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Traffic management during an evacuation and the decision of where to locate the shelters
are of critical importance to the performance of an evacuation plan. From the evacuation
management authority’s point of view, the desirable goal is to minimize the total evacua-
tion time by computing a system optimum (SO). However, evacuees may not be willing to
take long routes enforced on them by a SO solution; but they may consent to taking routes
with lengths not longer than the shortest path to the nearest shelter site by more than a
tolerable factor. We develop a model that optimally locates shelters and assigns evacuees
to the nearest shelter sites by assigning them to shortest paths, shortest and nearest with a
given degree of tolerance, so that the total evacuation time is minimized. As the travel time
on a road segment is often modeled as a nonlinear function of the flow on the segment, the
resulting model is a nonlinear mixed integer programming model. We develop a solution
method that can handle practical size problems using second order cone programming
techniques. Using our model, we investigate the importance of the number and locations
of shelter sites and the trade-off between efficiency and fairness.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

There has been a significant increase in the number of disasters over the past decades; from fewer than 50 disasters per
year reported in 1950 to more than 400 disasters in 2010 (EM-DAT, 2013). Consequently, the number of people affected and
the economic damages caused by disasters increased. International Federation of Red Cross and Red Crescent Societies (IFRC,
2011) defines disasters as ‘‘serious disruptions of the functioning of a community through widespread losses that exceed the
community’s capacity to cope with using its own resources’’. IFRC classifies disasters as naturally occurring physical
phenomena caused either by rapid or slow onset events which can be geophysical, hydrological, climatological, meteorolog-
ical or biological and as technological or man-made hazards that are caused by humans and occur in or close to human
settlements. Federal Emergency Management Agency (FEMA) reports that 45–75 disasters require an evacuation annually
(TRB, 2008). Whether it is made by the Military or Civil Emergency Management authorities, evacuation planning for large
scale disasters such as earthquakes, hurricanes, floods, tsunamis or CBRN (Chemical, Biological, Radiological and Nuclear)
consequences of ballistic missile attacks is of critical importance for disaster management.

Various traffic management problems arise during disasters; evacuation of the disaster region being one of the most
important. In 1999 hurricane Floyd (CNN.com, 2001), and in 2005 hurricanes Katrina and Rita (TRB, 2008) required millions
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of people to evacuate creating largest traffic jams in the U.S. history. Since disasters have different peculiarities, the
evacuation objectives and decisions faced by a disaster management agency may differ. Most frequently used objectives
in evacuation models are minimizing the total or average evacuation time, minimizing the clearance time, minimizing
the maximum latency and maximizing the number of people who reach safety in a given time period. Clearance time is
the time that the last vehicle in the network leaves the danger zone and reaches safety while latency is defined as the total
time it takes a vehicle to complete its trip on a given route. The total evacuation time, i.e., the sum of the evacuation times of
all vehicles, which is the focus of this paper, is a measure of how long the vehicles stay in the area at risk.

The time to evacuate a disaster region depends on the locations of shelters and on the traffic assignment. Shelters serve as
safe facilities to provide the evacuees with food, accommodation and medical care. But the primary goal of sheltering before
or after a disaster hits is to protect the population from possible dangers. Sherali et al. (1991) point out at their study that one
of the greatest tasks in developing a hurricane evacuation plan is to determine where evacuees should seek shelter in order
to retreat from the storm’s damaging power. In their study Liu et al. (1996) emphasize that improving the local warning
system will be effective only if people at risk can be evacuated to safe shelters. And secure shelters are a means to increase
evacuation rates (Litman, 2006). Even though the decision of where to locate the shelters from among potential alternatives
is of critical importance to the performance of an evacuation plan (Sherali et al., 1991; Kongsomsaksakul et al., 2005;
Kulshrestha et al., 2011), few evacuation models in the literature decide optimally on the number and location of shelters.
The aim of this study is to provide an evacuation planning tool that simultaneously optimizes the shelter locations and the
allocations of evacuees to shelters and to routes.

The existing models used for assigning evacuees to routes are mostly based on three traffic assignment models, namely,
the user equilibrium (UE, also known as User Optimal or Nash Equilibrium), the system optimal (SO) and the nearest allo-
cation (NA) models. These models differ in assumed driver behaviors. In accordance with the UE principle, travelers’ aim is to
minimize their individual travel times. While a user equilibrium satisfies the drivers, it does not necessarily minimize the
total evacuation time in the system. From the evacuation traffic management authority’s point of view, the desirable goal
is to explicitly minimize the total evacuation time by computing a system optimum. Under SO conditions some travelers
may travel longer than they could to the benefit of the overall system. In the NA model, each evacuee uses a shortest path
based on geographical distance or free flow travel time to reach the nearest shelter. Clearly, such a traffic assignment may
lead to poor system efficiency.

The UE approach is not realistic to plan an evacuation during a disaster for the following reasons. In the UE model, it is
assumed that the evacuees have full information on travel times on every possible route and they are able to find the optimal
routes. Disasters and evacuations are rare events with unusual traffic demand resulting in different from normal traffic con-
ditions. As a result, evacuees do not have the opportunity to learn from the past experience which routes minimize their
evacuation time (Pel et al., 2012). It is unlikely for an equilibrium that distributes demand evenly across the evacuation
routes to emerge (Lindell and Prater, 2007). Galindo and Batta (2013) and Faturechi and Miller-Hooks (2014) also state that
the assumption that evacuees have perfect information about the road network and the traffic conditions is unrealistic, since
it takes a while to state the traffic conditions. Such knowledge hardly exists for emergency evacuation for which the evac-
uees will have very limited if any prior experience regarding the travel patterns (Yazıcı, 2010).

On the other hand, the SO model, in which a central authority assigns evacuees to routes to minimize the total evacuation
time, may route some evacuees on paths much longer than the ones they could take if they had a choice. In a disaster, where
the aim of an evacuee is to leave the endangered zone as soon as possible and to reach safety at a shelter point, people may
not show conscientious behavior to accept routes that are much longer than the shortest ones they would take. It is likely
that some may not abide by the evacuation rules imposed on them; instead they may choose routes to reach the closest shel-
ter site as quickly as possible without considering the adverse affects of their choice on others.

Barrett et al. (2000) classifies destination choices of evacuees as nearest safe destination, soonest safe destination and eas-
iest safe destination. A similar classification is made by Southworth (1991). In a disaster situation, where there is limited
information on the road network and congestion levels, evacuees show selfish behavior, as people do even under normal
daily traffic conditions (Roughgarden, 2002; Jahn et al., 2003; Schulz and Moses, 2003; Correa et al., 2005, 2007; Schulz
and Stier-Moses, 2006; Olsthoorn, 2012) and they tend to select routes that take them to the nearest shelter site, as proposed
and implemented by Yamada (1996), Cova and Johnson (2003), Alçada-Almeida et al. (2009), Coutinho-Rodrigues et al.
(2012) and Sheu and Pan (2014).

To develop a route guidance system, Jahn et al. (2005) propose to honor the individual needs by imposing additional
constraints to ensure that drivers are assigned to ‘‘acceptable’’ paths only. Such a traffic assignment model is referred to
as constrained system optimal (CSO).

Our aim is to propose a CSO model that optimally locates shelter sites and that assigns evacuees to the nearest shelter
sites and to shortest paths to those shelter sites, shortest and nearest within a given degree of tolerance. As our model
already considers fairness among evacuees by assigning them to close shelter sites, we use the overall system performance
in our objective and minimize the total evacuation time. We note here that our model generalizes both SO and NA traffic
assignment models, as these correspond to the cases of infinite and zero tolerance levels, respectively. The solution of the
model evacuates the disaster region as quickly as possible, with a ‘‘fair’’ assignment of evacuees to shelters and to routes.
To this end, we propose a nonlinear mixed integer programming model and solve practical size problems in reasonable times
by representing the nonlinear objective function with second order cone programming. In addition, we present a sensitivity
analysis by changing the level of tolerance and the number of shelters to open and make a comparison of the results of SO,
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NA and CSO approaches based on system performance and fairness. We measure the efficiency of the system by employing
performance measures such as total evacuation time, percentage of evacuees reaching safety up to a specified time T, max-
imum latency and price of fairness. As most evacuation planning models in the literature, and as suggested by FEMA (2010),
our model is not specific to a certain type of disaster. The specifics of a disaster are represented in the parameters.
Consequently, the model can be used both for pre and post disaster management.

In our experiments, we observe that the SO solution may have unacceptable levels of unfairness whereas the solution in
which the evacuees travel to the nearest shelter using a shortest path may result in substantial deterioration in system
performance. Even small levels of tolerance on the side of the evacuees improves both the system performance and the
unfairness measures significantly. Overall, we can conclude that the location and the number of shelters opened drastically
affect the evacuation plan and for a carefully selected number of shelters and tolerance level, an efficient yet fair evacuation
plan can be achieved.

The rest of the paper is organized as follows. In Section 2, we review the literature on shelter location and evacuation
planning. In Section 3, we define our problem formally, show that it is NP-Hard and give a second order conic mixed integer
programming formulation. We compare the results with different traffic assignment models in Section 4 and conclude in
Section 5.
2. Literature review

Few of the evacuation planning models we have encountered in the literature optimally decide on the number and loca-
tion of shelters to minimize the total system cost or to maximize the benefit.

Yamada (1996) uses the shortest path (nearest allocation) and minimum cost flow approaches to assign pedestrian
evacuees to shelters and to routes. These approaches minimize the total distance traveled and disregard the evacuation traf-
fic congestion. Cova and Johnson (2003) propose to use lane-based routing to reduce the delays at the intersections. They
present a network flow model to minimize the total distance traveled. Yazıcı and Özbay (2007) and Chiu et al. (2007) use
a cell transmission model (CTM) based SO dynamic traffic assignment (DTA) approach. Ng et al. (2010) present a bi-level
model that assigns evacuees to shelters in a SO manner in the upper level, and in the lower level evacuees reach their
assigned shelters in a UE manner. Hu et al. (2014) propose a mixed-integer linear programming model that considers a
multi-step evacuation and temporary resettlement. The model minimizes panic-induced psychological penalty cost, psycho-
logical intervention cost, transportation cost and cost of building shelters. These studies do not consider optimal selection of
shelter sites among potential ones. Yazıcı and Özbay (2007) perform sensitivity analysis to find out the appropriate locations
of shelter sites and Chiu et al. (2007) consider all the nodes at the boundary between the danger zone and the safe zone but
inside the safe zone as potential shelter sites and suggest that a shelter is opened at a node if there is a flow into it at the
optimal solution.

The location-allocation models that consider the optimal selection of shelter sites are either single level models with a SO
approach or bi-level models that specify the locations of shelter sites in a SO manner at the upper level, while assigning evac-
uees to shelters and routes in a UE manner at the lower level. Sherali et al. (1991) develop a location-allocation model in
which the selection of shelter sites and the assignment of the evacuees to the routes are specified in a SO manner.
Kongsomsaksakul et al. (2005) study the impact of the shelter locations on evacuation traffic flow management. At the upper
level their model determines the number and locations of the shelter sites with the objective of minimizing the total network
evacuation time. The lower level is a static UE formulation and given the number and location of the shelter sites, the evac-
uees choose their routes and the shelter sites that they travel to. Kulshrestha et al. (2011) develop a robust bi-level model
that considers demand uncertainty and minimizes the total cost to establish and operate shelters at the upper level while
assigning evacuees to shelters and routes in a UE manner at the lower level. Shen et al. (2008) develop scenario based,
stochastic, bi-level models that minimize the maximum UE travel time among all node shelter pairs by locating shelters
at the upper level and assigning evacuees to shelters and routes in a UE manner at the lower level. Li et al. (2012) propose
a scenario based location model for identifying a set of shelter locations that are robust for a range of hurricane events. Their
model is a DTA-based stochastic bi-level programming model in which at the upper level the central authority selects the
shelter sites for a particular scenario. The objective of the upper-level problem is to minimize the weighted sum of the
expected unmet shelter demand and the expected total network travel time. In the lower level, evacuees choose their routes
in a dynamic UE manner. Sheu and Pan (2014) propose a method for designing an integrated emergency supply network that
utilizes a three-stage multi-objective programming problem. The first stage of their method designs the shelter network for
evacuation with a nearest allocation approach as one of the objectives.

Alçada-Almeida et al. (2009) and Coutinho-Rodrigues et al. (2012) introduce a multi-objective approach to identify the
number and location of rescue facilities (shelters) and primary and secondary evacuation routes. Their models can be
regarded as a multi-objective extension of the p-median model. No congestion effect is included in these models, instead
average travel velocity is used.

The location allocation models proposed by Kongsomsaksakul et al. (2005), Shen et al. (2008), Ng et al. (2010), Li et al.
(2012) are solved using heuristic algorithms and the ones developed by Alçada-Almeida et al. (2009), Coutinho-Rodrigues
et al. (2012) and Sheu and Pan (2014) are solved to optimality by exact solution methodologies. Kulshrestha et al. (2011)
employ an approximation based cutting plane algorithm. Hamacher et al. (2011) introduce a model and heuristic algorithms
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using a time expanded network for their problem. Sherali et al. (1991) develop both a heuristic and an exact algorithm to
solve their model.

Jahn et al. (2005) propose a SO traffic assignment model that includes user constraints to be fair to drivers. They define
unfairness as a measure of the detriment for users as the ratio of the traversal time of the recommended path to that of the
shortest possible path the user could have taken. The normal length of a path, is defined as either its free flow travel time, its
traversal time in UE, its geographic distance, or any other measure that does not depend on the actual flow on the path. They
look for a constrained system optimum in which no path carrying positive flow between a certain origin–destination pair is
allowed to exceed the normal length of a shortest path between the same origin–destination pair by more than a tolerable
factor. They use a variant of the convex combination algorithm of Frank and Wolfe (1956) combined with column generation
method to solve their problem. Jahn et al. (2000, 2003), Schulz and Stier-Moses (2006), Li and Zhao (2008), Zhou and Li
(2012) develop models and algorithms that consider user needs while trying to achieve the system optimal to find solutions
that are fair and efficient at the same time. These models are developed for traffic management in every day normal traffic
conditions and do not consider the location of facilities and allocation of drivers.

A related notion is that of satisficing, advanced by Simon (1955), as a model of bounded rational decision making that
seeks an acceptable solution rather than a necessarily optimal one, where acceptability is generally defined in relation to
some threshold or aspiration level (Mahmassani and Chang, 1987; Mahmassani and Liu, 1999). Following the notion
explained by Mahmassani and Chang (1987) and Chen et al. (1997), Lou et al. (2010) define travelers with bounded
rationality as those who always choose routes with no cycle and do not necessarily switch to the shortest routes when
the difference between the travel times on their current routes and the shortest one is no larger than a threshold value.
Szeto and Lo (2006) call this tolerance based dynamic user optimal principle. To find the bounded rational user equilibrium
they formulate and solve mathematical programs with complementarity constraints and propose heuristic algorithms.

In this study, we propose a CSO model that locates the shelter sites in a SO manner and that assigns evacuees to the
nearest shelter sites by assigning them to the shortest paths to their nearest shelter sites, shortest and nearest with a given
degree of tolerance, so that the total evacuation time is minimized. Our aim is to meet both the system needs and the user
interests in an evacuation by finding an efficient solution that evacuates the disaster region as quickly as possible and that is
fair to the evacuees. Our contributions are: (1) We introduce a novel model that combines the decision making of location of
shelters and allocation of evacuees to shelters and routes. In that sense our model is a location-allocation model and in con-
trast to most of the location-allocation models in the literature that take into account congestion, ours is a single level model
that compromises system and user needs. (2) We reformulate our problem using second order conic constraints and solve
real size problems exactly using a commercial solver. (3) We present a sensitivity analysis by changing the level of tolerance
and the number of shelters to open and make a comparison of the results of SO, NA and CSO approaches based on system
performance and fairness. (4) We analyze the impact of having capacitated shelters on performance measures.
3. Models

3.1. Travel time function

Generally, travel times are considered to be positive and monotonically increasing functions of traffic flow, since an
increase in link traffic volume will normally decrease the travel speed due to congestion and hence increase the travel time
Fig. 1. A typical link performance function.
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along the link. Link travel time functions are also referred to as link performance functions, link capacity functions, volume-
delay curves, link impedance functions and latency functions. In his study Branston (1976) investigates the link capacity
functions in the literature reviewing more than 20 of them. A typical link performance function is shown in Fig. 1, where
FFTT stands for the free flow travel time.

U.S. Department of Commerce Bureau of Public Roads expresses the relationship between travel time (or speed) and the
volume of traffic on a link by the following function (refered to as the BPR function):
tðxÞ ¼ t0 1þ a
x
c

� �b
� �
where tðxÞ is the travel time at which assigned volume x can travel on the link, c is the practical capacity (maximum flow
rate) and t0 is the base travel time or free flow travel time at zero volume. The parameters a P 0 and b P 0 are the tuning
parameters defined in accordance with the road characteristics and they are taken as 0.15 and 4 by the U.S. Department of
Commerce Bureau of Public Roads, respectively (TAM, 1964).

3.2. Problem formulation under CSO traffic assignment model

We define our problem on a directed network G ¼ ðN;AÞ, where N is the set of nodes and A is the set of arcs (links) in the
network. Each arc a is associated with a convex travel time function (BPR function) ta. We define O as the set of origin
(demand) nodes from where the evacuees at risk are to be evacuated and F as the set of destination nodes (potential shelter
sites) where evacuees reach to safety. Without loss of generality, we assume that O and F are disjoint subsets of N. The
amount of demand at origin r 2 O; wr , is the number of passenger vehicles that will be evacuated. We denote the set of alter-
native paths between origin–destination pair r � s by Prs. The values d�rs is the shortest path distance from demand node r to
shelter site s. The number p is a predetermined parameter that restricts the number of shelter sites that can be opened due to
budgetary and/or management issues.

We denote a driver’s level of tolerance (or indifference) by k. In other words, k is the level that a driver perceives two
paths as equal to each other. We define the set of shortest paths from origin r to destination s of tolerance degree k as:
Pk

rs ¼ fp 2 Prs : dp
6 ð1þ kÞd�rsg, where dp is the length of path p (one can also define this set based on free flow travel times

if these reflect better the drivers’ behavior). We compute this set using an algorithm developed by Byers and Waterman
(1984).

The aim of our evacuation planning problem is to decide on the locations of p shelters and the assignment of evacuees to
shelters and routes so that the region is evacuated as quickly as possible.

We define the following variables to formulate the problem with CSO traffic assignment: vp is the fraction of demand that
uses path p 2 Pk

rs from origin r 2 O to destination s 2 F; xa is the number of vehicles on arc a 2 A; the binary variable ys is 1 if a
shelter site is opened at node s 2 F, 0 otherwise. Using these variables, we formulate the evacuation planning problem as
follows.

Model CSO
min
X
a2A

t0
a 1þ a

xa

ca

� �b
 !

xa ð1Þ

s:t:
X
s2F

X
p2Pk

rs

vp ¼ 1 8r 2 O; ð2Þ

X
p2Pk

rs

vp 6 ys 8r 2 O; s 2 F; ð3Þ

X
s2F

ys ¼ p; ð4ÞX
s2F

X
p2Pk

rs :dp>ð1þkÞd�ri

vp þ yi 6 1 8r 2 O; i 2 F; ð5Þ

xa ¼
X
r2O

X
s2F

X
p2Pk

rs :a2p

wrvp 8a 2 A; ð6Þ

vp P 0 8p 2 [r2O;s2F Pk
rs; ð7Þ

ys 2 f0;1g 8s 2 F: ð8Þ
Objective function (1) minimizes the total travel time that evacuees spend in the network. Constraints (2) ensure that all
demand is evacuated. Constraints (3) forbid assigning demand to non-open shelter sites. Constraint (4) limits the number
of shelter sites open to a pre-specified number p. Constraints (5) ensure that if the shelter at site i is open, then the demand
at origin node r cannot be routed on any path whose length is longer than ð1þ kÞd�ri. The set of constraints (6) computes the
traffic flow on every arc and constraints (7) and (8) are variable restrictions.

If the central authority planning the evacuation requires the entire demand at a given origin to be routed on the same
path to the same shelter, then one can define the variables vp as binary variables.
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Evacuation management authority may also require the evacuees of the same origin to be allocated to the same shelter
while allowing the traffic from an origin to a shelter site to be distributed between alternative routes. To enable having
separate control levels over the assignment of demand to shelters and to alternative paths we define an additional variable
zrs, which takes value one if origin r is assigned to shelter s and zero otherwise. We add the constraints

P
p2Pk

rs
vp ¼ zrs for all

r 2 O and s 2 F.
Note that if a ¼ 0; G is a complete bipartite graph where N ¼ O [ F and arcs go from nodes in O to nodes in F, then our

problem reduces to the p-median problem, which is NP-hard (Kariv and Hakimi, 1979). Hence, we can conclude that the
evacuation planning problem under CSO traffic assignment model is NP-hard even when a ¼ 0 and G is bipartite.

The CSO approach generalizes both the SO and the NA traffic assignment approaches. When k ¼ 0, the above formulation
models the evacuation planning problem under the nearest allocation traffic assignment model. When k ¼ 1, we obtain a
model for the SO traffic assignment.

Finally, note that our model is different from a traffic assignment model for a given set of origin–destination flows since in
our case, the origins are known and the destinations are decided optimally.

3.3. Formulation for the SO traffic assignment model

To compare the results of the CSO model, we also solve the same evacuation planning problems with SO traffic assign-
ment model. The SO model decides on the locations of shelter sites and assigns the evacuees to shelters and routes so that
the total evacuation time is minimized.

One can formulate the SO evacuation planning problem as done in Sherali et al. (1991). We use d�ðiÞ and dþðiÞ to denote
the sets of incoming and outgoing arcs of node i 2 N, respectively. In addition to the variables defined above, we define f s to
be the number of evacuees who arrive in shelter s 2 F.

Model SO
min
X
a2A

t0
a 1þ a

xa

ca

� �b
 !

xa ð9Þ

s:t: ð4Þ and ð8Þ;

X
a2d�ðiÞ

xa �
X

a2dþðiÞ

xa ¼
�wi 8i 2 O
0 8i 2 N n ðO [ FÞ
f i; 8i 2 F

8><
>: ð10Þ

0 6 f s 6
X
r2O

wrys 8s 2 F ð11Þ

xa P 0 8a 2 A: ð12Þ
Objective function (9) minimizes the total evacuation time. Constraints (10) are flow balance constraints. Finally, con-
straints (11) ensure that if a shelter site is not open, then no evacuee can be assigned to it.

We also use a multi-commodity version of this model to have the routes of evacuees in an optimal solution.

3.4. Second order cone programming approach

Most of the approaches for evacuation planning problems with a congestion related nonlinear objective are heuristics.
Alternatively the nonlinear objective function may be approximated with a piecewise linear function. Here we avoid these
two approaches. Motivated by the advances in second order cone programming (see, e.g., Nemirovski and Tal (2001) and
Alizadeh and Goldfarb (2003)), we reformulate the nonlinear mixed integer programming models presented in the previous
sections as second order conic mixed integer programs.

Gürel (2011) shows that a multi-commodity network flow problem with congestion and capacity expansion can be
efficiently formulated by using second order conic programming. He states that his approach can be adopted to problems
with the BPR function.

We first define auxiliary variables la for each a 2 A and move the nonlinearity from the objective function to the

constraints, i.e., the objective function of the CSO model becomes
P

a2A t0
axa þ t0

aa
cb

a
la

� �
and we add the constraints

xbþ1
a 6 la for all a 2 A.

We take b ¼ 4 and represent x5
a 6 la with
x2
a 6 haha; ð13Þ

h2
a 6 uaxa; ð14Þ

u2
a 6 laxa; ð15Þ

ha ¼ 1; ha;ua; xa;la P 0: ð16Þ
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And these hyperbolic inequalities are represented by their respective quadratic cone constraints:
Table 1
Specific

Insta

Siou
Siou
P-m
P-m
Anah
Istan
Istan
jj2xa; ha � hajj 6 ha þ ha; ð17Þ

jj2ha;ua � xajj 6 ua þ xa; ð18Þ

jj2ua;la � xajj 6 la þ xa; ð19Þ

ha ¼ 1; ha;ua; xa;la P 0: ð20Þ
4. Computational study

4.1. Instances

We solved the models CSO and SO with different test networks. The test problems we used are from three sources. The
first source is an online library called Transportation Network Test Problems (TNTP, 2001) and the second is the OR-Library
(OR-Library, 1990), originally described in (Beasley, 1990). We got the data for Istanbul road network from the masters thesis
of Kırıkçı (2012) who worked in collaboration with the Disaster Coordination Center of Istanbul Metropolitan Municipality.
Computational tests were performed on a laptop with a 2.4 GHz. Intel i7-3630QM CPU and 16 GB of RAM using Java ILOG
CPLEX version 12.5.1.

As geographical distances and free flow travel times are highly correlated (Jahn et al., 2005), we used the geographical
distances as arc lengths in our analysis. We employed the standard BPR function and assumed that the parameters of the
function are the same for all arcs (road segments), i.e., a ¼ 0:15 and b ¼ 4 for all a 2 A.

Sioux Falls and Anaheim networks were downloaded from (TNTP, 2001). In these instances, the demands are for origin–
destination pairs. We take the demand at node r as the sum of the demands whose origin is node r. For Sioux Falls we also
performed runs with demand at each origin r 2 O as one tenth of the original demand. The original and modified instances
are referred to as Sioux Falls 1 and 2, respectively.

We downloaded the P-median1 and P-median6 instances from the (OR-Library, 1990) and used their network structure.
We created the demand for each origin node randomly between 1000 and 2000. We also generated potential shelters sites
randomly on the network for these instances. We assumed all arcs (road segments) have two lanes and three lanes for P-
median1 and P-median6 instances, respectively, with a maximum traffic flow rate (capacity) of 2000 vehicles per hour
per lane and with a free flow speed of 80 km/h in an uninterrupted traffic flow.

Istanbul houses a population of more than 14 million people, which is above one-sixth of the total population of Turkey
(TÜ_IK, 2013). In addition to the high earthquake hazard of the city, the risk for earthquake has increased due to the improper
land-use planning, construction, overpopulation and other reasons (Erdik and Durukal, 2008). The efforts for earthquake
preparedness and response planning for an impending major earthquake in Istanbul were motivated by the massively
destructive 1999 Marmara (Turkey) earthquake, followed by a disaster prevention and mitigation study conducted by the
Istanbul Metropolitan Municipality (IMM) in collaboration with the Japan International Cooperation Agency (JICA) (IMM-
JICA, 2002). The report by IMM and JICA points out that it is imperative that a community evacuation system be established.
For the Istanbul network, we assumed that each road segment has three lanes with a maximum flow rate of 2000 vehicles
per hour per lane and with a free flow speed of 90 km/h. Each vehicle was assumed to carry three passengers on the average.
In the report by the IMM and JICA (IMM-JICA, 2002), it is stated that all residents in heavily damaged buildings, half of the
residents in moderately damaged buildings and 10% of the residents in partially damaged buildings adds up to 1.3 million
citizens who require shelters in accordance with the most probable scenario. A similar number is given for each district of
Istanbul by Kırıkçı (2012). We assumed that only those people in need of a shelter will be evacuated. The potential shelter
sites are determined by interviews with the IMM as stated by Kırıkçı (2012). As there are two bridges that connect the
European and Anatolian sides of Istanbul City, we assumed that the population living on each side of the Bosphorus will
be evacuated to shelters on their own side.

The specifics of the instances used in the computational study are shown in Table 1. Here jO� Fj is the number of origin
destination pairs that are connected with a directed path.
s of the instances used in the computational study.

nce jNj jAj jOj jFj Total demand jO� Fj

x Falls 1 24 76 15 9 234,600 135
x Falls 2 24 76 15 9 23,460 135
edian1 100 396 90 10 132,212 900
edian6 200 1572 176 24 260,520 4224
eim 416 914 37 17 104,698 408
bul Anatolian 124 362 13 17 110,843 221
bul European 158 448 25 32 363,865 800
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4.2. Computational performance

In Tables 2 and 3, we report the results of the CSO model. For each instance, we report the number of paths in the net-
work, the number of paths with positive flow in the optimal solution, the gap between the optimal value and the continuous
relaxation at the root node, the number of nodes enumerated and the solution time in seconds. All instances are solved to
optimality and the longest computation time is slightly more than half an hour. We observe that, in general, the gap, the
number of nodes enumerated and the solution time decrease with increasing p. We also observe that even though the gaps
tend to decrease as k increases, the solution times increase as the number of paths increase. If p is not very small or very large
and if k > 0, then the number of paths with positive flow decreases as p increases and the gap and the solution times also
decrease. For Sioux Falls 1 with k ¼ 0:2, the computation time increases when we increase p from four to five. The same
Table 2
Computational performance I.

p k # of paths # of paths with
positive flow

Gap Nodes Total evacuation time Solution time

Sioux Falls 1
2 0 138 15 66.74 32 18,050,148 1.23
3 0 138 17 49.04 46 9,363,128 1.46
4 0 138 16 50.96 23 9,497,033 1.82
5 0 138 15 34.69 8 7,556,851 1.56
7 0 138 16 0.00 0 8,122,617 0.14
9 0 138 16 0.00 0 76,375,938 0.07
2 0.1 214 20 80.52 43 15,040,993 1.81
3 0.1 214 20 60.47 30 8,550,802 2.05
4 0.1 214 16 52.24 37 9,497,033 1.73
5 0.1 214 15 37.22 20 7,556,851 1.54
7 0.1 214 16 22.59 3 8,122,617 1.36
9 0.1 214 16 0.00 0 76,375,938 0.09
2 0.2 389 33 81.37 44 4,852,731 2.47
3 0.2 389 23 71.71 29 3,242,163 1.65
4 0.2 389 25 52.89 27 2,109,087 1.47
5 0.2 389 26 45.93 28 1,998,505 2.09
7 0.2 389 22 4.38 2 4,081,764 1.52
9 0.2 389 21 0.00 0 74,137,933 0.07

P-median1
2 0 906 90 97.52 38 1,276,280 12.21
5 0 906 90 91.75 59 306,667 7.87
8 0 906 90 82.11 15 255,896 5.23

10 0 906 90 0.00 0 258,510 0.16
2 0.1 1450 94 96.54 45 692,957 14.11
5 0.1 1450 102 67.80 56 57,023 8.83
8 0.1 1450 105 37.99 10 35,674 4.82

10 0.1 1450 97 0.00 0 39,708 0.18
2 0.2 2450 92 91.63 49 269,051 17.05
5 0.2 2450 136 48.30 116 34,165 10.90
8 0.2 2450 137 20.50 31 23,371 7.08

10 0.2 2450 125 0.00 0 24,881 0.27
2 0.5 13,006 118 77.12 83 90,884 38.56
5 0.5 13,006 235 21.19 120 21,793 23.05
8 0.5 13,006 220 5.50 32 16,842 8.96

10 0.5 13,006 193 0.00 0 15,864 0.46

P-median6
5 0 4335 176 71.55 893 54,386 325.92

10 0 4335 178 27.09 1016 18,002 111.47
15 0 4335 176 17.11 448 14,753 35.18
20 0 4335 177 16.09 107 14,288 18.07

5 0.1 8160 194 45.33 1563 28,225 445.71
10 0.1 8160 194 13.75 844 15,122 97.43
15 0.1 8160 191 8.30 156 13,120 22.50
20 0.1 8160 197 8.19 54 12,660 11.70

5 0.2 15,896 221 29.62 1499 21,827 607.14
10 0.2 15,896 228 9.60 1351 14,484 154.00
15 0.2 15,896 221 5.69 728 12,728 41.82
20 0.2 15,896 223 3.88 18 11,976 13.18

5 0.4 63,471 264 18.61 2052 18,934 1,066.59
10 0.4 63,471 278 8.14 1937 14,203 412.40
15 0.4 63,471 260 3.07 654 12,293 85.96
20 0.4 63,471 219 0.86 27 11,465 17.00



Table 3
Computational performance II.

p k # of paths # of paths with
positive flow

Gap Nodes Total evacuation time Solution time

Anaheim
5 0 602 26 56.92 802 29,140 8.58
8 0 602 26 54.26 373 28,334 22.62

10 0 602 26 51.20 333 28,334 14.53
12 0 602 26 44.44 98 28,335 7.11
15 0 602 26 34.00 14 29,852 3.38

5 0.1 44,789 44 37.51 347 15,511 49.05
8 0.1 44,789 46 35.08 238 14,895 22.86

10 0.1 44,789 44 31.84 179 14,815 28.09
12 0.1 44,789 33 23.37 44 15,239 16.22
15 0.1 44,789 32 48.02 16 24,738 10.74

5 0.2 787,198 78 24.45 276 11,892 1,907.59
8 0.2 787,198 71 22.14 272 11,615 1,618.45

10 0.2 787,198 79 20.42 179 11,594 457.89
12 0.2 787,198 73 20.50 138 11,630 171.78
15 0.2 787,198 40 5.76 13 12,324 66.24

Istanbul European
12 0 815 25 88.09 1300 1,080,069 13.68
17 0 815 25 87.86 1064 1,063,162 10.79
22 0 815 25 87.99 1290 1,062,640 25.21
27 0 815 25 86.77 358 1,062,560 8.91
32 0 815 25 0.01 0 1,070,171 0.16
12 0.1 33,723 36 91.05 3,487 1,065,615 125.12
17 0.1 33,723 30 90.99 2,026 1,055,381 63.81
22 0.1 33,723 29 90.99 1763 1,054,913 55.07
27 0.1 33,723 29 89.54 590 1,054,888 18.39
32 0.1 33,723 26 0.00 0 1,070,163 0.56
12 0.15 225,449 52 78.62 1705 445,586 392.41
17 0.15 225,449 41 78.19 728 433,460 157.14
22 0.15 225,449 38 78.08 627 432,234 137.79
27 0.15 225,449 38 76.73 381 432,239 129.89
32 0.15 225,449 29 0.01 0 462,698 3.29

Istanbul Anatolian
7 0 221 13 67.44 109 58,731 5.00

10 0 221 13 68.20 60 57,446 3.24
13 0 221 13 64.78 51 57,445 3.52
15 0 221 13 44.77 18 57,445 2.88

7 0.1 7151 20 75.10 124 55,404 7.29
10 0.1 7151 20 74.08 62 54,254 5.66
13 0.1 7151 18 67.91 39 54,173 4.48
15 0.1 7151 18 42.80 13 54,173 4.55

7 0.2 133,183 29 52.51 62 26,460 18.03
10 0.2 133,183 26 54.50 41 25,992 13.61
13 0.2 133,183 28 49.89 21 25,992 12.70
15 0.2 133,183 21 32.60 11 51,054 12.17

7 0.3 1,123,027 39 48.36 138 23,423 207.10
10 0.3 1,123,027 39 46.54 78 22,956 724.21
13 0.3 1,123,027 41 46.06 52 22,957 1,427.39
15 0.3 1,123,027 24 56.62 13 49,475 263.41
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happens for Istanbul Anatolian network with k ¼ 0:3 when p is increased from 10 to 13 and in both cases the number of
paths with positive flow also increases.
4.3. The impact of the number and locations of shelters on the total evacuation time

In Tables 2 and 3, we also report the total evacuation time for all instances. It is interesting to see that increasing the num-
ber of shelters improves the system performance up to a point. For example, for Sioux Falls 1 instance, when p is four and the
tolerance level is 0.2, the total evacuation time is about two million hours and when we increase p to seven and nine, the total
evacuation time increases to more than four million and 74 million hours, respectively. Fig. 2 illustrates how this happens. The
potential shelter sites are at nodes 2, 6–8, 16–20. When p is four, the demands at nodes 9, 10 and 11 are assigned to two dif-
ferent shelter sites (8 and 19) through eight different routes. But when p is nine, the new shelter site 16 is much closer to those
demand nodes than others, so nodes 9, 10, 11 all get assigned to shelter site 16 and the evacuees at each of these nodes use a
single path to reach shelter 16. The total demand at these three nodes constitutes approximately 35.7% of the total evacuation
demand and the three paths used to reach the shelter 16 share a common arc, (10,16), which causes a bottleneck due to over



Fig. 2. Sioux Falls 1: Allocation of demand nodes when p ¼ 4 and p ¼ 9.
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congestion, thus increasing the total evacuation time. This example shows that the choice of potential shelter locations and
the number of shelters to open is critical for the efficiency of an evacuation plan. Clearly, using distances instead of real travel
times in modeling evacuees’ choices may result in a congested system as seen in the above example. However, as pointed out
in the Introduction, it is not reasonable to assume that the evacuees have full information on travel times on every possible
route. Instead, one may try to estimate the congested travel times and use them as normal lengths.

Fig. 3 depicts the effect of the number of shelters and the level of tolerance on the total evacuation time for Sioux Falls 1
and 2. We observe that when the network is overloaded, which is the case of Sioux Falls 1, increasing the number of shelters
to nine has an adverse effect for all tolerance levels. We also observe a similar behavior for Sioux Falls 2 when k is small. For
this instance, when k P 0:3, we do not observe an adverse effect when the number of shelters is increased to nine, however
there is no improvement. We also observe that when p is two, the change in the level of tolerance has little or no effect on the
total evacuation time for Sioux Falls 2 whereas an opposite result is observed for Sioux Falls 1.

4.4. Efficiency and fairness

While deciding on the number and location of shelters and assigning evacuees to shelters and to routes, our goal is to
establish an efficient evacuation plan without losing fairness among evacuees. We measure the efficiency of an evacuation
plan with regard to performance criteria such as the total evacuation time and the maximum latency.

The price of anarchy measures the impact of selfishness. In the literature (Koutsoupias and Papadimitriou, 1999;
Roughgarden, 2002; Jahn et al., 2003; Schulz and Moses, 2003; Correa et al., 2005; Schulz and Stier-Moses, 2006; Correa
et al., 2007; Olsthoorn, 2012), it is defined as the worst possible proportion between the social utility from a user equilibrium
and the system optimal. In our setting, we do not have evacuees acting on their own, but the system compromises efficiency
for fairness. Hence we define price of fairness to measure the difference between the total evacuation times of our CSO solu-
tions and the SO solution. Let sCSOðkÞ and sSO be the optimal total evacuation times for the CSO model with k level of tolerance
and the SO model, respectively. The price of fairness for tolerance level k is
Fig. 3. The effect of p and the level of tolerance on the total evacuation time, Sioux Falls 1 and 2.



Table 4
Efficiency and fairness I.

p k Total evacuation time qðkÞ ML NUR LUR NUS LUS

Sioux Falls 1
3 SO 484,808 – 2.457 3.000 1.092 4.125 1.161

0 9,363,128 19.313 78.764 1.000 1.000 1.000 1.003
0.05 9,363,063 19.313 78.764 1.000 1.000 1.000 1.003

0.1 8,550,802 17.638 78.376 1.083 1.003 1.083 1.013
0.15 3,634,100 7.496 20.673 1.125 1.001 1.125 1.001

0.2 3,242,163 6.688 17.776 1.182 1.002 1.200 1.002
5 SO 472,219 – 2.423 5.250 1.116 6.000 1.163

0 7,556,851 16.003 75.106 1.000 1.000 1.000 1.000
0.05 7,556,851 16.003 75.106 1.000 1.000 1.000 1.000

0.1 7,556,851 16.003 75.106 1.000 1.000 1.000 1.000
0.15 2,107,745 4.463 18.447 1.125 1.001 1.125 1.002

0.2 1,998,505 4.232 12.049 1.167 1.002 1.200 1.003

Sioux Falls 2
3 SO 3258 – 0.282 1.250 1.190 1.333 1.242

0 3383 1.038 0.243 1.000 1.000 1.000 1.000
0.05 3383 1.038 0.243 1.000 1.000 1.000 1.000

0.1 3383 1.038 0.243 1.000 1.000 1.000 1.000
0.15 3354 1.030 0.269 1.125 1.097 1.143 1.110

0.2 3354 1.030 0.269 1.125 1.097 1.200 1.153
5 SO 2923 – 0.232 1.000 1.000 1.330 1.247

0 3157 1.080 0.232 1.000 1.000 1.000 1.000
0.05 3157 1.080 0.232 1.000 1.000 1.000 1.000

0.1 3094 1.058 0.232 1.000 1.000 1.091 1.000
0.15 3094 1.058 0.232 1.000 1.000 1.111 1.087

0.2 3094 1.058 0.232 1.182 1.000 1.200 1.154

P-median1
5 SO 20,821 – 0.417 5.500 2.503 11.125 2.816

0 306,667 14.729 8.271 1.000 1.000 1.000 1.000
0.05 88,666 4.259 2.387 1.046 1.000 1.046 1.044

0.1 57,023 2.739 0.864 1.085 1.016 1.099 1.021
0.15 37,472 1.800 0.525 1.135 1.039 1.148 1.046

0.2 34,165 1.641 0.487 1.184 1.055 1.200 1.085
8 SO 16,202 – 0.266 1.611 1.399 11.125 3.377

0 255,896 15.794 7.822 1.000 1.000 1.000 1.000
0.05 48,139 2.971 1.037 1.000 1.000 1.050 1.002

0.1 35,674 2.202 0.617 1.085 1.007 1.099 1.027
0.15 24,081 1.486 0.344 1.135 1.071 1.148 1.079

0.2 23,371 1.442 0.344 1.151 1.072 1.200 1.096

P-median6
10 SO 14,121 – 0.132 1.514 1.359 4.000 2.221

0 18,002 1.275 0.173 1.000 1.000 1.000 1.000
0.05 16,078 1.139 0.134 1.033 1.025 1.043 1.029

0.1 15,122 1.071 0.140 1.091 1.057 1.100 1.057
0.15 14,684 1.040 0.127 1.139 1.097 1.146 1.111

0.2 14,484 1.026 0.129 1.161 1.124 1.200 1.147
15 SO 12,239 – 0.127 1.282 1.000 2.600 1.964

0 14,753 1.205 0.154 1.000 1.000 1.000 1.000
0.05 13,524 1.105 0.131 1.015 1.011 1.048 1.037

0.1 13,120 1.072 0.126 1.041 1.011 1.100 1.060
0.15 12,928 1.056 0.127 1.139 1.101 1.145 1.109

0.2 12,728 1.040 0.130 1.161 1.126 1.200 1.145
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qðkÞ ¼ sCSOðkÞ
sSO

:

We need to be fair to evacuees in two ways; first with respect to the travel times to their shelter sites and second with
respect to the lengths of the routes they take. We employ two unfairness notions defined by Jahn et al. (2005), namely, nor-
mal unfairness and loaded unfairness. Let F� be the set of open shelter sites and v� be the routing in an optimal solution.

Normal unfairness with respect to routes: Ratio of the length of an evacuee’s route to the length of the shortest route for the
same origin–destination pair, both measured with respect to normal arc lengths:
NUR ¼ max
r2O;s2F�

max
p2Pk

rs :v�p>0

dp

d�rs

:

Normal unfairness with respect to shelters: Ratio of the length of an evacuee’s route to a shelter site, to the length of the
shortest route to the nearest shelter site for the same origin, both measured with respect to normal arc lengths:



Table 5
Efficiency and fairness II.

p k Total evacuation time qðkÞ ML NUR LUR NUS LUS

Anaheim
10 SO 8490 – 0.180 2.286 1.794 2.633 1.813

0 28,334 3.337 1.203 1.000 1.000 1.000 1.103
0.05 20,104 2.368 0.556 1.000 1.000 1.047 1.198

0.1 14,815 1.745 0.415 1.096 1.146 1.099 1.149
0.15 12,105 1.426 0.239 1.147 1.323 1.148 1.323

0.2 11,594 1.366 0.236 1.196 1.290 1.200 1.380
12 SO 8480 – 0.180 2.286 1.794 2.633 1.813

0 28,335 3.341 1.203 1.000 1.000 1.000 1.103
0.05 25,270 2.980 1.203 1.049 1.068 1.049 1.110

0.1 15,239 1.797 0.450 1.089 1.018 1.099 1.131
0.15 13,025 1.536 0.373 1.147 1.114 1.148 1.199

0.2 11,630 1.371 0.236 1.197 1.290 1.197 1.380

Istanbul European
17 SO 94,529 – 0.940 18.000 1.717 63.000 2.516

0 1,063,162 11.247 14.546 1.000 1.000 1.000 1.000
0.05 1,055,691 11.168 14.546 1.000 1.000 1.039 1.097

0.1 1,055,381 11.165 14.546 1.056 1.229 1.075 1.229
0.15 433,460 4.585 7.382 1.116 1.229 1.145 1.229

22 SO 91,516 – 0.918 18.000 1.655 18.000 2.764
0 1,062,640 11.612 14.546 1.000 1.000 1.000 1.000

0.05 1,055,124 11.529 14.546 1.000 1.000 1.039 1.095
0.1 1,054,913 11.527 14.546 1.000 1.000 1.075 1.046

0.15 432,234 4.723 7.382 1.116 1.057 1.145 1.062

Istanbul Anatolian
7 SO 13,805 – 0.491 3.531 2.242 4.000 2.242

0 58,731 4.254 1.314 1.000 1.000 1.000 1.000
0.05 58,295 4.223 1.314 1.041 1.039 1.041 1.039

0.1 55,404 4.013 1.314 1.041 1.039 1.061 1.062
0.15 47,506 3.441 0.704 1.147 1.085 1.147 1.085

0.2 26,460 1.917 0.401 1.191 1.146 1.194 1.146
10 SO 11,788 – 0.355 4.778 2.104 4.778 2.104

0 57,446 4.873 1.314 1.000 1.000 1.000 1.000
0.05 57,206 4.853 1.314 1.041 1.022 1.041 1.022

0.1 54,254 4.602 1.314 1.053 1.053 1.061 1.053
0.15 47,295 4.012 0.704 1.147 1.106 1.147 1.106

0.2 25,992 2.205 0.401 1.191 1.098 1.194 1.098
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NUS ¼max
r2O

max
p2[s2F� Pk

rs :v�p>0

dp

d�r
;

where d�r ¼mins2F�d
�
rs.

Loaded unfairness with respect to routes: Ratio of the experienced travel time of an evacuee to the experienced travel time
of the fastest evacuee for the same origin–destination pair, where experienced travel time is the travel time measured in
terms of the current congestion level:
LUR ¼ max
r2O;s2F�

max
p2Pk

rs :v�p>0

tp

t�rs
;

where tp is the congested travel time on route p and t�rs is the shortest congested travel time from origin r to destination s.
Loaded unfairness with respect to shelters: Ratio of the experienced travel time of an evacuee to a shelter site, to the

experienced travel time of an evacuee that is assigned to the most quickly reached shelter site for the same origin:
LUS ¼max
r2O

max
p2[s2F� Pk

rs :v�p>0

tp

t�r
;

where t�r ¼mins2F� t�rs.
Another measure we use is the maximum latency. The latency of a path p is the experienced travel time on path p and

maximum latency is
ML ¼ max
r2O;s2F�

max
p2Pk

rs :v�p>0
tp:
Note that since we assume that all the evacuees enter the network at the same time, the network clearance time is equal
to the maximum latency.

In Tables 4 and 5, for each instance, we report the total evacuation time, price of fairness, maximum latency, normal and
loaded unfairness with respect to routes and shelters. We observe that when the demand is high compared to the capacity of



Fig. 4. The effect of level of tolerance on maximum latency and the tradeoff between level of tolerance and price of fairness, P-median1.
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the network, as is the case for Sioux Falls 1 and Istanbul European, the price of fairness is very high. Even though this
improves with increasing levels of tolerance, the difference between the performances of SO and CSO solutions is still sig-
nificant. On the other hand, for Istanbul European with p ¼ 17, the normal unfairness of the SO solution with respect to
routes and shelters is 18 and 63, respectively. In other words, there exist evacuees who are assigned to routes that are 63
times longer than the shortest route to the closest shelter. Hence the SO solution, even though very efficient compared to
CSO solutions, is difficult to execute in practice. For the other networks, when k ¼ 0:2, we obtain solutions that are almost
as efficient as the SO solution and that are fair to evacuees. For instance, for the P-median1 network with p ¼ 5, the NUR and
NUS for SO are 5.5 and 11.125, respectively, whereas they are 1.184 and 1.2 for the CSO solution with k ¼ 0:2. The price of
fairness for this tolerance level is 1.641. The last evacuee to reach safety takes 0.487 h, which is 0.417 h in the SO solution.
For P-median6, the performance of SO and CSO solutions are very close in terms of total evacuation time and maximum
latency, whereas the SO solutions are unfair, assigning some evacuees to shelters that are four times more distant compared
to the closest ones. We also observe that the NA traffic assignment (k ¼ 0) is fair but may result in significant increase in the
total evacuation time and the maximum latency. For P-median1, the price of fairness for these solutions are about 15 and the
maximum latency may be as high as 20–30 times the one of the SO solution.

Fig. 4 illustrates the effect of level of tolerance on the maximum latency and the tradeoff between price of fairness and
level of tolerance for the P-median1 network. As we increase the level of tolerance, the maximum latency tends to decrease
for every p value. When p is two and the level of tolerance is zero, the maximum latency a vehicle incurs is more than 25 h.
When we open eight shelter sites and convince evacuees for a level of tolerance of 0.15, maximum latency drops to 20 min.
Since the traffic is distributed more evenly across the network as we increase the level of tolerance, the price of fairness tends
to decrease for every value of p. Overall, we observe that having even some small tolerance has a positive impact on perfor-
mance measures when p is not very small. Fig. 5 depicts the same results for Istanbul Anatolian. In this case, small tolerance
Fig. 5. The effect of level of tolerance on maximum latency and the tradeoff between level of tolerance and price of fairness, Istanbul Anatolian.



Fig. 6. The effect of the level of tolerance on percentage evacuated by a given time, Istanbul.
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does not improve the performance measures. However, as k increases to 0.2, the efficiency of the solution improves
significantly.

Fig. 6 illustrates the effect of tolerance level on the percentage of demand that can be evacuated up to a specific time T.
With the level of tolerance k ¼ 0 and p ¼ 17 for the Istanbul European instance, it takes almost 8 h to evacuate 88% of the
people in danger. When we increase k to only 0.15 the percentage of people evacuated in 2 h is 90%. The case with Istanbul
Anatolian instance is similarly striking. When k ¼ 0 and p ¼ 7, it takes 1 h and 18 min to clear as much as 83% of people from
the danger zone. If we can convince the evacuees for a level of tolerance of 0.2, every evacuee reaches safety in 30 min.

When we closely examine the Istanbul European instance we see that the demand at two origin nodes are very close to
two shelter sites each and with a level of tolerance of 0.1 there are no other shelter sites at their proximity nor alternative
paths within that limit. So each of these two nodes is assigned to a single shelter through a single path and since the amount
of demand at these origin nodes is relatively large (21% of total evacuation demand), this assignment causes a congestion on
these paths causing a latency of more than 7 and 14 h, respectively. With an increase of level of tolerance to 0.15, the demand
at one of these two origins, specifically the one causing a latency of 14 h, is distributed almost evenly to two shelter sites
decreasing the congestion to a level that causes a latency of only an hour and a half, which in turn contributes by 12% to
the 20% increase in the amount of people evacuated within 2 h.

Finally, Fig. 7 illustrates the normal unfairness distributions with respect to paths and shelters for Istanbul Anatolian
instance. Here, we depict the ratio of the population whose unfairness is at most a certain level. For instance, 89% of all
Fig. 7. Normal unfairness distributions with respect to paths and shelters for various tolerance levels, Istanbul Anatolian.



Table 6
Comparison of SO, CSO and UE solutions for Istanbul Anatolian network.

p model Total evacuation time ML NUR LUR NUS LUS

7 SO 13,805 0.491 3.531 2.242 4.000 2.242
CSO k ¼ 0:3 23,423 0.355 1.259 1.116 1.3 1.141

UE 16,749 0.355 1.471 1.001 3.403 1.001
10 SO 11,788 0.355 4.778 2.104 4.778 2.104

CSO k ¼ 0:3 22,956 0.317 1.259 1.116 1.3 1.141
UE 14,356 0.355 1.381 1.000 3.403 1.001
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evacuees for Istanbul Anatolian instance incur a normal unfairness of 1.16 with respect to paths when we employ a tolerance
level of 0.2 with p ¼ 7. To rephrase, the route length of just 11% of evacuees is at least 16% more than that of the shortest path
for their demand node - shelter site pairs. One can observe that there is substantial improvement in the unfairness
distribution compared to the SO approach when k ¼ 0:3. The improvement gets larger as k gets smaller.

To conclude, we compare our results with the case where evacuees would have perfect information and make their
choices optimally in a UE setting. We use the Istanbul Anatolian instance for this purpose. We obtain results that are
comparable with those of UE when k ¼ 0:3. The results are reported in Table 6.

When k ¼ 0:3 and p ¼ 7 the performance of CSO is 69.7 percent worse than that of SO. The performance of UE is only 21.3
percent worse than that of SO for the same p. For the same instance, the time when the last evacuee leaves the network in
CSO is the same as the one for UE but CSO performs better when p ¼ 10. The normal unfairness ratio with respect to shelters
for UE when p ¼ 7 is more than 3.4 which is very close to the value of 4 for SO, i.e., there are evacuees who are assigned to
routes that are 3.4 times longer than the shortest route to the closest shelter, which may be an unacceptable result for the
evacuees without any knowledge of traffic conditions on the evacuation road network. The value for this ratio for CSO is 1.3.
As expected the UE solution is very good for the loaded unfairness ratios since an equilibrium state prevails. But the values
for these ratios for CSO are close to those of UE and are much better than those of the SO. We also compared the percentage
of demand that can be evacuated up to a specific time T for various levels of tolerance for CSO model and for UE model when
p ¼ 7. UE evacuates 99.6% of the demand in 18 min whereas CSO evacuates 87% of the demand within the same time. Both
models evacuate everyone to safety within 24 min.
4.5. Capacitated shelters

In our CSO model, we assume that the shelters have unlimited capacity and that their capacity can be planned according
to the allocated demands. In this section, we analyze how fixed capacities affect the evacuation times and other performance
measures.

To add capacity constraints to the CSO model, we omit the constraint
P

s2Fys ¼ p and add the capacity constraintsP
r2O

P
p2Pk

rs
wrvp 6 Ksys; 8s 2 F where Ks is the capacity of shelter s. We refer to the resulting model as ‘‘constrained system

optimal model with capacitated shelters’’ and abbreviate it with CSO-CS. Likewise, we modified the SO model by omitting
the constraint

P
s2F ys ¼ p and adding the capacity constraints 0 6 f s 6 Ksys; 8s 2 F. The resulting model is called SO-CS.

We use the Istanbul European and Istanbul Anatolian networks in this experiment. We take the shelter capacities from
Kırıkçı (2012). With the original capacities, there is no feasible solution for the Istanbul European network for all the k values
up to 0.2. For that reason, we use two times the original capacities for that network. With these updated shelter capacities we
find optimal solutions when k ¼ 0:15 and k ¼ 0:2. For the Istanbul Anatolian network, the problem is feasible for k P 0:05.

In Table 7, we report the results for Istanbul European and Istanbul Anatolian networks for various levels of tolerance. For
each instance, we report the number of shelters opened (#shelters), total evacuation time, price of fairness, maximum
Table 7
Efficiency and fairness with capacitated shelters.

k # shelters Total evacuation time qðkÞ ML NUR LUR NUS LUS

Istanbul European
SO 28 90,426 – 0.943 18 1.658 30.5 2.883

0.15 23 473,085 5.232 7.382 1.116 1.057 1.145 5.329
0.2 22 463,249 5.123 7.382 1.116 1.057 1.156 5.329

Istanbul Anatolian
SO 14 11,755 – 0.338 4.778 2.601 15.444 8.225

0.05 8 207,162 17.624 2.835 1.049 1.004 1.050 1.032
0.1 11 54,795 4.662 1.314 1.008 1.006 1.061 1.265

0.15 11 54,795 4.662 1.314 1.058 1.058 1.146 1.265
0.2 10 39,855 3.391 0.935 1.191 1.044 1.194 4.244

0.25 10 38,333 3.261 0.939 1.191 1.067 1.247 4.261
0.3 10 38,320 3.260 0.939 1.259 1.080 1.288 4.258
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latency, normal and loaded unfairness with respect to routes and shelters. Clearly, the effect of tolerance on the total evac-
uation time is much higher when the shelters are capacitated. Having no tolerance results in infeasibility for both networks.
For the Anatolian network, increasing the tolerance level from 0.05 to 0.1 decreases the total evacuation time to its quarter
and decreases the maximum latency to its half. The maximum latency values for SO-CS model are similar compared to the
uncapacitated case for both networks, but they tend to increase for CSO-CS model. The normal unfairness ratio with respect
to shelters for SO-CS model for Istanbul European network increases drastically. For the uncapacitated case the worst value
over any p for normal unfairness ratio with respect to shelters is 18 and for the capacitated case this number is 30.5. With the
SO model, the loaded unfairness ratio with respect to shelters for the Istanbul Anatolian network shows a large increase
compared to the uncapacitated case, assigning evacuees to shelters more than 8 times longer in travel time compared to
the shelter with the shortest travel time. For the CSO model there is a significant increase in the loaded unfairness ratio with
respect to shelters for large values of k, but the model still performs much better than SO model in this respect.

Fig. 8 illustrates the percentage of demand that can be evacuated up to a specific time T for various levels of tolerance for
CSO model with capacitated shelters for the Istanbul Anatolian network. In the uncapacitated case, when k ¼ 0:2 everyone
reaches safety within 30 min, for the capacitated case the time to evacuate everyone is almost one hour.

Overall, for our networks, we can conclude that in the presence of capacity restrictions, it is crucial to have some tolerance
for a better system performance.

5. Conclusions

When planning for an evacuation the desirable goal is to minimize the total evacuation time by considering a SO
approach. Since this approach may guide evacuees to paths that are longer than the ones they would take, its solution
may be inapplicable. On the other hand, since disasters are rare events and it is not possible for evacuees to know the traffic
conditions on the road network, they will rather tend to reach the nearest shelter by taking a shortest route (or shortest free
flow time route). However, if evacuees know that they are being treated fairly among others and also that their relatively
small sacrifice by taking a route within a tolerance level instead of the shortest route will contribute to them and to the over-
all benefit of the evacuation process in a great deal, they can consent to the CSO solution.

We propose a novel model that captures this human behavior by also taking into account the impact of location of shelter
sites. It turns out that the decision of how many shelter sites to open and where to locate them is critical to the evacuation
planners. For our instances, we observed that as we open more shelter sites and convince the evacuees for a higher level of
tolerance, the total evacuation time and the maximum latency decrease and the percentage of people evacuated up to a spec-
ified time increases. This guarantees having a more efficient evacuation plan, compared to the case where evacuees act self-
ishly and take the shortest route to the nearest shelter site. However, one needs to be careful about opening more shelter
sites, i.e., if the potential shelter sites are not chosen properly it may not be advantageous to open more shelters.

As the level of tolerance increases, so does unfairness, both in terms of paths and shelters. By considering the trade off
between unfairness and price of fairness, a carefully chosen level of tolerance can be a balance between these two conflicting
objectives.
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In our approach, we ignored uncertainty that is inherent in evacuation management. As a continuation of our study, we
aim to extend the current work to incorporate uncertainty in the demand and the network using two stage stochastic pro-
gramming where the shelter sites are decided in the first stage and routing decisions are taken in the second stage. An alter-
native approach may be to add chance constraints that guarantee that all the population is evacuated within a specified time
with high probability.

Another interesting extension may be to add lower bounds on the number of evacuees allocated to open shelters so that
the limited resources to operate and serve shelters are used efficiently.

Incorporating uncertainty or constraints on the number of evacuees allocated to shelters will certainly make the problem
more difficult. In that case, it may be advantageous not to work with large relaxations that involve variables for all possible
paths and to generate these variables when required within a column generation framework.
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