure 5
shows that when both E and ε1 lie in the bias window
[−0.5:0.5] the imaginary parts of ΣR

11 and ΣR
22 exhibit two

peaks. In Figure 5a one peak is rather small and broad
while the second one is very sharp and can be clearly
associated with the peak of the correction term in equa-
tion (5). The self-energy ΣR

11 has only a single pronounced
peak. Note that we actually show plots for the imaginary
parts of −ΣR

11 and of ΣR
22 for clarity. We have checked that

ImΣR
12 gives a negligible contribution.

All these numerical data demonstrate that the inelas-
tic scattering processes are important only when both dots
contribute to the transport and only when there is an in-
terference between the second background given by the
right dot and the electronic trajectories associated with
resonant tunneling through the left dot. Moreover, the
main feature of the two side-coupled dots system (namely
the existence of a second background contribution at suit-
able parameters for one of the dots) is not altered by the
inelastic processes.

We end up with some comments on the particular fea-
tures of the double T -shaped interferometer and on the
applicability to experiments. First, it is clear that this
geometry can be used to get some insight into the quan-
tum interference processes in connected and interacting
systems. We recall here that in the case of a mesoscopic
interferometer Coulomb-coupled to a charge detector as in
reference [22] there is no tunneling between the two sub-
systems, while in the double T -shaped interferometer the
two quantum dots are also coupled via the leads. This fact
leads to complex interference patterns as we have shown
above. Secondly, the double T -shaped structure is quite
different from the usual Aharonov-Bohm interferometer
with one embedded dot in each arm. In the latter case the
Fano interference appears only when both dots transmits.
In the geometry considered here one can select a Fano line
associated to one of the dots and control it by adjusting
some parameters of the nearby dot.

4 Conclusions

We have theoretically investigated two transport regimes
of a one-dimensional lead with two laterally coupled
single-level quantum dots (a double T -shaped interferom-
eter), in the presence of interdot Coulomb interaction. The
first regime involves both dots in the transport: one (ref-
erence) dot has an energy level which is sufficiently close
to the bias window of the leads while the second one can
be set on resonance by varying a plunger gate voltage.
This situation could be met if the charge sensing effect
of the nearby dot leads to an upper shift of the levels
in the reference dot. Alternatively, the gate potential ap-
plied on the reference dot should be set to a suitable value.
We emphasize both at the formal level and by numerical
simulations that in this regime a second interference ap-
pears due to a supplementary background contribution of
the reference dot. Consequently, an additional peak devel-
ops in the Fano line shape of the current. In the second
regime only the reference dot is off-resonance and its effect
in transport reduces to a Hartree shift of the Fano line.

A double T -shaped system like the one considered
here can easily be realized in future experiments [24] and
should provide important insights on the control of quan-
tum interference and on the decoherence induced by the
mutual Coulomb interaction between the dots. The two
regimes and the crossover between them can be exper-
imentally observed by tuning the gate potentials of the
lead-coupling strength. We would like to point out the
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paper by Malyshev et al. [25] who study the propagation
of a Gaussian pulse through a similar configuration, in
the absence of electron-electron interaction. We have also
discussed the effect of the inelastic scattering processes
by computing the interaction self-energy up to the second
order in the Coulomb coupling strength.
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19. V. Moldoveanu, M. Ţolea, B. Tanatar, Phys. Rev. B 75,

045309 (2007)
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