Computers & Graphics 35 (2011) 1063-1069

Contents lists available at SciVerse ScienceDirect

Computers & Graphics

ul K
&GRAPHICS

journal homepage: www.elsevier.com/locate/cag

Technical Section

Realistic modeling of spectator behavior for soccer videogames with CUDA™

Erdal Yilmaz?, Eray Molla®, Cansin Yildiz€, Veysi isler ¢*

2 Informatics Institute, Middle East Technical University, 06531 Ankara, Turkey

b Ecole Polytechnique Fédérale de Lausanne, Department of Computer Science, Lausanne, Switzerland

€ Department of Computer Engineering, Bilkent University, 06535 Ankara, Turkey

d Department of Computer Engineering, Middle East Technical University, 06531 Ankara, Turkey

ARTICLE INFO ABSTRACT

Article history:

Received 3 April 2011

Received in revised form

5 October 2011

Accepted 6 October 2011
Available online 3 November 2011

Keywords:

Soccer game
Spectator behavior
Crowd simulation
CUDA

Soccer has always been one of the most popular videogame genres. When designing a soccer game,
designers tend to focus on the game field and game play due to the limited computational resources,
and thus the modelling of virtual spectators is paid less attention. In this study we present a novel
approach to the modeling of spectator behavior, which treats each spectator as a unique individual. We
also propose an independent software layer for sport-based games that simply obtains the game status
from the game engine via a simple messaging protocol and computes the spectator behavior
accordingly. The result is returned to the game engine, to be used in the animation and rendering of
the spectators. Additionally, we offer a customizable spectator knowledge base with well structured
XML to minimize coding efforts, while generating individualized behavior. The employed Al is based on
fuzzy inference. In order to overcome additional demand for computing realistic spectator behavior, we

use GPU parallel computing with CUDA.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Soccer, due to its very nature, has always attracted millions of
fans, not only in the real world, but also in the virtual universe.
Spectators play a highly significant role during real soccer
matches, and it has been shown that the support of an excited
crowd of fans can offer significant advantages to a home team [1];
indeed the term “12th man” is often used to highlight the
importance of fan support. Soccer game developers, and indeed
developers of other sport-based games, have always taken the
presence of spectators into account, visualizing them either as
static bitmap images or as dynamic geometric models since early
1980s. In Fig. 1, two screenshots from the online soccer game
“I Can Football” are provided to show the representation of virtual
spectators in a typical soccer game; the spectators visualized in
this game are similar to those found in most popular soccer
games. Significant progress has been achieved in the simulation of
spectators in recent years; however, the visual and behavioral
realism of the spectators still lags far behind the realism of the
players on the pitch, as can be seen in Fig. 1. The reasons for this
are twofold: first, the prioritized use of limited computational
resources for the game play; second, the prioritization of the

“This article was recommended for publication by O. Staadt.
* Corresponding author. Fax: +903122105564.
E-mail address: isler@ceng.metu.edu.tr (V. isler).

0097-8493/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cag.2011.10.001

game field, which takes precedence over action in the back-
ground. The rest of the paper discusses that the first issue is no
more a challenge, if GPU resources are used efficiently. Regarding
the necessity of realistic background, there are several counter-
arguments such as simulating the camera shots to show specta-
tors and generating life-like tribune motion.

In this study, we propose an architecture to process spectators in
a modular way. The game engine can request spectator processing at
any instance to reflect any change in the behavior of the spectators.
This processing is performed by a separate layer, which we refer to as
the Spectator Behavior Engine (SBE). SBE computes the behavior of
the spectators according to the status of the game, which is provided
by the game engine. Finally, SBE updates and sends the spectator
behavior to the game engine, which in turn animates and renders the
spectators. SBE performs all of these computations on the GPU,
where each spectator is considered as an intelligent individual,
based on fuzzy inference. SBE can also be used by non-sport game
genres that contain a huge number of spectators. A typical example
is gladiator-style events in arenas. Another example might be music
and dance games that simulate stadium concerts. Crowd-based
simulation applications and serious games can also utilize the
proposed method.

This study is based on an extensive use of fuzzy inference on the
GPU for the modeling of realistic soccer spectator behaviors via a
user-defined XML script. We have observed that soccer games
generally treat spectators as a whole rather than as individuals,
which results in repeated and user-predictable spectator gestures

www.elsevier.com/locate/cag
www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2011.10.001
mailto:isler@ceng.metu.edu.tr
mailto:isler@ceng.metu.edu.tr
dx.doi.org/10.1016/j.cag.2011.10.001

1064 E. Yilmaz et al. /| Computers & Graphics 35 (2011) 1063-1069

Fig. 1. Comparison of the visuals of spectators and players (courtesy of Sobee).

that may annoy the player. Although fans within a stadium usually
make similar moves, it is not very impressive to see exact clones,
and for this reason our intention was to produce behavioral
differences in the crowd, as would be found at real soccer matches.
When each spectator is modeled as a unique individual, the
reactions of the spectators can be produced based on the psychology
of spectators resulting from various factors, such as the character-
istics of the game being played, the reputation of the players, the
current score, cultural issues, etc.

In this study, GPU parallel processing with Nvidia CUDA
(Compute Unified Device Architecture) is used to overcome the
additional computational power required to create realistic and
very large numbers of spectators. Using CUDA, it is possible to
treat each spectator as a unique individual on a GPU parallel
architecture. Thus, CUDA helps us to deal with this problem with
minimal coding effort and using negligible CPU resource.

The rest of the paper is organized as follows. The next section
summarizes CUDA. This is followed by Spectator Behavior Modeling
with Fuzzy Logic Control (FLC), and includes three subsections: the
first subsection explains the Fuzzy inference mechanism; the XML
structure that is used for the fuzzy knowledge base is covered in the
next subsection; while the final subsection gives several fuzzy
variables and fuzzy sets as examples in order to better explain the
Al process of SBE. Section 3 discusses implementation and sum-
marizes performance results and gives the simulation results of a
Mexican wave implementation using SBE. The performance results
section includes comparisons of both the performance and the visual
output between the GPU parallel implementation and CPU serial
implementation. Finally, Section 4 presents conclusions of this work.

2. Related work
2.1. GPU parallel processing with Nvidia CUDA

Nvidia introduced CUDA as a parallel computing architecture
that allows programmers to use C language while programming
GPUs, starting from the GeForce 8 series. State-of-the-art Nvidia
GPUs provide many-cores (e.g. the gtx580 has 512 processor cores),
known as stream processors. Each stream processor has special
hardware thread manager that is capable of running multi-threads.
Considering the huge number of stream processors and the multi-
thread capability, the total number of concurrent threads can easily
reach several thousands. Nvidia calls this architecture SIMT (single-
instruction, multiple-thread), the details of which can be found in
the CUDA Programming Guide [2]. This many threads can help deal
with computing intensive parallelizable problems. Since the release
of CUDA technology, many studies have reported speed-ups of order
of magnitude, and even two orders of magnitude, in various
applications [3-8], and an increase in these reported computational

performances may be possible with the use of multi-GPUs in a
cluster.

Although state-of-the-art GPUs offer several teraflops of proces-
sing power, special care must be given to certain issues [2]. First and
the most important is to convert the problem into data-parallel
structure. This issue is quite applicable to massive crowd simulation
domain since it is possible to assign each character to a single
thread. The second issue is to use the bandwidth efficiently. This
issue both covers the data transfer between the CPU/GPU and the
memory operations on the GPU. The final issue is the optimization
via instruction usage. The techniques that we employed to address
the mentioned issues are given in the implementation section.

Using the GPU instead of the CPU, some of the CPU resources
that are critical for the game engine may be released. As discussed
in the results section, GPU parallel processing causes no practical
delays in the game loop and rendering, since the fuzzy inference
of tens of thousands of spectators is completed in only a few
milliseconds. This is clearly beyond the computational perfor-
mance offered by the CPU as shown in Section 3.1.

Using GPU parallel processing in crowd simulation is not
limited to real-time applications. A well-known Massive software,
which is mainly used by motion picture industry uses this
technology to speedup offline rendering process [9].

Some other researchers have utilized non-GPU parallel archi-
tectures in crowd simulation as in [10-12].

2.2. Behavior modeling and fuzzy inference

Behavior modeling is one of the most extensively studied areas
in crowd simulation. There have been different approaches and
studies into modeling how virtual characters “make decisions” and
behave in virtual worlds. In such worlds, characters simply perceive
the surrounding world and react accordingly. In a soccer game, since
all the spectators in the stadium perceive the same event(s), other
parameters must be employed to generate behavioral differences, as
in the real life. Chittaro and Serra have demonstrated autonomous
virtual characters with behavioral differences [13], bringing person-
ality to virtual characters and employing probabilistic influence on
behavior selection to produce distinct behaviors. Badler et al. also
used personality in EMOTE (Expressive Motion Engine), which
influences the character perception and action [14]. The basis of
the behavioral modeling used in this study was introduced by
Bécheiraz and Thalmann [15], who used perception to generate
emotion, and then used both perception and emotion to invoke a
certain behavior to a corresponding action. Ayesh et al. have tried
fuzzy individual model (FIM) for the behavioral modeling of virtual
individuals [16], while also using perceptions to update emotions
that trigger different behaviors. Rudomin and Millan used XML
scripting to specify behaviors, and employed a Finite State Machine
as a processing method [17], further developing this study by

E. Yilmaz et al. /| Computers & Graphics 35 (2011) 1063-1069 1065

implementing probabilistic FSMs, hierarchical FSMs and layered
FSMs to produce non-deterministic results [18].

In this study, FLC is used to model spectator reactions. Fuzzy
sets were first introduced by Lotfi A. Zadeh in 1965 [19], and over
the last 40 years, fuzzy logic has been used extensively in many
application areas, including crowd simulation [8,20] and agent
behavior modeling [16,21]. Our reasons for choosing fuzzy logic
for behavioral modeling are:

e Ability to produce more realistic and less predictable reactions.

e Ability to capture a real human knowledge base and use it
extensively with minimal coding.

e Use of an Al technique that is more suitable to model complex
spectator behavior.

2.2.1. Fuzzy inference

In this study we have used the fuzzy controller approach
proposed by Mamdani [22]. This approach simply performs a
processing using scalar input values and fuzzy control elements
(fuzzy variables, fuzzy sets and fuzzy rules), and produces an
output represented by a scalar value. These fuzzy control ele-
ments are organized in a knowledge base that is mostly based on
the experience of domain experts. One of the most important
tasks in the development of an FLC system is the design of a
knowledge base. For the purpose of this study, we have used an
XML-based solution, which is discussed in the next subsection.

A Mamdani-style fuzzy inference [23] is a four-step process: in
the first step, known as fuzzification, scalar values are used to
calculate degrees of membership of corresponding fuzzy set/sets
within a fuzzy variable. Input values can either be static or dynamic
throughout the game; the refresh rate of dynamic variables can also
be different. In a soccer game “Game Field Perception,” “Neighbor-
hood Perception,” “Personality” and “Mood” can be used as input
variables. It is possible to expand this list through the addition of
more parameters.

Rule evaluation is the second step in fuzzy inference. In this
step, the output of the first step is used to produce the value of
output rule using two input rules and a fuzzy operator. The
corresponding fuzzy set in the output rule is clipped to produce a
new shape using an output scalar value. This step is followed by
rule aggregation, which combines clipped fuzzy sets to generate a
new geometric shape. Finally, the fuzzy inference is completed
with the defuzzification step, in which the aggregated geometric

Tree View | XSL Output |

shape is converted into a scalar value, which is used as the output
of the fuzzy inference.

In this work, we exploited the fuzzy inference CUDA kernels
that we have developed in our previous work where the details of
the implementation can be found [8]. We improved the previous
approach to make it more flexible and GPU friendly as discussed
in the following sections.

2.2.2. XML structure

As mentioned previously, one of the main goals of this study is to
reduce the workload of soccer game developers in incorporating
intelligent virtual spectators into their games. When fuzzy logic is
used for modeling spectator behavior, a highly detailed human
knowledge base and fuzzy rules are required to generate life-like
outputs. For this purpose an XML script is provided to the game
developers, either to construct the knowledge base from scratch
or to customize an existing knowledge base. This XML scripting is
partly inspired by the legacy FCL defined by the International
Electrotechnical Commission (IEC) [24], and by the Fuzzy Markup
Language (FML) introduced by Acampora and Loia [25]. We built
our own XML scripting (hereafter referred to as Spectator Beha-
vior Modeling Markup Language — SBML) using FML as a template
in order to maintain a similar terminology to previous studies.
Since SBML is intended to be used solely by sports game devel-
opers, our main goals have been simplicity and performance.

Fig. 2 gives the general structure of SBML as a tree view. In this
structure, “FuzzyControl” is the outermost tag, with sub-tags
entitled “KnowledgeBase” and “RuleBase.” The order of “Fuzzy-
Variable,” “FuzzySet,” “RuleBlock” and “Rule” can also be seen in
this hierarchy.

The “KnowledgeBase” contains a single, or a set of, “Fuzzy-
Variable/s”, which corresponds to a term used in fuzzy inference
operation. This fuzzy element, which may be composed of a single
or several “FuzzySet/s”, has “Name” and “Description” attributes.
In Listing 1, we give an example of a fuzzy variable, “Mood”,
which contains fuzzy sets, “Calm,” “Stressed” and “Angry.” In
SBML, the shapes of the fuzzy sets are given within the “Coordi-
nates” tag. In this listing “Calm” and “Angry” are defined as
trapezoids, and “Stressed” is defined as a triangle.

The “RuleBase” section covers “RuleBlock(s),” with each “Rule-
Block” containing only two input terms and one output term.
This is preferred for the sake of easy implementation. The rules
within the “RuleBlock” are evaluated using only fuzzy “AND”
and fuzzy “OR” operators. We have also developed a tool with

http://www.w3.0rg/2001/XMLSchema-instance

FuzzyControl.xsd

Fig. 2. Tree view of SBML elements.

1066 E. Yilmaz et al. /| Computers & Graphics 35 (2011) 1063-1069

- <FuzzyVariable>
<Name>Mood</Name>
<Description=Defines the mood of the spectator.</Description=>
- <FuzzySet>
<Name=Calm</Name:>
<Description>Spectator is calm</Description>
<Coordinates=>0,1,30,1,50,0</Coordinates>
</FuzzySet>
- <FuzzySet>
<Name=Stressed</Name:>
<Description>=Spectator is stressed </Description=
<Coordinates>=35,0,50,1,65,0</Coordinates>
</FuzzySet>
- <FuzzySet>
<Name=>Angry</Name:=
<Description>Spectator is angry </Description=
<Coordinates:=60,0,80,1,100,1</Coordinates>
</FuzzySet>
</FuzzyVariable>

Listing 1. Fuzzy variable and fuzzy sets. .

a user friendly GUI to edit the knowledge base, using Eclipse
environment.

2.2.3. Examples of fuzzy variables

In this subsection we highlight some of the fuzzy variables that
can be used in fuzzy inference. As mentioned before, it is quite easy
to define new fuzzy elements, since SBML offers a highly flexible
environment and tools. The following examples are only a small part
of possible fuzzy variables that can be considered within the fuzzy
inference process of SBE.

e Game_Importance: This fuzzy variable defines the importance
of the game, which is quite significant in determining specta-
tor behavior. Needless to say, a friendly match during the off-
season is not as important as a championship final.

e Attitude_Against_Opponent: This variable can be used to
evaluate the general attitude towards the opposing team.
The level of hostility or friendliness towards an opposing team
is sometimes hard to predict; however, there are certain teams
against which a hostile attitude is guaranteed.

e Current_Attitude: The performance of the team during the
season may affect the behavior of its spectators. If the team
suffers a series of bad results, the tolerance and attitude of the
supporters may change. Spectators certainly tend to protest
their team during the game if the game-play or score do not
meet their expectations.

e Spectacular_Move: A spectacular action, such as an incredible
goal, may draw applause from whole stadium, including the
opposing fans.

o Attitude_Against_Referee: This fuzzy variable is used to
determine the reaction against a referee’s decision. Spectators
usually protest the decision in order to influence the referee,
which can be important, especially in critical decisions.

3. Implementation

In this study, a software module was designed to compute
spectator reactions using an agent-based approach. Each specta-
tor was considered as an independent individual. This module is
called as Spectator Behavior Engine (SBE) and designed to run
on the GPU using the NVidia CUDA technology. Fig. 3 shows the
interaction of SBE with an imaginary game engine.

First, the game engine initializes SBE and transfers individual
spectator attributes to the device via the “cudaMemcpy” function.
The fuzzy knowledge-base is also transferred to the device’s
cached constant memory to improve computational performance.

Initialization

SBE (Device-side)

Game Engine
(Host-side)

Aftribute | Aftribute Attribute
L#1 #2 #n

Spectator Attributes

Send spectator attributes

to the SBE via
“cudaMemcpy”
Game Loop
SBE
Global Fuzzy
Input(s)- Fuzzy Inference
parameters from Engine
game engine
Game
Engine Local Fuzzy Input(s): Output(s):update
use related spectator related spectator
affributes. attributes
- Attribute | Aftribute Atiribute
Get related #1 #2 #n
attributes for Spectator Aftributes
visualization via
“cudaMemcpy”

Fig. 3. SBE architecture.

To be processed by the SBE, a spectator must have several distinct
attributes, which also provide the basis of behavioral variety.
These attributes are related to behavioral modeling and trans-
ferred to the GPU during the initialization of the application. Thus
the spectator related non-graphical attributes are stored on the
device memory during run-time. This is computationally more
efficient, as it does not cause an increase in bandwidth when
transferring these attributes. The fuzzy inference engine uses these
attributes as spectator dependent local fuzzy inputs as shown in
Fig. 3.

As mentioned in the introduction section, each spectator is
treated as a unique individual to make variety among spectators.
As stated in [26], variety is an important aspect of crowd
simulation. We initialize the game with individual-based unique
attributes and update them separately as shown in Fig. 3. The
fuzzy inference produces distinct scalar outputs when we use
unique attributes as inputs. Thus, during the game, updates of SBE
still preserve the initial attribute differences of the spectators.

The game engine can request spectator processing anytime to
reflect any change in the individual behavior of the spectators.
The fuzzy inference engine uses the inputs provided by the game
engine as global fuzzy inputs. The fuzzy inference engine gen-
erates scalar outputs to reflect any spectator change of behavior,
using global fuzzy inputs (from game engine) and spectator-
dependent inputs (using related attributes of the spectator). The
generated output(s) updates the respective spectator attribute(s).
The fuzzy inference engine is capable of running nested infer-
ences, which means the output of a fuzzy inference can be used as
an input for the next fuzzy inference. Thus, it is possible to run
several dependent/independent inferences in a single run.

Finally, whenever required, the game engine puts the updated
spectator outputs to the host-side to animate and render the
spectators. Therefore, the game engine has all the control in this
architecture and SBE has no direct connection to the game field, it
only produces outputs. This approach provides flexibility, since
any application that processes spectators can use SBE with little
effort. Additionally, there is no need to update spectators in each
frame and return the results immediately.

E. Yilmaz et al. /| Computers & Graphics 35 (2011) 1063-1069 1067

3.1. Performance tests

As previously mentioned, computational and rendering resources
are very valuable for achieving life-like visualization of the game
field. Minimal resources must be used to process spectators at the
background. In this performance setup, it was assumed that several
fuzzy inferences were enough to update spectator behaviors. There-
fore a two minutes test (120,000 ms) was run using different
spectator populations. In this test the game engine was requested
to update spectator behaviors in different intervals. Depending on
the call parameters, the related spectator attributes were updated by
SBE using fuzzy inference engine (1-10 inferences per request).
Finally, the related attributes were copied to the host, whenever
needed. The size of the related attribute(s) was assumed 32 bits.
Fig. 4 shows the results of this performance test for 65,536
spectators using NVidia GTX 295 GPU. Fig. 4(a) indicates that
memory copy operations occupied only 7% of the total GPU proces-
sing time. This performance was achieved by getting updated results
whenever required, not in every frame. Fig. 4(b) shows that during
two-minute simulation period, SBE was called 120 times (at
different periods) and the attributes were copied to the host 47
times (at irregular intervals). Additionally, the quantity of the fuzzy
inferences changed at each SBE call (Fig. 4(b); “fuzzyInferenceTest”
bar size is different in each run). This figure indicates that SBE
processing completed in 103.77 ms (96.11 ms for fuzzy inferences,
7.66 ms for memory copy from device to host). Since the total
simulation time was 120,000 ms, this processing time corresponded
to only 0.09% of the GPU time, which is negligible in whole process
chain. The same test was also run on a single CPU core to show the
benefit of running SBE on the GPU. Table 1 gives the CPU and GPU

| Fuzzy Inference: 96.11 ms |

| Memory Copy: 7.66 ms [

performances. For the population of 65,536 spectators, it took 16% of
the single core resource to run the same simulation on the CPU, an
unacceptable value for sports-based video games. One of the most
important issues regarding the use of SBE is the update frequency.
The more update signal we produce the more GPU occupancy
occurs. That is why the update frequency should be kept within
reasonable rate. Table 1 shows that the SBE GPU occupancy rate is
almost negligible if the average update frequency is 1 call/second or
less even for the most crowded stadiums. It is certain that during a
soccer videogame we usually do not need to update SBE that often.

3.2. Visualization of spectators

To demonstrate the functionality of SBE, we have populated a
virtual stadium with nearly 50,000 spectators using the techni-
ques described by Ciechomski et al. [27]. To visualize the fuzzy
inference outputs several actions such as “cheer,” “applause,”
“protest,” “stand up,” “sit down,” “jump”, etc. have been modeled
using the MoCap data. Although our behavioral modeling may
produce a rather rich set of outputs, we have to map the outputs
to a limited number of animations in our crowd simulation tool.

As can be seen in Figs. 5 and 6, there are none of the repeated
motion patterns or robotic actions that can usually be observed in
soccer videogames. The most important achievement of this
paper is the generation of a very large number of individually
processed spectators for more realistic tribune scenes in soccer
videogames. A comparison of Figs. 6 and 7 clearly highlights this,
given the much greater variety of actions and reactions in Fig. 6
than in Fig. 7.

”

GPU Occupancy

GPU Time (Total)
00% 9.26% 18.52% 27.79% 37.05% 46:31% 55.57% 64.83% 74.10% 83.36% 92.62%
!
T T T T T T T T T T
000% 926% 18.52% 27.79% 37.05% 4631% 55.57% 64.83% 74.10% 83.36% 92.62%
GPU Time (Total)
SBE Process Graph
1336+
1186
-E 10:
< 1038
S
2
o 890
5
E
w 7414
E
-
=5 593
=
g
4454
296~
1484
0

1 13 25 37 49 61 73

a5 97 109 121 133 145 157

SBE Processes: 120 fuzzy influences, 47 memory copy operations

Fig. 4. Simulation of 65,536 spectators on the GTX 295 GPU. (a) GPU Occupancy (b) SBE Process Graph.

Table 1
CPU and GPU performances of the SBE.

Population CPU (single CPU Core, Intel T 9550 @ 2.67 GHz) GPU (GT 120 M) GPU (GTX 295)
Process time Processor Process Processor Process Processor
(ms) occupancy (%) time (ms) occupancy (%) time (ms) occupancy (%)
16,384 4762 3.97 188.97 0.16 39.20 0.03
32,768 9470 7.89 335.74 0.28 61.81 0.05
65,536 18,992 15.82 651.32 0.54 103.77 0.09

1068 E. Yilmaz et al. / Computers & Graphics 35 (2011) 1063-1069

Fig. 7. Close-up view of fans supporting their team (courtesy of Sobee).

The proposed method requires high-end GPUs and parallel
processing with CUDA, but offers a flexible mechanism for the
handling of spectator behavior modeling. In this way, soccer video-
games can benefit from the parallel computing power of the GPUs,
however extra effort is needed to handle the additional rendering
cost. To achieve this, various rendering techniques can be used to
populate tribunes with large numbers of spectators [28-33].

3.3. A special case: Mexican wave visualization
In order to test the functionality of SBE we tried to simulate

the Mexican wave, which is a collective human behavior where
the spectators in the neighbor columns stand up while raising

Table 2
Fuzzy knowledge-base for Mexican wave example.

Rule

1 If Wave is Strong OR Mood is Normal then Involvement is Average
2 If Wave is Strong OR Mood is Excited then Involvement is High

3 If Wave is Weak AND Mood is Bored then Involvement is Low

Fig. 8. A still image from the Mexican wave simulation.

their arms up and then sit down again. This action triggers the
neighbors to do the same. The stronger waves generally continue
around the stadium several times. The Mexican wave phenomena
was interpreted and quantified by Farkas et al. with a variant of
models originally developed to describe cardiac tissue [34]. They
examined several Mexican wave videos and the results they
report are as follows:

e The wave usually rolls in a clockwise direction.

e The typical wave speed is 12 m/s (nearly 20 seats).

e The average width is 6-12 m (nearly 15 seats).

e The wave is initiated by no more than a few dozen people.

Supplementary material related to this article can be found
online at doi:10.1016/j.cag.2011.10.001.

Considering the facts provided in the literature we employed
the fuzzy rules given in Table 2. Two inputs for fuzzification were
used; the strength of the wave and the mood of the spectator.

The metrics provided by Farkas et al. were taken into account
while designing fuzzy knowledge-base. The results illustrated in
Fig. 8 reflect similarities to the above given metrics. The status of
the neighbors was used to determine the first fuzzy input, which
is the strength of the wave. We used "mood” as the second input
parameter. As seen in this figure, some spectators do not join the
wave, depending on their current mood. To simulate this specific
soccer event, we assumed that all of the spectators support the
same team. We also initialized spectator’s mood in order to
ensure that the excitement level is high. If there is nothing new
to excite the spectators, SBE decreases the excitement level and
the wave stops after a while.

4. Conclusions

We have presented an approach for the realistic modeling of
spectator behavior in soccer videogames using the Nvidia CUDA
parallel programming architecture. The results show that the high
performance computing capability of the GPUs makes it possible

doi:10.1016/j.cag.2011.10.001

E. Yilmaz et al. /| Computers & Graphics 35 (2011) 1063-1069 1069

to process thousands of virtual spectators individually in real-time.
The GPU processing and data transfer time to handle tens of
thousands of spectators is almost negligible since it is no more than
the 0.1% of the total GPU occupancy time. Thus, spectators in soccer
videogames can be simulated more precisely, and with no regular
motion patterns for almost no CPU cost. In this study, we have
followed an XML-based approach to easily construct the knowledge
base and the rule-base that is used by the fuzzy logic inference to be
performed on the GPU. The usage of fuzzy logic provides behavioral
variety and realism to the spectators, which is currently very limited
in soccer videogames. A so-called Spectator Behavior Engine (SBE)
computes the spectators’ behavior in tribunes separately from the
game engine to allow a flexible and pluggable software architecture;
the SBE receives the status of the game at any instance and computes
the behavior of the individual spectators accordingly, which is then
sent back to the game engine. In this way, applications that contain
huge number of spectators may incorporate this functionality in an
easy and modular manner. Our initial efforts cover the details only
for soccer videogames, but it is possible to extend this approach to
other sports games and crowd simulation applications that contain
large crowds.

References

[1] Boyko RH, Boyko AR, Boyko MG. Referee bias contributes to home advantage
in English Premiership football. J. Sports Sci. 2007;25:1185-94.

[2] Nvidia. 2010; Nvidia CUDA C Programming guide version 3.2, (http://
developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_
Programming_Guide.pdf’.

[3] Weber O, Devir Y, Bronstein AM, Bronstein MM, Kimmel R. Parallel algo-
rithms for approximation of distance maps on parametric surfaces. ACM
Trans. Graphics 2008;27(4). (Presented at SIGGRAPH 2008).

[4] Silberstein M, Schuster A, Geiger D, Patney A, Owens]D. Efficient sum-
product computations on GPUs using software-managed cache. In: Proceed-
ings of the ACM ICS '08; 2008. p. 309-18.

[5] Nyland L, Harris M, Prins]. Fast N-Body Simulation with CUDA. GPU Gems 3.
Addison-Wesley; 2008. p. 677-95.

[6] Le Grand S. Broad-Phase Collision Detection with CUDA. GPU Gems 3.
Addison-Wesley; 2008. p. 697-721.

[7] Howes L, Thomas D. Efficient Random Number Generation and Application
Using CUDA. GPU Gems 3. Addison-Wesley; 2008. p. 805-30.

[8] Yilmaz E, isler V, Yardimc1 YC. The virtual marathon: parallel computing
supports crowd simulations. IEEE Comput. Graphics Appl. 2009;29(4):26-33.

[9] <http://[www.massivesoftware.com/).

[10] Reynolds, C. Big fast crowds on PS3. In: Proceedings of the 2006 ACM
SIGGRAPH symposium on videogames; 2006. p. 113-21.

[11] Steed A, Abou-Haidar R. Partitioning crowded virtual environments. In: VRST
'03: Proceedings of the ACM symposium on virtual reality software and
technology; 2003. p. 7-14.

[12] Berg], Patil S, Seawall J, Manocha D, Lin M. Interactive navigation of
individual agents in crowded environments. In: Proceedings of ACM sympo-
sium on interactive 3D graphics and games, 2008. p. 139-47.

[13] Chittaro L, Serra M. Behavioral programming of autonomous characters
based on probabilistic automata and personality. Comput. Anim. Virtual
Worlds 2004;15(3-4):319-26.

[14] Badler N, Allback J, Zhao L, Byun M. Representing and parameterizing agent
behaviors. In: Proceedings of computer animation; 2002. p. 133-43.

[15] Bécheiraz P, Thalmann D. A behavioral animation system for autonomous
actors personified by emotions. In: Proceedings of first workshop on
embodied conversational characters '98; 1998. p. 57-65.

[16] Ayesh A, Stokes], Edwards R. Fuzzy individual model (FIM) for realistic
crowd simulation: preliminary results. In: Proceedings of FUZZ-IEEE con-
ference '07; 2007. p. 1-5.

[17] Rudomin I, Millan E. XML scripting and images for specifying behavior of
virtual characters and crowds. In: Proceedings of CASA '04; 2004. p. 121-8.

[18] Rudomin I, Millan E. Probabilistic, layered and hierarchical animated agents
using XML. In: Proceedings of the 3rd international conference on computer
graphics and interactive techniques in Australasia and South East Asia
GRAPHITE "05; 2005. p. 113-6.

[19] Zadeh LA. Fuzzy sets. Inf. Control 1965;8(3):338-53.

[20] Chang], Li T. Simulating virtual crowd with fuzzy logics and motion planning
for shape template. In: Proceedings of IEEE conference on cybernetics and
intelligent systems: 2008. p. 131-6.

[21] Zambetta F. Simulating sensory perception in 3D game characters. In:
Proceedings of the 4th Australasian conference on interactive entertainment;
2007. Article no: 7.

[22] Mamdani EH. Application of fuzzy algorithms for control of simple dynamic
plant. Proc. Inst. Electr. Eng. 1974:121-59.

[23] Byl P. Programming believable characters for computer games. Charles River
Media; 2004.

[24] International Electrotechnical Commission (IEC) 1997. Fuzzy control program-
ming IEC 1131-7; 1998. (http://www.fuzzytech.com/binaries/ieccd1.pdf.

[25] Acampora G, Loia V. Using FML and fuzzy technology in adaptive ambient
intelligence environments. Int. J. Comput. Intell. Res. 2005;1(2):171-82.

[26] Maim], Yersin B, Pettré], Thalmann D. YaQ: an architecture for real-time
navigation and rendering of varied crowds. IEEE Comput. Graphics Appl.
2009;29(4):44-53.

[27] Ciechomski P, Schertenleib S, Maim J, Thalmann D. Reviving the Roman
odeon of Aphrodisias: dynamic animation and variety control of crowds in
virtual heritage. Virtual Syst. Multimedia 2005:601-10.

[28] Millan E, Rudomin 1. Impostors and pseudo-instancing for GPU crowd
rendering. In: Proceedings of the fourth international conference on compu-
ter graphics and interactive techniques in Australasia and Southeast Asia;
2006. p. 49-55.

[29] Millan E, Rudomin L. Impostors, pseudo-instancing and image maps for GPU
crowd rendering. Int. J. Virtual Reality (IVJR) 2007;6(1):35-44.

[30] Millan E, Hernandez B, Rudomin I. Large crowds of autonomous animated
characters using fragment shaders and level of detail. In: Engel W, editor.
Shader X5—advanced rendering techniques. Charles River Media; 2006.
p. 501-10.

[31] Dobbyn S, Hamill J, O’Connor K, O’Sullivan C. Geopostors: a real-time
geometry/impostor crowd rendering system. In: Proceedings of symposium
on interactive 3D graphics and games '05; 2005. p. 95-102.

[32] Kavan L, Dobbyn S, Collins S, Zara J, O'Sullivan C. Polypostors: 2D polygonal
impostors for 3D crowds. In: Proceedings of the symposium on interactive 3D
graphics and games '08; 2008. p. 149-55.

[33] Dudash B. Animated crowd rendering. GPU Gems 3. Addison-Wesley; 2008.
p. 39-52.

[34] Farkas I, Helbing D, Vicsek T. Social behavior: Mexican waves in an excitable
medium. Nature 2002;419:131-2.

http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://www.massivesoftware.com/
http://www.fuzzytech.com/binaries/ieccd1.pdf

	Realistic modeling of spectator behavior for soccer videogames with CUDA
	Introduction
	Related work
	GPU parallel processing with Nvidia CUDA
	Behavior modeling and fuzzy inference
	Fuzzy inference
	XML structure
	Examples of fuzzy variables

	Implementation
	Performance tests
	Visualization of spectators
	A special case: Mexican wave visualization

	Conclusions
	References

