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1 1. INTRODUCTION

Recently, quantum degenerate atomic mixtures
have been studied extensively both in theoretical and
experimental directions. Fermionic degeneracy has
been observed by means of sympathetic cooling with
many alkali atom mixtures like 7Li–6Li [1, 2], 23Na–
6Li [3], 87Rb–40K [4–6], and recently with an isotopic
mixture of ytterbium (Yb), 174Yb–173Yb [7]. Interac�
tion between the different species strongly affects the
equilibrium properties of the mixture such that the
mixture collapses [6] in the presence of attractive
boson�fermion coupling, or in the opposite case,
repulsion between the species causes spatial demixing
[8, 9].

Boson–fermion (BF) mixtures can also be realized
from an imbalanced two�component Fermi gas where
bound fermions form a Bose–Einstein condensate
(BEC). However, BF mixtures of two atomic species
have the advantage that the interaction between the
bosons and between the different species can be driven
independently and attractive BF interaction is accessi�
ble [10, 11].

The properties of three�dimensional (3D) trapped
BF mixtures were studied in detail by using a modified
Gross–Pitaevskii (GP) equation [12, 13], and by using
the Thomas–Fermi (TF) approximation for the fer�
mionic component [14, 15]. In a quasi�3D limit,
where collisions can still be considered as 3D, effects
of the geometry were also studied in the TF regime
[16]. Such a simple model predicts, in a pancake�

1 The article is published in the original.

shaped trap, that the stability of the mixture depends
only on the scattering length and the transverse width
of the cloud. One should expect, in a true dimensional
crossover, namely including dimensional effects in
scattering events, that the mixture stability depends
critically on the energy, and thus on the number of
particles. There are also studies on BF mixtures in
two�dimensional (2D) [17] and one�dimensional
(1D) [18] optical lattices in which many�body phase
diagrams has been obtained by the bosonization
approach.

It is well known that a hard�core boson gas shows
very different features from its 3D counterpart if the
scattering�events are two�dimensional. In 3D, particle
interactions can be described by the zero�momentum
and zero�energy limit of T�matrix, leading to a con�
stant coupling parameter. In 2D, the T�matrix van�
ishes at low momentum and energy [19, 20] and the
first�order contribution to the coupling is obtained by
taking into account the many�body shift in the effec�
tive collision energy of two�condensate atoms [21, 22].
This causes an energy dependent coupling parameter
which greatly affects the equilibrium and the dynami�
cal properties of the gas [23, 24].

The dimensional crossover from a 3D to a 2D
trapped mixture may be studied in the experiments by
flattening magnetic or dipolar confinements [25], or
by trapping atoms in specially designed pancake
potentials, as rotating traps [26], gravito�optical sur�
face traps [27], rf�induced two�dimensional traps [28]
or in one�dimensional lattices [29] where a 3D gas can
be split in several independent disks.
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In this paper, the equilibrium properties of a mix�
ture of condensed bosons and spin�polarized fermions
are studied, through the dimensional crossover from
three to two dimensions. There is no fermion�fermion
interaction and we include the BF s�wave interaction
self�consistently in a suitably modified GP equation
for bosons [30]. The chemical potentials and the radii
of the clouds are also obtained by using the TF approx�
imation.

2. MEAN�FIELD MODEL

We consider a 2D BF mixture in harmonic trap

with potentials VB(F) =  and particle

numbers NB and NF. Here, mB(F) is the boson (fermion)
mass and ωB(F) is the radial trap frequency as seen by
boson (fermion) species. Within the mean�field
approach the total energy functional at T = 0 is written
as

(1)

where ψB is the ground�state wave function of bosons
and |ψF |2 = nF gives the fermion density. In the above
expression, boson species are in the condensed state
and fermion component is assumed to be spin�polar�
ized, there is no fermion�fermion interaction, and gBB

and gBF are the interaction couplings between the
bosons and between bosons and fermions, respectively.
There is a significant difference between the form of
the energy functional given above and that in 3D,
which is that the BB and BF interaction strengths are
in general density dependent in contrast to the situa�
tion in 3D. The term TF in Eq. (1) is the kinetic energy
of the fermions written within the Thomas–Fermi–
Weizacker approximation as [31–33]

(2)

where the Weizsacker constant is λW = 1/4. The
Euler–Lagrange equations for the mixture are [32, 33]

(3)

where � = � – μB |ψB |2 – μF |ψF |2 with μB and μF, the
boson and fermion chemical potential entering as
Lagrange multipliers to satisfy the normalization con�
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ditions NB =  and NF = . Then, the

explicit form of the equations of motion are

(4)

and

(5)

The above equations of motion are obtained by
neglecting the higher�order terms involving δg/δψB, F

which is valid in the dilute gas limit  � 1 and

 � 1. The beyond mean�field corrections can
become notable when aBB, aBF and/or NB, NF are large
for fixed trap frequencies. For the systems under con�
sideration we have chosen the parameters appropri�
ately so the diluteness conditions hold for our numer�
ical calculations. Therefore, the beyond mean�field
terms in the energy functional are not important in our
examples.

One should also note that the existence of BEC in
2D needs to be examined carefully. Initial studies have
concluded that no BEC could occur in 2D trapped
gases but recent considerations within the Hartree�
Fock–Bogoliubov approximation [34], the density
dependent interaction strength [35] and numerical
simulations [36] have established firmly the occur�
rence of BEC for such systems. Thus, our assumption
of a 2D condensate at T = 0 is justified.

When the number of atoms is large one can use the
Thomas–Fermi (TF) approximation, i.e., the kinetic
energy terms can be neglected in the GP equations,
which simplifies them to coupled algebraic equations

(6)

(7)

In the above, |ψB |2, |ψF |2 ≥ 0 and we have defined the
effective fermion�fermion interaction coupling gFF =
2π�2/mF. We have also introduced the TF radii RB, RF

where boson and fermion wave functions go to zero
respectively through |ψB(RB)|2 = 0 and |ψF(RF)|2 = 0.
Assuming RF ≥ RB (since gFF � gBB, fermions are
pushed out further due to Pauli exclusion principle)
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