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Abstract This paper introduces an accurate yet ana-
lytically simple approximation to the stance dynam-
ics of the Spring-Loaded Inverted Pendulum (SLIP)
model in the presence of non-negligible damping and
non-symmetric stance trajectories. Since the SLIP
model has long been established as an accurate de-
scriptive model for running behaviors, its careful
analysis is instrumental in the design of successful lo-
comotion controllers. Unfortunately, none of the ex-
isting analytic methods in the literature explicitly take
damping into account, resulting in degraded predictive
accuracy when they are used for dissipative runners.
We show that the methods we propose not only yield
average predictive errors below 2% in the presence of
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significant damping, but also outperform existing al-
ternatives to approximate the trajectories of a lossless
model. Finally, we exploit both the predictive perfor-
mance and analytic simplicity of our approximations
in the design of a gait-level running controller, demon-
strating their practical utility and performance bene-
fits.

Keywords Legged locomotion · Hybrid dynamical
systems · Spring-Loaded Inverted Pendulum ·
Analytic approximations · Damping · Gait control

1 Introduction

1.1 Motivation and scope

The adoption of mobile robots for tasks in unstruc-
tured outdoor environments has been slow due to the
limited mobility and performance offered by existing
wheeled and tracked platforms [11, 22]. In contrast,
legged morphologies offer promising mobility advan-
tages (as evidenced by numerous legged solutions de-
vised by nature) and provide effective means with
which power and actuator limitations can be overcome
through the use of properly designed and tuned sec-
ond order passive dynamics [2, 32]. However, the use
of intuitive biological inspiration alone as a basis for
both the design and control of such platforms has in-
herently limited promise since currently available sen-
sor and actuator technologies are drastically different
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than their biological counterparts [13, 23]. In addition
to such sources of inspiration, we need to have an ac-
curate understanding of the physical principles under-
lying locomotory systems, while also developing ana-
lytical tools to provide a basis for the morphological
design and control of legged robot platforms [18].

In this context, a very successful mathematical
model for accurate prediction and control of legged
locomotory behaviors has been the Spring-Loaded In-
verted Pendulum (SLIP) model [35]. This model, con-
sisting of a simple point mass riding on a single com-
pliant leg, resulted from early studies in biomechan-
ics [2, 3], revealing center of mass (COM) dynam-
ics common to a surprisingly large range of biological
runners with widely varying sizes and morphologies
[8, 12]. SLIP dynamics seem to elegantly capture the
cyclic interchange between kinetic and potential en-
ergy that yields efficient and controllable locomotion,
while providing a sufficiently simple analytical basis
for a variety of questions related to the energetics, sta-
bility and control [16, 34].

The utility of the SLIP model is not limited to
its descriptive power. A number of successful robotic
platforms have been built, based either directly (e.g.
Raibert’s runners [28], the ARL monopods [1, 15],
the Bow-Leg robot [37], the BiMasc platform [19] and
the Jena-hopper) or indirectly (e.g. Scout quadrupeds
[26], RHex [32] and Sprawl hexapods [10], BigDog
[24] and others) on the principles embodied in this
seemingly simple spring-mass model. Even though it
has not yet been shown that neural control systems in
running animals are organized in a way that internally
encodes this model, its use as an explicit control target
received considerable attention in the robotics com-
munity [25, 29], yielding both an intuitive high-level
control interface for running behaviors, while also al-
lowing a decomposition of the control problem into
simpler pieces [30].

Given the almost universal dependence of existing
literature related to legged robotic running on the SLIP
model, there is a clear need for accurate tools for both
the analysis and control of this model. Starting from
earlier, intuitive approaches [27, 28, 33] to later for-
malizations [9, 14, 21, 36], a number of methods were
developed to address the most significant problem
with this seemingly simple model: its dynamics during
phases of toe contact (i.e. stance) are non-integrable
under the effect of gravity [17]. Available methods
suffer from unrealistic assumptions such as the con-
servation of angular momentum and the neglection

of damping losses. The former is readily violated in
the presence of gravity with non-symmetric, transient
strides [20], and the latter is an undesirable but un-
avoidable disturbance present in all physical legged
platforms. In this paper, we propose a new analytical
approximation to the trajectories of the SLIP model
that is significantly more accurate in the presence of
both passive damping and non-symmetric steps un-
der gravity, yielding a critical analytical tool for both
the design and control of dynamically stable legged
platforms. We believe that the resulting tools are suffi-
ciently accurate to support physical implementation of
novel dexterous locomotion controllers on rough ter-
rain such as those presented in [7].

1.2 Contributions

Our primary contribution in this paper is the derivation
of a highly accurate analytical approximation to the
stance map of a planar hopper with linear compliance
and damping in the leg, with additional corrections in-
troduced to compensate for the effect of gravity on the
angular momentum for non-symmetric steps. The re-
sulting analytic return map for running behaviors has
substantial practical utility since it can be used as a ba-
sis for the design of locomotion controllers for phys-
ically plausible robot morphologies on rough terrain,
while also providing an analytical tool for the char-
acterization of associated dynamic legged behaviors.
None of the existing alternatives in the literature ex-
plicitly take damping into account, making their direct
application to such systems very difficult and inaccu-
rate.

In order to illustrate the applicability and perfor-
mance of our approximations in such settings, we care-
fully characterize their predictive performance with re-
spect to a simulated model within a non-dimensional
formulation, across a large range of initial conditions
and parameter combinations. We compare our results
with two previously available analytic approximation
methods proposed in [14] and [36], first in the context
of a lossless SLIP model for which they were designed
for, and then a dissipative runner that challenges their
underlying assumptions. Finally, we present how our
approximations can be used to achieve high level con-
trol of legged locomotion by designing a deadbeat
controller for the regulation of running speed and hop-
ping height of a simulated planar monopod. Once
again, we compare the performance of our proposed
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Table 1 State variables,
parameters and the
definitions of their
dimensionless counterparts
for the SLIP model.
Variables with and without
bars correspond to physical
and dimensionless
quantities, respectively

Physical
quantity

Dimensionless
group

Definition Description

t̄ t := t̄ /λ Time (where λ := √
l0/g )

[ȳ, z̄] b := [y, z] := [ȳ/ l0, z̄/ l0] Body position

[ρ̄, θ̄] q := [ρ, θ] := [ρ̄/ l0, θ̄] Leg length and leg angle

ȳf yf := ȳf / l0 Foot position

k κ := k(l0/(mg)) Leg spring stiffness

d c := d (l0/(λmg)) Leg viscous damping

F̄ F := F̄ /(mg) Force variables

Ē E := Ē/(mgl0) Energy variables

p̄θ̄ pθ := pθ/(λ/(ml2
0 )) Angular momentum

p̄ρ̄ pρ := p̄ρ̄ (λ/(ml0)) Radial momentum

Fig. 1 The Spring-Loaded Inverted Pendulum model with
damping

controller to a similar application of alternative ap-
proximations in the literature.

2 The lossy Spring-Loaded Inverted Pendulum
model

2.1 System model and dynamics

Figure 1 shows the Spring-Loaded Inverted Pendu-
lum model we use in this paper, consisting of a point
mass m attached to a freely rotating massless leg, en-
dowed with a linear spring-damper pair of compli-
ance k, rest length l0 and, differently from the ideal
SLIP model, viscous damping d . Throughout locomo-
tion, the model alternates between stance and flight
phases, further divided into the compression, decom-
pression and ascent, descent subphases, respectively.
Four important events define discrete transitions be-
tween these subphases: touchdown, bottom, liftoff, and

apex. During flight, the body is assumed to be a projec-
tile acted upon by gravity, whereas in stance, the toe is
assumed to be fixed on the ground and the mass feels
radial leg forces. Table 1 details all relevant variables
and parameters for this model.

In order to eliminate redundant parameters and pro-
vide an efficient way to interpret our simulation re-
sults, we will use a dimensionless formulation. Re-
defining time as t := t̄/λ with λ := √

l0/g, scaling all
distances with the spring rest length l0, dimensionless
SLIP dynamics are given as

Flight:

[
ÿ

z̈

]
=

[
0

−1

]
, (1)

Stance:

[
ρ̈

θ̈

]
=

[
ρθ̇2 − κ(ρ − 1) − cρ̇ − cos θ

(−2ρ̇θ̇ + sin θ)/ρ

]
,

(2)

with flight dynamics written in Cartesian coordinates
and stance dynamics in polar coordinates for con-
venience. Transformations between these coordinate
systems require the foot location yf as a separate state
which undergoes discrete changes from touchdown to
touchdown. Note, also, that (d/dt)n = λn(d/dt̄)n and
all time derivatives are with respect to the newly de-
fined, scaled time variable. Throughout the rest of the
paper, we will only work with dimensionless quanti-
ties and hence will not explicitly mention their dimen-
sionless nature unless necessary.

2.2 Modeling of running gaits: the apex return map

A commonly used and convenient abstraction for both
the analysis and control of the SLIP model is the apex
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Fig. 2 SLIP locomotion phases and associated return map com-
ponents

return map, defined as the Poincaré section taken at
ż = 0 during flight [35], leading to the definition of
the apex state as

Xa := [ya, za, ẏa]T . (3)

Such a section not only reduces the dimension of the
system, but also allows a convenient discrete, task-
level abstraction suitable for the characterization of
steady-state gaits [35], designing controllers [31] and
analyzing their stability [4]. In this paper, we also
adopt the apex return map for both evaluating the per-
formance of our approximations and designing gait
controllers based on these approximations.

The apex return map for the SLIP model is a com-
bination of four subsequent maps, illustrated in Fig. 2,
corresponding to descent (apex to touchdown), com-
pression (touchdown to bottom), decompression (bot-
tom to liftoff) and ascent (liftoff to apex) subphases of
locomotion, denoted by t

af, b
t f, l

bf and a
l f, respectively.

The apex return map hence takes the form

Xk+1
a = a

af[θtd ,ρtd ,ρlo,κc,κd ]
(
Xk

a

)
:= (

a
l f ◦ l

bf[κd ,ρlo] ◦ b
t f[κc] ◦ t

af[θtd ,ρtd ]
)(

Xk
a

)
, (4)

where several key parameters that can be used to con-
trol progression through these submaps are explicitly
shown. In particular, θtd , κc and κd denote the famil-
iar touchdown angle, compression and decompression
spring constants as in many earlier hopper implemen-
tations [1, 28], while ρtd and ρlo denote leg lengths at
touchdown and liftoff similarly to control parameters
used by the Bow-Leg hopper [37]. All components of
the return map, together with relevant control inputs,
are illustrated in Fig. 2.

It is important to note that from among these avail-
able control inputs, any choice of three that includes
the touchdown angle θtd grants full controllability to
the system (i.e. gives independent authority over all
of the apex states) [35, 37], with the primary differ-
ence being in the way the energy of the system is reg-
ulated. In this paper, we will assume that the landing
and liftoff leg lengths are explicitly controllable as in
the Bow-Leg hopper.

Given this choice, the descent and ascent submaps
are

Xk
td = t

af
(
Xk

a

)
:= [

ya + ẏaΔtd, ρtd cos θtd , ẏa,−Δtd
]
, (5)

Xk+1
a = a

l f
(
Xk

lo

)
:= [

yl + ẏlΔta, ρlo cos θlo + ż2
l /3, ẏl

]
, (6)

where we define the touchdown and liftoff states
as Xtd := [ρtd , θtd , ρ̇td , θ̇td , ]T and Xlo :=
[ρlo, θlo, ρ̇lo, θ̇lo, ]T , respectively, with Δtd :=√

2(za − ρtd cos θtd). Note that both Xtd and Xlo are
defined as intermediate states and hence incorporate
additional, redundant dimensions for convenience as
compared to the three-dimensional apex states in (3).

Not surprisingly, the most difficult components in
the apex return map are the compression and decom-
pression phases, both requiring closed-form integra-
tion of the stance dynamics. While there are a number
of existing approximations for this purpose, none of
them incorporate damping and have substantial diffi-
culty in modeling the effect of gravity on the angular
momentum in the presence of stance trajectories that
are not symmetric with respect to the vertical.

2.3 Existing analytical tools for the undamped SLIP

In the following sections, we review two important an-
alytical approximations to the stance dynamics of the
undamped SLIP model. Our approximation is inspired
from the method proposed in [14], but substantially
improves predictive and control performance by accu-
rately incorporating the effects of damping and vary-
ing angular momentum during stance.

2.3.1 Iterative approximate stance map by Schwind
et al.

In [36], Schwind uses an iterative application of the
mean-value theorem for integral operators to obtain an
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analytical approximation to the stance dynamics of a
lossless SLIP. Their derivation is based on a Hamil-
tonian formulation of the conservative SLIP dynamics,
yielding the dimensionless Hamiltonian function as

H := 1

2

(
p2

ρ + p2
θ

ρ2

)
+ 1

2
κ(1 − ρ)2 + ρ cos θ. (7)

The equations of motion can then be written in terms
of the radial degree of freedom as an independent vari-
able by assuming that the system energy stays con-
stant, and solving the equation H(pρ) = E to yield
H † := H−1(E) = pρ as a function of the leg length ρ.
It then becomes possible to obtain an approximate so-
lution, yielding the following solution for the decom-
pression phase:

t̂d(n+1)
(ρ) = tb + (ρ − ρb)/H

†
n , (8)

θ̂(n+1)(ρ) = θb + p̂θ n(ξ̂ )(ρ − ρb)/
(
ξ̂2H †

n

)
, (9)

p̂θ (n+1)(ρ) = pθb + ξ̂ sin
(
θ̂n(ξ̂ )

)
(ρ − ρb)/H

†
n , (10)

p̂ρ(n+1)(ρ) = H
†
n+1, (11)

where n indicates the iteration number, ξ̂ := 3ρb/4 +
ρ/4 arises from the application of the mean value the-
orem, and tb , ρb , θb and pθb represent the system state
at bottom.

Given touchdown states, ttd , ρtd , θtd and pθ td , the
compression phase mapping can be similarly derived
as

t̂c(n+1)
(ρ) = ttd − (ρ − ρtd)/H †

n , (12)

θ̂(n+1)(ρ) = θtd − p̂θ n(ξ̂ )(ρ − ρtd)/
(
ξ̂2H †

n

)
, (13)

p̂θ (n+1)(ρ)

= pθ td − ξ̂ sin
(
θ̂n(ξ̂ )

)
(ρ − ρtd)/H †

n , (14)

p̂ρ(n+1)(ρ) = −H
†
n+1, (15)

where ξ̂ := 3ρtd/4 + ρ/4.
Furthermore, these equations can be iterated to

yield increasingly accurate analytic approximations.
However, since the solutions are formulated as a func-
tion of the radial state, finding the bottom instant rep-
resents one of the problems with this approach. Nev-
ertheless, it is possible to use an energy-based solution
to the bottom radial length [6, 29]. We omit the details
of this derivation for space considerations.

It is important to note that Schwind’s method criti-
cally relies on the assumption of a lossless plant model
and conservation of energy, making its direct applica-
tion to a lossy system very difficult, requiring nontriv-
ial modifications. Furthermore, its analytical complex-
ity substantially increases with each iteration, at least
two of which are required for reasonably accurate re-
sults.

2.3.2 Simple approximate stance map by Geyer et al.

In [14], Geyer proposes a method to obtain an an-
alytical approximation to the stance dynamics of a
lossless SLIP. In this section we review their method,
adapted to use the leg length control parameters ρtd

and ρlo within a dimensionless formulation compati-
ble to ours.

As proposed in [14], if we assume that the stance
phase is predominantly vertical with a sufficiently
small angular span Δθ , the effect of gravity can be
linearized around θ = 0, making both the angular mo-
mentum pθ and the total mechanical energy constants
of motion. Combined with the assumption that the
relative spring compression remains sufficiently small
with |1 −ρ| � 1, and some additional approximations
detailed in [14], analytic expressions for the radial and
angular stance trajectories can be found as

ρ(t) = 1 + a + b sin(ω̂0t), (16)

θ(t) = θtd + pθ(1 − 2a)(t − ttd )

+ 2bpθ

ω̂0

[
cos(ω̂0t) − cos(ω̂0ttd )

]
(17)

in dimensionless coordinates with the definitions

ω̂0 :=
√

κ + 3pθ
2, (18)

a := (
pθ

2 − 1
)
/ω̂2

0, (19)

b :=
√

a2 + (2E − pθ
2 − 2)/ω̂2

0, (20)

where the total mechanical energy, denoted by E, is
computed based on prior apex states. Subsequently,
leg length control inputs at touchdown and liftoff can
be used as boundary conditions on (16) to determine
touchdown, bottom and liftoff times relative to an ar-
bitrary time origin as

ttd = (π − arcsin((ρtd − 1 − a)/b))/ω̂0, (21)

tlo = (2π + arcsin((ρlo − 1 − a)/b))/ω̂0, (22)
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tb = 3π/(2ω̂0). (23)

Following a final, energy-based correction on the hor-
izontal component of the liftoff velocity, these deriva-
tions yield an analytically simple but accurate approx-
imation to the symmetric stance trajectories of a loss-
less SLIP.

Unfortunately, both assumptions in these deriva-
tions, the conservation of angular momentum and the
lack of any damping, limit their direct applicability
to the control of maneuverable running on practical
legged robots. Nevertheless, as described in Sect. 3,
we will be able to adapt key ideas from this method
in the derivation of our new approximations with sub-
stantially more general applicability.

3 A new analytic approximation to the stance map

We start the presentation of our approximations by
derivations based on assuming conservation of angu-
lar momentum in Sect. 3.1, followed in Sect. 3.2 by
the computation of components necessary to assemble
the apex return map and conclude in Sect. 3.3 with a
method to reintroduce gravity and compensate for in-
accuracies resulting from our starting assumption.

3.1 Approximating stance trajectories under damping

We first rearrange the angular component of (2) to
yield a more convenient form of the stance dynamics
as

ρ̈ = ρθ̇2 − κ(ρ − 1) − cρ̇ − cos θ, (24)

0 = d

dt
(ρ2θ̇ ) − ρ sin θ. (25)

In order to derive our analytical approximation, we
continue with the commonly used assumption that the
leg remains close to the vertical throughout the en-
tire stance phase. Consequently, as in [14], the grav-
itational potential can be linearized around θ = 0.
Note that this assumption, as noted before, is violated
for non-symmetric stance trajectories that arise dur-
ing transient locomotion steps. However, as we de-
scribe in Sect. 3.3, it will be possible to introduce an
explicit correction to the angular momentum by sep-
arately considering the effects of gravity. Neverthe-
less, for now, the resulting conservation of the angular

momentum pθ := ρ2θ̇ reduces the radial dynamics of
(24) to

ρ̈ + cρ̇ + κρ − p2
θ /ρ

3 = −1 + κ. (26)

Unfortunately, even these reduced dynamics do
not admit an analytical solution. However, using the
method proposed by Geyer [14], we further assume
that the relative spring compression remains suffi-
ciently small with |1 − ρ| � 1, allowing the term
1/ρ3 to be approximated by a Taylor series expansion
around ρ = 1 to yield

1/ρ3|ρ=1 ≈ 1 − 3(ρ − 1) + O((ρ − 1)2). (27)

This assumption remains valid as long as the leg
compression during stance is not excessive (i.e. not
more that 75% of the leg rest length), which is true for
most running behaviors except extreme cases such as
kangaroo hopping or quadrupedal pronking behaviors.
Nevertheless, under this approximation, (26) reduces
to

ρ̈ + cρ̇ + (
κ + 3p2

θ

)
ρ = −1 + κ + 4p2

θ , (28)

where we define the natural frequency of the system,

ω̂0 :=
√

κ + 3p2
θ , the damping ratio, ξ := c/(2ω̂0), the

damped frequency, ωd := ω̂0

√
1 − ξ2, and the forcing

term, F := −1 + κ + 4p2
θ , and obtain

ρ̈ + 2ξω̂0ρ̇ + ω̂2
0ρ = F. (29)

This is a second-order ordinary differential equation
that can easily be solved analytically. Assuming ξ < 1,
we have

ρ(t) = e−ξω̂0t (A cos(ωdt) + B sin(ωdt))

+ F/ω̂2
0, (30)

with A and B determined by touchdown states as

A = ρtd − F/ω̂2
0, (31)

B = (
ρ̇td + ξω̂0A

)
/ωd. (32)

Simple differentiation yields the radial velocity as

ρ̇(t) = −Me−ξω̂0t
(
ξω̂0 cos(ωdt + φ)

+ ωd sin(ωdt + φ)
)
,
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where M := √
A2 + B2 and φ := arctan(−B/A). Fur-

ther manipulations yield the simplest form of the radial
motion as

ρ(t) = M e−ξω̂0t cos(ωdt + φ) + F/ω̂2
0, (33)

ρ̇(t) = −Mω̂0 e−ξω̂0t cos(ωdt + φ + φ2), (34)

where φ2 := arctan(−√
1 − ξ2/ξ).

Now that an analytical approximation to the radial
trajectory is available, the angular trajectory can be de-
termined by using the constancy of the angular mo-
mentum θ̇ = pθ/ρ

2. Linearizing 1/ρ2 around ρ = 1
yields

1/ρ2|ρ=1 = 1 − 2(ρ − 1) + O((ρ − 1)2), (35)

with which we can obtain an analytical solution for the
angular velocity of the leg as

θ̇ (t) = 3pθ − 2pθF/ω̂2
0 − 2pθMe−ξω̂0t cos(ωdt + φ).

(36)

Integration then yields the angular trajectory of the leg
as

θ(t) = θtd + Xt + Y
(
e−ξω̂0t cos(ωdt + φ − φ2)

− cos(φ − φ2)
)
, (37)

where X := 3pθ − 2pθF/ω̂2
0 and Y := 2pθM/ω̂0.

The approximate solutions in (33), (34), (37) and
(36) provide a sufficiently simple analytic solution to
the stance dynamics of the lossy SLIP model. How-
ever, in order to complete the apex return map, we still
need to solve for the times and states of bottom and
liftoff events.

3.2 Solving for transition states: bottom and liftoff

The bottom of stance is reached with the leg at its
maximal compression with ρ̇(tb) = 0. Using (34), we
have

tb = (π/2 − φ − φ2)/ωd. (38)

In contrast, liftoff occurs when the toe loses contact
with the ground. For a lossless SLIP with ξ = 0,
this corresponds to the usual leg length condition
ρ(tlo) = ρlo, which can easily be solved analytically
through the use of (33). However, when damping
is present in the system, the liftoff event does not

Fig. 3 An illustration of events throughout stance, together
with the possibility of two different liftoff conditions, based on
either the force condition (39) or the length condition (40)

depend on the leg length alone, but must take into
account the ground reaction force on the toe. This
can be formalized as a condition on the leg force
with

κ
(
1 − ρ

(
tc1
l

)) − cρ̇
(
tc1
l

) = 0, (39)

which corresponds to the point of vanishing net force
exerted on the toe by the spring-damper pair. An alter-
native liftoff condition arises within platforms where
the liftoff leg length can be explicitly chosen by a con-
troller (e.g. as in the Bow-Leg hopper [37]). In such
cases, the time of liftoff is given by the solution to the
equation

ρ
(
tc2
l

) = ρl. (40)

Using both (39) and (40), the actual liftoff time can
then be found as tl = min(tc1

l , tc2
l ), with the earlier

one of the two events triggering the actual liftoff.
Figure 3 illustrates transition events during stance,
together with the possible presence of two different
liftoff conditions.

Unfortunately, exact analytical solution of these
equations is not possible. Even though numerical
methods are feasible due to the simple, one-dimension-
al nature of these equations, we use a sufficiently accu-
rate approximation to compute both liftoff times in or-
der to preserve the analytical nature of our approxima-
tions. To this end, we propose a new approximation for
the exponential term in (33) with its value at a specific
instant during decompression as e−ξω̂0t ≈ e−ξω̂0γ tb ,
with γ ≥ 1 introduced as a tunable parameter. A rea-
sonable choice is γ = 2, corresponding to compres-
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sion and decompression phases of roughly equal dura-
tion. We hence obtain

tc1
l ≈ (

2π − arccos
(
κ
(
1 − F/ω̂2

0

)
/
(
MMe−ξω̂0γ tb

))
− φ − φ3

)
/ωd, (41)

tc2
l ≈ (

2π − arccos
((

ρl − F/ω̂2
0

)
/
(
Me−ξω̂0γ tb

))
− φ

)
/ωd, (42)

where we define

M :=
√

(cω̂0)2 + κ2 − 2κcω̂0 cos(φ2), (43)

φ3 := arctan

(
cω̂0 sin(φ2)

cω̂0 cos(φ2) − κ

)
. (44)

Once the time instants associated with each event are
identified, the corresponding states can be computed,
completing all necessary components in the apex re-
turn map.

3.3 Compensating for the effects of gravity

In this section, we extend the method we introduced
in Sect. 3.1 with an explicit correction on the angu-
lar momentum to account for the effect of gravity for
non-symmetric trajectories, yielding a much larger do-
main of validity for the resulting analytic approxima-
tions.

As illustrated in Fig. 4, angular momenta at touch-
down and liftoff are identical only for perfectly sym-
metric SLIP trajectories, observed only for steady-
state running on flat terrain. Unfortunately, for legged
robots negotiating rough terrain, non-symmetric tra-
jectories as a result will dominate with deteriorated
controller performance.

In the presence of gravity, the instantaneous angular
momentum around the toe during stance can be com-
puted as

pθ(t) = pθ(0) +
∫ t

0
ρ(η) sin θ(η) dη, (45)

where pθ(0) denotes the angular momentum at touch-
down. We propose a new method to modify our ap-
proximations to take into account the total effect of
gravity on the angular momentum during stance by a
constant average value computed between touchdown
and liftoff as

p̂θ := 1

tlo

∫ tlo

0
pθ(η)dη. (46)

Fig. 4 The total effect of gravity on the magnitude of the an-
gular momentum during stance is (a) negative, (b) zero and (c)
positive. Blue and red regions, marked with − and +, represent
instantaneous decreasing and increasing effects of gravity on the
magnitude of the angular momentum, respectively. Locomotion
direction is to the right

Once computed, we could replace all occurrences of
pθ in the derivations of Sect. 3.1 with p̂θ , yielding an
analytic correction scheme to compensate for gravita-
tional effects.

Unfortunately, even with the solutions of (33) and
(37), exact computation of this expression in closed
form is not feasible. Consequently, we propose a
new approximation to the integrand in (45), τ(t) :=
ρ(t) sin θ(t) with an average of its extreme values at
touchdown and liftoff as

τ(t) ≈ τ̂ (t) := (τ (0) + τ(tlo))/2. (47)

It hence becomes possible to compute an approximate
adjustment for the angular momentum of (46) as

p̂θ = pθ(0) + tlo

4
(ρ(0) sin θ(0) + ρ(tlo) sin θ(tlo)).

(48)

We use this adjusted angular momentum in the “gravi-
ty-corrected” performance results presented in
Sect. 4.2. Note that computation of (48) requires an
initial estimate of system states at liftoff. We use the
uncompensated map for this purpose, with the correc-
tion incorporated as a second step. This also gives an
“iterative” character to our correction method, simi-
larly to the approach adopted in [36].

Our experiments also showed that a final, energy-
based correction to the stance map significantly in-
creases the accuracy of the resulting approximations.
In previous work [14], this correction was based on
the fact that the system under study was conservative.
In our case, however, damping losses need to be taken
into account if the predicted liftoff states are to be cor-
rected. Fortunately, we can use our approximations to
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estimate damping losses as

Ec :=
∫ tl

0
cρ̇2(t) dt

= 1

2
M2ω̂2

0

(
ξ
(
cos(2φ + φ2) + 1 − e−2ξω̂0tl

− cos(2ωdtl + 2φ + φ2)e
−2ξω̂0tl

))
, (49)

which can then be used to compute a corrected liftoff
velocity and an associated angular velocity as

v̄l = √
2(Etd − Elo − Ec), (50)

ˆ̇θ lo = sgn(θ̇lo)

√
v̄2
l − ρ̇2

lo

ρlo

, (51)

with Etd := (v2
td + κ(ρtd − 1)2 + ρtd cos θtd)/2 and

Elo := (κ(ρlo − 1)2 + ρlo cos θlo)/2.

4 Characterization of predictive performance

4.1 Simulation environment and performance criteria

In the following sections, we investigate the single-
stride predictive performance of our approximations
to the apex return map under a wide range of initial
conditions and control inputs, using normalized per-
centage errors in different state components. In par-
ticular, errors in the apex position and liftoff velocity
predictions are respectively defined as

PEap := 100
‖[ya, za] − [ŷa, ẑa]‖2

‖[ya, za]‖2
, (52)

PElov := 100
‖[ρ̇lo, θ̇lo] − [ ˆ̇ρlo,

ˆ̇θ lo]‖2

‖[ρ̇lo, θ̇lo]‖2
, (53)

where [ŷa, ẑa] and [ ˆ̇ρlo,
ˆ̇θ lo] denote apex and liftoff

states predicted by one of three approximations de-
scribed earlier, while [ya, za] and [ρ̇lo, θ̇lo] are ob-
tained by numerical integration of the SLIP model for
a single stride. We use the velocity at liftoff rather
than the apex to ensure that normalization is meaning-
ful even for non-symmetric gaits with possibly zero
apex velocities. Our simulations cover a total of four
different dimensions of initial states and control in-
puts: the apex height (za), the apex velocity (ẏa), the

Table 2 Ranges of initial conditions and control inputs for sim-
ulation experiments in dimensionless units

za ẏa θtd ,rel κ ζ

[1.15,1.75] [0,2.5] [−0.15,0.25] [25,200] [0,0.4]

spring constant (κ) and the “relative touchdown an-
gle,” which we define as

θtd ,rel := θtd − θtd ,n, (54)

where θtd ,n denotes the “neutral” touchdown angle
that results in a symmetric SLIP trajectory for the loss-
less model, defined as the fixed point of the apex re-
turn map with Xa = a

af[θtd ](Xa) for a given initial apex
state Xa .

The ranges considered for these dimensions were
chosen to be consistent with biomechanics literature
as well as existing legged robots. In particular, ex-
periments on humans (with 80 kg mass and 1 m leg
length on average) running at different speeds (in the
range of 2.5–6.5 m/s) reveal leg stiffness in the range
[10,50] kN/m [5]. In the robotic domain, the RHex
hexapod has an approximate mass of 10 kg, leg length
of 0.25 m and compliant legs with stiffness of around
2000 N/m for each leg [32]. Motivated by these ob-
servations, Table 2 shows ranges of initial conditions
and control inputs we use for our simulations, with the
damping ratio, defined as ζ := c/(2

√
κ), parameter-

izing differing amounts of damping for the results of
subsequent sections.

For each of our simulations, we check whether the
trajectories satisfy two conditions to ensure that we
can support meaningful comparisons to existing stud-
ies. First, stance trajectories that either never leave the
ground (żlo < 0) or prevent foot protraction (za < 1),
are excluded. Second, we restrict the maximum al-
lowable leg compression to 25% of the rest length,
excluding trajectories that violate this condition. In
each case, we define and compute “ground truth” as
the numerical integration of SLIP dynamics for a sin-
gle stride within MATLAB using a variable time-step,
fourth order Runge–Kutta integrator. We then com-
pute estimates of the apex states based on Geyer’s and
Schwind’s approximation methods and our proposed
method and compare estimation performances using
the error criteria defined above. For the Schwind ap-
proximations, we use the 10th iterate (after which fur-
ther iterations yield no improvements) to make sure we
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obtain the best possible performance for their method.
Note that a characterization of performance over a sin-
gle step is also an accurate indicator of performance
across multiple steps since prediction errors accumu-
late additively if apex states remain in the range of va-
lidity for assumptions underlying each method.

4.2 Performance for non-symmetric, lossless steps

In this section, we compare the predictive perfor-
mance of our gravity correction scheme, described in
Sect. 3.3, with Geyer’s and Schwind’s analytic approx-
imations. In order to isolate performance gains result-
ing from the gravity correction method alone, we use
a lossless plant model with c = 0 for the results of this
section. As we will show in the next section, the pres-
ence of damping represents a major deviation from
the assumptions of Geyer’s and Schwind’s approxi-
mations and makes it the dominant factor in all error
measures. Consequently, a fair evaluation of our grav-
ity correction scheme is only possible in the absence
of damping.

Figure 5 illustrates mean and standard deviations
of percentage prediction errors for all three approxi-
mation methods for 192,655 valid simulations out of a
total of 257,040 using different initial conditions and
control parameters in the ranges shown in Table 2.
Corresponding numerical values are listed in the left
three columns of Table 3, with most informative en-
tries highlighted in bold. These averaged results show
that the proposed gravity corrections result in signif-
icant increase in the performance of the approxima-

tions, particularly in their prediction of velocity com-
ponents. This is relatively natural since gravity primar-
ily influences angular momentum and hence the liftoff
velocity.

More importantly, however, we expect performance
gains resulting from the gravity correction scheme to
be much more pronounced for non-symmetric steps.
This is also confirmed by our simulations, illustrated
in Fig. 6 with plots of mean and standard deviations of
liftoff velocity and apex position errors as a function of
the relative touchdown angle. Note that by definition,
trajectories obtained with θtd ,rel = 0 are symmetric.

Fig. 5 Percentage prediction errors in apex position (ba ), liftoff
velocity (ḃlo), apex height (za ) and liftoff position (qlo) for the
proposed method, Schwind’s iterative approximations [36] and
Geyer’s approximations [14] in the absence of damping, but
with non-symmetric steps. Mean errors across 192,655 valid
simulations, while the vertical bars represent associated stan-
dard deviations

Table 3 Percentage prediction errors for Geyer’s, Schwind’s and our methods in apex position (ba ), liftoff velocity (ḃlo), apex height
(za ), liftoff position (qlo), apex energy (Ea ) and stance time (ts ). Simulations without and with damping are respectively reported on
the left and right sides of the table. In each case, the performance of each method is summarized by the mean, standard deviation and
maximum values for their percentage prediction errors across all simulations covering the ranges in Table 2. Most informative entries
are highlighted with bold font

SLIP model without damping SLIP model with damping

Geyer’s method Schwind’s method Proposed method Geyer’s method Schwind’s method Proposed method

μ ± σ max μ ± σ max μ ± σ max μ ± σ max μ ± σ max μ ± σ max

ba 2.70 ± 2.74 27.3 7.72 ± 6.52 51.8 1.07 ± 1.37 18.4 53.3 ± 33.0 221 54.7 ± 33.6 205 0.75 ± 1.27 24.2

ḃlo 3.34 ± 3.66 41.3 7.18 ± 4.59 24.5 1.29 ± 1.58 26.3 53.2 ± 41.0 280 57.7 ± 39.1 280 1.40 ± 2.27 46.4

za 0.91 ± 1.04 15.3 7.43 ± 8.42 58.6 0.73 ± 0.98 7.56 40.6 ± 26.7 213 49.0 ± 30.3 206 0.42 ± 0.68 7.55

blo 0.71 ± 0.90 10.9 6.58 ± 4.39 22.7 0.42 ± 0.57 3.71 5.70 ± 4.70 44.1 4.36 ± 2.48 23.0 0.32 ± 0.49 3.87

Ea 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 32.7 ± 20.5 189 32.7 ± 20.5 189 0.23 ± 0.38 5.20

ts 0.35 ± 0.47 4.36 18.9 ± 0.30 20.3 0.38 ± 0.48 4.28 12.6 ± 8.08 48.5 9.86 ± 4.84 24.7 0.38 ± 0.52 6.03
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Fig. 6 Percentage
prediction errors for all
three methods for liftoff
velocity (left) and apex
position (right) as a
function of the relative
touchdown angle θtd ,rel.
Each data point represents
the mean of all valid
simulations with the
corresponding relative
touchdown angle. Standard
deviation bars are only
shown for the proposed
method for clarity

Fig. 7 Percentage
prediction errors in liftoff
velocity (left) and apex
position (right) for all three
methods as a function of
increasing damping ratio.
Error axes are plotted in
logarithmic scale to
simultaneously show the
predictive performances of
Schwind’s and Geyer’s
approximations with the
proposed method, which
yields mean errors that are
two orders of magnitude
better than its alternatives

For such steps, our approximation becomes equivalent
to Geyer’s method as is also evident from the coinci-
dent plots in the figure. In contrast, positive and neg-
ative values of θtd ,rel result in decelerating and accel-
erating steps, respectively. In both of these ranges, the
gravity correction method we propose outperforms ex-
isting alternatives, yielding very accurate analytic ap-
proximations that can be effectively used for applica-
tions such as locomotion on rough terrain that require
frequent use of non-symmetric steps.

4.3 Predictive performance in the presence of
damping

As noted in the previous section, the presence of
damping challenges the energy conservation assump-
tion that underlies both Geyer’s and Schwind’s ap-
proximations. The right side of Table 3 illustrates per-
centage prediction errors for all three methods in the
presence of non-negligible damping. As is evident

from these error figures, existing analytic approxima-
tions for the SLIP model have deteriorated predictive
performance (with errors exceeding 50%), while the
proposed method remains equally accurate with errors
under 2%. There is even a slight increase in accuracy
for our method compared to its performance for the
lossless case, which can be attributed to shorter stance
times arising from damped radial trajectories.

Figure 7 illustrates the dependence of prediction er-
rors for all three methods on the dimensionless damp-
ing ratio ζ := c/(2

√
κ), plotted in logarithmic scale

so that the trends of all three methods are simultane-
ously visible. For even small amounts of damping with
ζ = 0.1, the proposed approximations perform almost
two orders of magnitude better than best available al-
ternatives in the literature. As noted above, there is
even a slight increase in the prediction performance for
the apex position as the amount of damping increases
as a result of shorter stance times that bring trajectories
closer to satisfying assumptions underlying the deriva-
tions of Sect. 3.1.
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Another important performance measure for our
approximations would have been the accuracy of its
prediction for local linearizations of the return map,
often used to analyze stability properties of both open-
loop and feedback control strategies. Some of our pre-
liminary investigations show that our approximations
also remain accurate in this regard. However, we leave
the treatment of this topic outside the scope of the
present paper since an adequate coverage would sub-
stantially lengthen the presentation.

5 Application: gait control of monopedal running

5.1 Deadbeat controller for regulating apex states

A natural application of an analytically formulated
apex return map for the spring-mass hopper is the de-
sign of a deadbeat controller to regulate and stabilize
the progression of its apex states. The control prob-
lem hence consists of finding appropriate control in-
puts u := [θtd , ρtd , ρlo] to satisfy

X∗
a = a

af(Xa,u), (55)

where Xa and X∗
a denote the current and desired apex

states, respectively, and leg spring constants are cho-
sen to be constant with κc = κd = κ .

Inversion of the associated map, however, still in-
volves three coupled variables. We start by observing
that we are primarily interested in sustained, steady-
state locomotion so the cyclic variable ya can comfort-
ably be eliminated from the domain of the controller,
leaving only the apex height za and the apex speed ẏa

as variables of interest. However, the solution of the
resulting equation is not as simple and requires an it-
erative procedure.

Initially, we assume that no damping is present in
the system and solve the energy balance equation

κ(ρtd − 1)2 − κ(ρlo − 1)2

= E
(
z∗
a, ẏ

∗
a

) − E(za, ẏa) (56)

for the control inputs ρtd and ρlo, noting that either
ρtd = 1 or ρlo = 1 (i.e. equal to the leg rest length in
dimensionless units) when the desired energy differ-
ential is negative or positive, respectively. Once these

control inputs are determined, (55) reduces to a one-
dimensional equation whose solution can be formu-
lated as a minimization problem with

θtd = argmin
−π
2 <θ< −π

2

(
ẏ∗
a

(
π ˙̄ya

◦ a
af(Xa, θ, ρtd , ρlo)

))2
, (57)

and whose numerical solution is feasible due to its
one-dimensional and monotonic nature. Having com-
puted estimates of all control inputs for a lossless sys-
tem, we can now estimate damping losses using (49)
and solve the complete energy balance equation

κ(ρtd − 1)2 − κ(ρlo − 1)2

= E
(
z∗
a, ẏ

∗
a

) − E(za, ẏa) + Ec (58)

to yield better estimates of the control inputs ρtd

and ρlo, as before. Using these new estimates, we
can obtain a new solution for the touchdown angle
through (57), which now takes into account damping
losses as well. This results in an effective one-stride
deadbeat controller for the regulation of apex height
and horizontal speed. Note that (58) and (57) can be
iteratively applied to obtain increasingly accurate so-
lutions for the control inputs.

5.2 Steady-state tracking performance

In order to show that our analytic approximations pro-
vide a good basis for the design of high-performance
gait controllers, we compare the steady-state tracking
performance of the controller described in Sect. 5.1
to similar designs based on Geyer’s and Schwind’s ap-
proximations. Controllers based on Schwind’s approx-
imations are rather simple with no consideration of
damping and have been previously presented in the lit-
erature [9, 29, 31]. Deadbeat control based on Geyer’s
approximations closely parallels the descriptions of
Sect. 5.1 except for the iterative treatment of damping.
We omit detailed derivations for controllers associated
with these two methods for space considerations.

In order to obtain a comprehensive picture for the
performance of all three controllers, we ran simu-
lations with the SLIP models with different spring
constants κ ∈ [25,200] and damping coefficients ζ ∈
[0,0.4], with a wide range of apex state goals in z∗

a ∈
[1.3,1.6] and ẏ∗

a ∈ [0.5,2.25]. For each goal, simula-
tions were started from a range of different initial con-
ditions around the goal with za ∈ [z∗

a −0.15, z∗
a +0.15]
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Fig. 8 Percentage steady-state errors in the norm of the
non-dimensional apex state vector for all three methods as a
function of the damping ratio ζ . Each data point represents the
mean of all valid simulations with the corresponding damping
ratio. Standard deviation bars are only shown for the proposed
method for clarity

and ẏa ∈ [ẏ∗
a − 0.25, ẏ∗

a + 0.25]. In each case, simula-
tions were run using each one of three controllers for
eight steps, at the end of which convergence to steady
state was confirmed with a tolerance of 10−4 and the
difference from the desired goal was measured. In par-
ticular, we are interested in the percentage error in
non-cyclic components of the apex state, defined as

SSEa := 100
‖[za, ẏa] − [z∗

a, ẏ
∗
a ]‖2

‖[z∗
a, ẏ

∗
a ]‖2

. (59)

Note that this error measure incorporates both the apex
height and speed in dimensionless coordinates, and
avoids normalization problems associated with a van-
ishing apex velocity.

Figure 8 illustrates mean percentage tracking errors
in the apex state at steady state, SSEa , for all three
methods as a function of the damping ratio. The gait
controller design based on our approximations sig-
nificantly improves the performance of other meth-
ods, with average steady-state errors consistently be-
low 4%. Note that deadbeat control based on Geyer’s
approximations has identical performance to ours in
the absence of damping since steady-state locomotion
consists of symmetric steps for the lossless SLIP [35].
Nevertheless, increasing amounts of damping result in
substantial deterioration of controllers based on both
Geyer’s and Schwind’s methods since the resulting en-
ergy losses dominate the associated prediction errors.

6 Conclusion

In this paper, we introduced a simple yet accurate new
analytical approximation to the stance trajectories of a
dissipative Spring-Loaded Inverted Pendulum model
with linear leg compliance. Conservative versions of
this model were shown to be very successful in de-
scribing center of mass motions of running animals
with widely different sizes and morphologies. How-
ever, existing literature on this model almost univer-
sally excludes dissipative effects, and exclusively fo-
cuses on symmetric steps that occur during locomo-
tion at steady state. These two limitations substantially
impair their applicability in the design and control of
legged robots on rough terrain, where damping is in-
evitable and significant, and non-symmetric steps are
frequent.

We have presented extensive simulation results,
covering a large range of operating conditions and pa-
rameter settings within a dimensionless formulation to
show that our approximate map can provide extremely
accurate estimates for the trajectories of the dissipative
SLIP model, with errors that are consistently below
2% for all but the most extreme conditions. Not only
does our method by far outperform available alterna-
tives in the literature in the presence of damping (with
up to two orders of magnitude improvement in pre-
dictive accuracy), but it also shows improved perfor-
mance on the lossless SLIP model for non-symmetric
steps owing to a novel gravity correction method also
introduced in this paper. Overall, the methods we
present in this paper provide the currently most accu-
rate closed-form approximations to the otherwise non-
integrable trajectories of the dissipative SLIP model,
whose importance in both the modeling and control of
legged locomotion has long been established.

In addition to our systematic characterization of
the predictive performance of our approximations, we
have also demonstrated their utility in the context of
a gait controller for the dissipative SLIP model. The
simple analytic form of our approximations provides
a very straightforward way in which a deadbeat stride
controller can be formulated, naturally taking damp-
ing induced energy losses into account and hence sub-
stantially improving the performance of similar con-
trol strategies in the literature. Once again, through a
systematic set of simulations, we show that the result-
ing feedback controller is capable of regulating gait
parameters of steady-state running with tracking er-
rors consistently below 4%, almost an order of magni-
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tude better than other methods for a dissipative SLIP
model.
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