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Scaffold design plays a crucial role in developing graft-based regenerative strategies, especially when
intended to be used in a highly ordered nerve tissue. Here we describe a hybrid matrix approach, which
combines the structural properties of collagen (type I) with the epitope-presenting ability of peptide
amphiphile (PA) nanofibers. Self-assembly of PA and collagen molecules results in a nanofibrous scaffold
with homogeneous fiber diameter of 20—30 nm, where the number of laminin epitopes IKVAV and YIGSR

ge{fwords: bl can be varied by changing the PA concentrations over a broad range of 0.125—2 mg/ml. Granule cells (GC)
L:m?rfiixem y and Purkinje cells (PC), two major neuronal subtypes of cerebellar cortex, demonstrate distinct response
Collagen to this change of epitope concentration. On IKVAV hybrid constructs, GC density increases three-fold

Peptide amphiphile compared with the control collagen substrate at a PA concentration of >0.25 mg/ml, while PC density
Nerve tissue engineering reaches a maximum (five-fold vs. control) at 0.25 mg/ml of PA and rapidly decreases at higher PA
Brain concentrations. In addition, adjustment of the epitope number allowed us to achieve fine control over PC
dendrite and axon growth. Due to the ability to modulate neuron survival and maturation by easy
manipulation of epitope density, our design offers a versatile test bed to study the extracellular matrix

(ECM) contribution in neuron development and the design of optimal neuronal scaffold biomaterials.
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The function of the central nervous system is determined by
a precisely connected network among neurons. Symptoms of
neurological deficits following injury or disease result from the
disruption of this network, and one of the main goals of neural
tissue engineering is to rebuild the damaged neurons into func-
tional tissue [1]. Neural stem cell based techniques present one
particularly promising approach [2], and delivering them using
a supporting scaffold offers distinct advantage in terms of cell
survival, retention and differentiation [3—5]. Apart from being
a structural support, ideally the scaffold should provide essential

Abbreviations: PA, peptide amphiphile; PC, purkinje cell; GC, granule cell; DIV,
days in vitro; ECM, extracellular matrix.
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biophysical and biochemical instructive cues for the desired cell
response [6]. The novel design strategies afforded by the recent
advancements in nanoscale technologies seem likely to play
a central role to achieve this goal [7-9].

Since the natural ECM molecules within the cellular microen-
vironment guide cell development and maturation [10], one
general strategy to improve scaffold bioactivity involves incorpo-
ration of specific ECM-derived signals. Identification of cell adhe-
sion short peptide sequences present in the ECM proteins [11] has
led to the development of a large number of biomimetic materials
for neural and other tissues [12]. For the nervous system in
particular, the ECM protein laminin has been shown to play a crit-
ical role in multiple stages of development [13]; a number of
laminin-derived short bioactive sequences such as IKVAV, YIGSR
and RNIAEIIKDI have been reported to promote cell attachment,
neurite outgrowth and axon guidance [14—17]. Matrix scaffolds
modified by these epitopes, show significant improvement in terms
of neuronal differentiation, attachment and neurite growth, and
can also be engineered to guide axonal extensions [3,18,19]. In vivo,
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IKVAV and YIGSR peptide presenting scaffolds have been shown to
promote spinal cord and peripheral nerve regeneration respec-
tively [20,21]. Their efficacy, however, often depends on the density
of the presented epitopes, as suggested by in vitro studies; for
example, in a laminin epitope modified fibrin gel, neurite growth
responses of dorsal root ganglion neurons were dependent on the
epitope concentration [18].

Peptide amphiphile (PA) nanofiber scaffolds are designed to
present cells with bioactive epitopes at a very high density, and
provide a common platform for a wide variety of regenerative
medicine applications including angiogenesis, cartilage, bone and
neuronal regeneration [20,22—26]. Self-assembly of PA molecules
into nanofiber networks from solution is triggered by charge
screening when pH or salt concentration is changed. Screening
commonly results in the formation of networks containing bundled
or entangled fibers with individual diameters in the order of
6—10 nm [3,8]. Fiber assembly is favored by a B-sheet forming
amino acid sequence placed near the hydrophobic tail of these
molecules, while the peptide segment near the fiber surface is
designed to display specific bioactive sequences [9,27]. Such
molecular design has been shown to be successful in presenting
ECM-derived signals or to enhance the availability of endogenous
growth factors in the scaffold [24,28]. IKVAV epitope-presenting PA
scaffolds have been previously shown to selectively promote
neuronal differentiation from neuroprogenitor cells in vitro [3].
Furthermore, injecting this scaffold in rodent spinal cord injury
models resulted in axonal regeneration through the lesion, along
with an enhanced serotoninergic fiber density caudal to the lesion,
leading to improved functional recovery [20,29].

We describe here the design of a hybrid matrix that combines
neuro-active PAs with collagen. The underlying motivation for the
combinatorial approach is to control matrix bioactivity by adjusting
the laminin epitope concentration using PAs, while maintaining the
favorable mechanical properties of collagen (which alone can form
stable gels and is widely used for 3D cell culture studies [30,31]).
The role of hybrid matrix in supporting the development of central
nervous system neurons was evaluated here using rat cerebellar
neurons. The number of cerebellar granule cell (GC) and Purkinje
cell (PC) are tightly regulated during development [32,33] and they
acquire very characteristic dendrite morphologies upon matura-
tion, resulting in the highly stereotyped neuronal circuit of the
cerebellar cortex [34]. These well characterized features provide
a bioactivity index to evaluate the hybrid matrix in vitro.

2. Materials and methods
2.1. Preparation of hybrid matrix

Branched PA molecules were obtained by solid-phase peptide synthesis (SPPS)
as previously described [35]. Fmoc-protected amino acids, MBHA rink amide resin,
and HBTU were purchased from NovaBiochem (USA) and all other reagents were
purchased from Fisher (USA) or Sigma—Aldrich (USA). PA stock solutions (1% w/v;
pH 4) in water were homogenized by sonication in a water bath for 20 min prior to
their use. Collagen (Typel) was extracted from the tail tendon of 3—4 month old
Wistar rats, following the method outlined in [36], with some modifications. In brief,
the collected tendons from the rat-tail were dissolved by stirring in 0.1 m acetic acid
and purified by centrifugation and repeated dialysis. The purified sample was finally
dialyzed against 0.1X DMEM solution (adjusted to pH 4.0 with HCl), and stored
at —80 °C. The purity of the collagen was confirmed by 5% SDS-PAGE electrophoresis
and concentration was measured using an EZQ protein quantification kit (Molecular
Probes, Inc.). In all gels prepared for neuronal culture, the final collagen concen-
tration was 1.8 mg/ml. Collagen and PA stock solutions were diluted to appropriate
working concentration in sterile milliQ water at 4 °C. The solutions (total volume
50 ul) were mixed quickly in the center well (8 mm diameter) of glass bottomed
35 mm Petri dish (Falcon 3001). The collagen-PA mixture was exposed to ammonia
vapor for 10 min at room temperature (RT) to induce gel formation. To ensure
complete supramolecular polymerization and to exchange buffer, 100 pl DMEM
solution was added on top of the gel and left overnight in an incubator at 37 °C and
5% COy, prior to cell experiments.

2.2. Rheology

Rheological measurements were performed using a Paar Physica rheometer
(MCR 300), operating in 25 mm parallel plate configuration. The stage temperature
was maintained at 5 °C (Except during the gelation studies using ammonia vapor,
when the temperature was raised to 25 °C), and the gap between the plates was
fixed at 0.5 mm (requiring 300 pl sample volume). Samples were tested at 0.5%
oscillatory strain over angular frequency range of 1-100 s~, after an initial equili-
bration period of 30 min. Ammonia-induced gel transformation of the sample
solutions was carried out by a 10 min exposure to ammonia vapor on the stage.

2.3. Circular dichroism (CD) spectroscopy

CD spectra were obtained from 250 nm to 185 nm using a Jasco J-715 spec-
trometer. For the measurements, collagen and PA stock solutions were diluted in
milliQ water to final concentration of 2.7 x 107> mg/ml and 3.0 x 103 mg/ml
respectively.

2.4. Thioflavin T (ThT) fluorescence assay

A stock solution of 0.5% ThT (Sigma) was freshly prepared in 5 mm pyruvic acid
buffer (pH 4) and filtered through 0.22 pm cellulose acetate filter. The final
concentration of ThT (50 um) was obtained by diluting 1 pl of the stock solution to
300 pl. An emission spectrum was obtained with a Jasco FP-750 spectrofluorometer
using quartz cuvette of 3 mm optical path length. The sample was excited (Aex) at
440 nm and the emission spectrum was acquired in the wavelength range of
450—600 nm. Measurements were made for the collagen (1.8 mg/ml) solution, PA
(2 mg/ml) solution and their combination in pyruvic acid buffer (pH4). The
measurement of the PA emission was repeated at pH 7 by changing the buffer to
phosphate buffered saline (PBS).

2.5. Atomic force microscopy (AFM)

AFM imaging was performed on a Bioscope II (Veeco) operating in tapping mode
in air. Stock solutions of the PA (10 mg/ml), collagen (2.2 mg/ml) or their combi-
nation (collagen 1.8 mg/ml, PA 2 mg/ml) were diluted 50—100 fold with milliQ water
and 80 pl of the diluted solution was adsorbed on a freshly cleaved mica surface for
2 min. The surface was dried using a stream of air and height images were acquired
by using a silicon cantilever (Applied NanoStructures, USA) with a nominal force
constant of 40 N/m and resonant frequency of 300 kHz.

2.6. Transmission electron microscopy (TEM)

A small volume (5—10 pL) of the sample (PA 1 mg/ml; collagen 0.22 mg/ml;
collagen 0.18 mg/ml + PA 0.2 mg/ml) was applied to a copper TEM grid with a carbon
support film (Electron Microscopy Sciences, USA). Excess solution was wicked away
with filter paper, and once dried the samples were negatively stained using a 2% (w/
v) uranyl acetate (Electron Microscopy Sciences) solution in water. Images of
negatively stained samples were obtained on a Tecnai Spirit G2 microscope (FEI)
operating at 120 kV.

2.7. Cryogenic transmission electron microscopy (cryo-TEM)

Cryo-TEM was performed on a JEOL 1230 microscope operating at 100 kV. Stock
solutions of the PA (10 mg/ml), collagen (2.2 mg/ml) or their combination (collagen
1.8 mg/ml, PA 2 mg/ml) were diluted 2—5 times in milliQ water, and a small volume
of the sample (5—10 pL) was applied to a copper TEM grid with holey carbon support
film (Electron Microscopy Sciences). The sample specimen was blotted under
a controlled environment and vitrified using a Vitrobot Mark IV (FEI) device. The
vitrified samples were introduced in the scope by a Gatan 626 cryo-holder, and
imaged using a Hamamatsu ORCA CCD camera.

2.8. Confocal reflection microscopy (CRM)

CRM of gel samples was performed on LSM 510 META (Zeiss) inverted laser
scanning confocal microscope. Gel samples were prepared in the center well of
glass-bottom 35 mm Petri dishes (following the procedure used for cell experi-
ments), and kept hydrated by the addition of phosphate buffered saline. A 488 nm
laser source was used to image the gel samples.

2.9. Scanning electron microscopy (SEM)

SEM samples were processed as previously described [37]. After dehydration
through graded ethanol concentrations, the specimens were transferred to t-butyl
alcohol for three rinses, then frozen and freeze-dried (VFD-21S, Vacuum Device Co.
Ltd., Mito, Japan), sputter-coated with osmium (VE3030CVD, Vacuum Device) and
imaged using a field emission SEM (LEO 1530, LEO, Oberkochen, Germany).
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2.10. Cerebellar neuronal culture

Cerebellar cultures were prepared from Wistar rat fetuses (embryonic day 18)
using an established protocol [38,39] with some modifications. Briefly, embryos
collected from anaesthetized pregnant rats were dissected in cold Ca™*/Mg""-free
Hank’s BSS. Washed cerebella were sequentially digested in 0.25% bovine pancreas
trypsin for 20 min at room temperature and with 0.05% DNase in 12 mm MgSO4 at
4 °C, followed by mechanical trituration with a fire-polished Pasteur pipette. After
complete dissociation of the tissue, the cell suspension was placed on top of 10% and
60% Percoll solutions in a 15 ml tube and centrifuged at 3000 g for 15 min. Cells were
collected from the 10—60% interface and diluted in seeding medium containing
DMEM F-12 and 10% inactivated horse serum. This suspension was seeded on pre-
formed gel or on poly-lysine poly-ornithine coated coverslips, at concentration of
4800 cells/mm2 and 4300 cells/mm? respectively, and cultured in 1 ml of culture
medium with composition as in [38] with addition of 1.5% inactivated horse serum
and 25% astrocyte-conditioned medium (Sumitomo Bakelite, Japan). Half of the
medium was replaced on the 14th day and every 7th day thereafter. All saline
solutions were obtained from Gibco BRL Life Tech (Tokyo, Japan), while reagents and
enzymes were obtained from Sigma (Tokyo, Japan). Dissection and animal handling
were carried out in accordance with the National Institutes of Health Guide for the
Care and Use of Laboratory Animals, and specifically approved by the Research
Ethics Section Safety Center of the RIKEN Institute.

2.11. Immunostaining

Cultured cells were fixed with 4% paraformaldehyde in 0.1m PBS (pH 7.4,
340 mOsm) at 4 °C, then blocked with 10% normal goat serum, 2% BSA in PBS and
0.4% Triton X-100. The following primary antibodies (with indicated dilutions) were
used for immuno-detection: Mouse anti-neuronal nuclei (NeuN) monoclonal
(1:500, Chemicon International, USA); mouse anti-tubulin, beta III isoform mono-
clonal (1:1000, Chemicon); anti-Calbindin D-28K (mouse monoclonal, 1:1000,
Swant, Bellinzona, Switzerland and rabbit polyclonal, 1:1000, Chemicon); anti-
microtubule-associated-protein 2 (MAP2) polyclonal (rabbit 1:2000, Chemicon
and chicken 1:10,000, Novus Biologicals, Littleton, USA); mouse anti-synaptophysin
monoclonal (1:10,000, Chemicon). The primary antibodies were incubated over-
night at 4 °C then detected with the appropriate dye-conjugated secondary anti-
bodies (Molecular Probes, Inc., 2hr incubation at RT).

2.12. Image acquisition and analysis

Neuronal attachment to the gel surface was assessed by phase contrast images
(NIKON Diaphot 300). Fluorescently stained samples were imaged either using
a cooled CCD camera (Coolsnap Photometrics, Tucson, AZ) attached to an upright
microscope (BX51, Olympus) or with a confocal laser scanning microscope (FV500,
Olympus). Deconvolution of confocal image stacks was performed using the Huy-
gens software (Scientific Volume Imaging, Netherlands). PC surface dendrite growth
was quantified by estimating PC projected surface area and 2D convex hull from the
upper 20 um of the confocal stacks, in order to exclude the penetrating branches
from the estimation. The area covered by a single PC soma and its dendrites
following maximum intensity projection along the Z-axis was considered as the
projected surface area. The convex hull, an index of PC dendritic spread on the
substrate, was defined as the total area obtained by joining the most distal dendritic
tips with straight lines. Analyses were performed semi-automatically using routines
written in Matlab and Image] (NIH) software. Neuron density estimates were ob-
tained from NeuN stained culture using the nuclei counting module in Image]
software.

2.13. Electrophysiological recording

Whole-cell voltage-clamp and current clamp recordings were performed on the
PCs cultured on the collagen-PA gel, under phase-contrast observation. An inverted
microscope (NIKON TE2000), with long working distance, phase contrast objectives
was used to enable focusing through the ~350 um thick gel. The extracellular
solution contained 140 mm NaCl, 3 mm KCl, 3 mm CaCl,, 1T mm MgSOy4, 0.5 mm
NapHPO4, 10 mm p-glucose, 10 mm HEPES, 3 mm Na-pyruvate (pH 7.35, 330 + 5
mOsm, 33 °C). The pipette-filling solution contained 60 mm K-gluconate, 60 mm
K-methanesulfonate, 20 mm KCl, 3 mm MgCly, 4 mm NapATP, 0.4 mm NaGTP, 15 mm
HEPES, 2 mm EGTA, 0.8 mm CaCly, and 1 mm reduced glutathione (pH 7.4,
310 & 5 mOsm). Pipette access resistance was <3 MQ and seal resistance was >1 GQ.

2.14. Statistical analysis

Normality of the distribution of datasets was tested using the Shapiro—Wilk
normality test. Non-parametric statistical methods were employed to determine the
difference between groups. The Mann—Whitney U test and Steel test were used for
single and multiple comparisons respectively. All bargraphs indicate the
mean + SEM unless otherwise stated.

3. Results
3.1. Design and characterization of the PA-collagen hybrid matrix

The PAs used here have a molecular design that enables the
molecules to self-assemble into nanofibers that gel upon screening
the amino acid charges by ionic strength or pH changes [22,40]. For
the hybrid matrix preparation, we chose positively charged PAs,
which are soluble at low pH and upon neutralization form nano-
fibers and gels if the concentration of PA is high enough. Collagen
similarly requires an increase in pH to form fibrous network gels
from solution, so the use of positively charged PAs allows for
uniform mixing with collagen prior to gelation. In addition, the PA
molecules used here have a branched molecular structure (Fig. 1A),
obtained by the introduction of a lysine dendron moiety onto the
peptide backbone [35,41]. Such a branched design has been
previously shown to enhance epitope accessibility to cell receptors,
and also allows simultaneous presentation of two epitopes on
a single PA molecule [35,42]. To mimic laminin function, the PA
molecules used were functionalized with laminin-derived bioactive
peptide sequences, either IKVAV alone (IKVAV-PA) or both IKVAV
and YIGSR (IKVAV/YIGSR-PA).

Although both PAs (2 mg/ml) and collagen (1.8 mg/ml) are
soluble at pH 4, we observed that upon mixing they rapidly (<30 s)
formed a highly viscous solution. This observation was confirmed
by rheological measurements of the storage modulus (G’) of the
mixture (21 £ 5 Pa at 10 s~! angular frequency), several orders of
magnitude higher than that of the individual components (Fig. 1B).
Moreover, the G’ value of the collagen-PA mixture is greater than
the loss modulus (G”) over the observed frequency range of
1-100 s~ indicating the formation of weak gels (Fig. S1). To
examine whether this change is driven by collagen induced
assembly of the PAs, the f-sheet secondary structure (a character-
istic of PA nanofibers [43]) was evaluated by circular dichroism
spectroscopy (CD). Measured at pH 4.0, the CD spectrum of collagen
reveals a random coil structure while PA molecules show a mixture
of a-helical and B-sheet conformations (Fig. 1C). However, mixing
collagen and PAs does not change the extent of f-sheet formation in
the sample. This observation was further confirmed by measuring
the emission of a fluorescent dye Thioflavin T (ThT) that detects the
presence of B-sheet fibrils. PA solutions (pH 4) show an emission
peak at 472 nm (excitation: 440 nm), but addition of collagen fails
to induce any change in the emission spectrum (Fig. 1D). As ex-
pected, at pH 7 the PA solution reveals an increase in emission
intensity by approximately 54%, suggesting the formation of addi-
tional B-sheets due to neutralization of the PA molecules. These
results suggest that collagen has minimal influence on PA self-
assembly at low pH.

To understand how the PAs and collagen interact when mixed,
we performed atomic force microscopy to examine their structure
(AFM). Aqueous solutions of PA molecules (sonicated in a water bath
for 20 min in order to breakdown larger assemblies; Fig. S2) are
found to form short nanofibers on the length scale of hundreds of
nanometers (Fig. 2A). Since collagen does not adsorb to untreated
mica [44], nanostructures are not observed in samples prepared
from collagen solutions (Fig. 2B). However, in the collagen-PA
mixture thin fibers of heights 1-1.5 nm, matching with the
dimension of collagen triple helix molecule (~ 1.5 nm diameter),
are found interspersed between PA nanofibers (height > 4 nm),
suggesting that collagen molecules form a complex with PA when
mixed (Fig. 2C). This observation was confirmed by transmission
electron microscopy (TEM). TEM micrographs of negatively stained
collagen-PA samples reveal the close association of collagen triple
helices (~ 1.5 nm diameter) with PA nanofibers (diameter ~ 9 nm)
(Fig. S3). In order to eliminate the possibility that this association
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Detection of B-sheet secondary structure by Thioflavin T (ThT) fluorescence: ThT emission spectra in presence of collagen (1.8 mg/ml), IKVAV/YIGSR-PA (2.0 mg/ml) and collagen/PA mix at the indicated pH are shown (4ex = 440 nm).

8¥S

GS6—SkS (Z102) €€ S|pHapwiolg / v 32 4ns S



S. Sur et al. / Biomaterials 33 (2012) 545—555 549

2 @
W o

L,

Fig. 2. Microscopic characterization of collagen-PA hybrid matrix. (A—C) AFM height images of the IKVAV-PA (A), collagen (B) and collagen-PA mixture (C) adsorbed on to a mica
surface. No structures are observed for the collagen sample, since collagen molecules do not adsorb on untreated mica. Gray level corresponds to a vertical scale of 10 nm (D—F)
Confocal reflection microscopy images of the hydrated matrix: Network of fibers observed in pure collagen gel (1.8 mg/ml, D) are replaced by sparsely distributed short fibers and
small aggregates in hybrid matrices containing IKVAV-PA (0.5 mg/ml, E; 2 mg/ml, F) A. (G—I) Scanning electron micrographs of the collagen gel (1.8 mg/ml, G) and hybrid matrices
formed by addition of IKVAV/YIGSR-PA (0.5 mg/ml, H; 2 mg/ml, I).

results from drying effects during sample preparation, we per-
formed cryogenic-TEM, which provides structural details under
hydrated conditions. Unfortunately, the contrast of collagen mole-
cules is too low to be visualized under cryo-TEM. However, long
parallel PA nanofibers (not sonicated) form a highly entangled
network upon mixing with collagen, suggesting their interaction
(Fig. S4). This interaction, apart from the influence on PA nanofiber
association, is therefore expected to limit the free movement of
collagen molecules in solution.

We next evaluated whether the collagen-PA interaction had an
effect on collagen fiber assembly in gels used for cell experiments.
We observed that collagen solutions (1.8 mg/ml) gelled by exposure
to ammonia vapor had a comparable stiffness to the hybrid matrix
containing 0.5—2.0 mg/ml of PA (G’ 20—100 Pa at angular frequency
of 10 s~1). Confocal reflection microscopy (CRM) of the hydrated
collagen gel reveals network of collagen fibers (Fig. 2D), consistent
with previous reports [45]. However, the presence of even rela-
tively small amounts of PA (0.5 mg/ml) causes a noticeable reduc-
tion in fiber density and length, and at higher PA concentration
(2 mg/ml) only small and sparsely distributed aggregates are
observed (Fig. 2E,F). Nanofibers from pure PA gels (5 mg/ml,

concentration at which it forms self-supporting matrices) were also
not visible under CRM. Scanning electron microscopy (SEM) of the
gels supports the CRM findings. Collagen fibers in pure collagen gels
(1.8 mg/ml) demonstrate various degrees of bundling, resulting in
fiber diameters ranging from 20 to 200 nm and mesh size in the
order of microns (Fig. 2G). In contrast, hybrid matrices with both
(low 0.5 mg/ml) and high (2 mg/ml) PA content show a nearly
uniform fiber diameter (20—30 nm) and a fine reticular structure,
leading to a homogeneously smaller mesh size (Fig. 2H,I). Since the
collagen content of the hybrid matrix is equal to that of pure
collagen gel, these thin fibers (optically transparent to CRM) must
have collagen as one of their structural components (we did not
investigate further whether collagen exists as a composite with PA
within these fibers or forms a distinct population separate from PA
nanofiber bundles).

3.2. Neuron attachment and survival
To evaluate if the laminin epitopes presented on the PAs

improve hybrid matrix bioactivity, we first checked their ability to
promote cell attachment. Freshly dissociated cerebellar cells
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demonstrate substantially improved attachment on PA-containing
substrates (Fig. 3A). On pure collagen cell attachment is poor, as
revealed by the formation of cell clumps at the gel surface. The PAs,
either alone (5 mg/ml) or as hybrids with collagen, allowed uniform
adhesion of the cells, with an attachment density comparable to
that observed on poly-lysine/poly-ornithine-coated glass surfaces,
previously optimized for this cell suspension [38,39]. To exclude the
possibility that the enhanced cell attachment on the hybrid matrix
results from the combination of collagen with any B-sheet forming
peptide sequence, we also tested the commercial product
Puramatrix™ that self-assembles to form a gel but is devoid of any
bioactive epitope sequence. Combination of Puramatrix with
collagen failed to induce any improvement of cell attachment.
These experiments thus confirm the specific role of the PAs in cell
attachment on the hybrid matrix, and also suggest that the PA
epitopes in the matrix are accessible to cells.

Following initial attachment, the matrix should provide specific
ECM-derived signals to the developing neurons in order to
promote their survival and morphogenesis. Overall neuronal
survival was assessed by estimating the density of GC (positive to
neuron-specific nuclear protein NeuN [46]), which represent the
most numerous neuronal population of the cerebellum. Observed
at 16 days in vitro (DIV), NeuN + neuronal soma as well as their
neurites (visualized by tubulin B-III staining) are found to be
uniformly distributed on the hybrid matrix surface while on
collagen they form clumps, mirroring their initial distribution

IK/Y1-PA + coll

A

Coll.

&3

__Puramatrix + coll.

N

1 1.5
IKVAV-PA (mg/ml)

H-PA .250 mg/ml
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immediately after seeding (Fig. 3B). Furthermore, GC density
shows a strong dependence on the PA concentration. The cell
density sharply increases with the IKVAV-PA concentration in the
matrix, and reaches a plateau of roughly threefold higher density
than on a collagen gel at PA concentrations above 0.25 mg/ml
(Fig. 3C). Therefore when evaluated in terms of GC survival, this
result demonstrates the benefit of bioactive PA incorporation in
the hybrid matrix.

We then evaluated the survival of PCs. Interestingly, the rela-
tionship between PA concentration and PC survival does not
follow a classical saturation curve but is instead bell-shaped with
an optimal PA concentration of ~0.25 mg/ml and ~0.5 mg/ml, for
the IKVAV-PA and IKVAV/YIGSR-PA, respectively (Fig. 3D,E). PC
density increases by 3—5 fold at the optimal PA level. At PA
concentrations above 1 mg/ml this effect reverses, with a lower
cell survival compared to the pure collagen substrates. Although
a substantial improvement in PC survival could be achieved by
incorporating an optimal amount of laminin epitope-presenting
PA in the matrix, combined presentation of IKVAV and YIGSR
epitope fails to yield any additional benefit over the IKVAV epitope
alone. Moreover, addition of soluble IKVAV peptide (850 um,
0.44 mg/ml) to the culture medium does not have any significant
effect on the PC density when grown on a collagen substrate
(p > 0.05, Fig. 3F), indicating that epitope immobilization on the
supramolecular scaffold formed by the PA molecules is necessary
for the observed cellular response.
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Fig. 3. Attachment and survival of cerebellar neurons on the hybrid matrix. (A) Dissociated cerebellar cells were seeded on the surface of various gel substrates, and examined after
2.5 h under phase contrast microscopy to assess cell attachment. Substrate compositions used: IK/YI-PA, IKVAV/YIGSR-PA 5 mg/ml; Coll., collagen 1.8 mg/ml; IK/YI-PA + coll,
collagen and IKVAV/YIGSR-PA 2 mg/ml; IK-PA + coll., collagen and IKVAV-PA 2 mg/ml; Puramatrix + coll., collagen and Puramatrix™ 2 mg/ml. Poly-lysine/poly-ornithine coated
glass coverslips were used as a control substrate to compare attachment. (B) 16 days in vitro (DIV) cerebellar cultures on pure collagen and hybrid matrix (IKVAV-PA 1.0 mg/ml) were
stained for neuron-specific nuclear protein (NeuN) and B-tubulin III (TuBIII) to visualize neuronal density and neurite distribution. (C) NeuN + neuron density is plotted against
IKVAV-PA concentration (normalized to pure collagen substrate). The black curve is a fit of the Hill dose—response equation (EC50 ~ 0.14 mg/ml). (D) Representative fields showing
Purkinje cell (PC; calbindin+) cultured on hybrid matrix containing different amounts of IKVAV-PA. (E) PC density measured against a range of IKVAV and IKVAV/YIGSR-PA
concentrations (16 DIV; triplicate; ***: p < 0.001, relative to pure collagen). (F) Soluble IKVAV peptide (0.44 mg/ml, 850 uM), added to the medium, has no significant effect on
the PCs number cultured on collagen substrate. Scale bars (micron) A, 50; B and D, 100.
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3.3. PC morphogenesis

In addition to the effect of the hybrid supramolecular structure
on survival, substrate composition is expected to influence
neuronal maturation. The characteristic morphology of PC
dendrites and axons allowed us to separately assess the effect of the
PA on these two functionally different neuronal processes. Since
cerebellar neurons were seeded on the surface of pre-formed gels
in our experiments, dendrite growth was possible in two direc-
tions: (a) within the interface between gel and the culture medium
(“surface dendrites”), and (b) into the hybrid gel substrates
(“penetrating dendrites”). We observed that when cultured on
hybrid matrix with low PA concentration (0—0.5 mg/ml), PCs and
other neuronal populations extended their dendrites (MAP2+)
primarily on the matrix surface, the plane of least resistance, with
occasional shallow penetrations (Fig. 4A,B; movie S1). However, at
higher PA concentrations (>1.0 mg/ml), an extensive population of
penetrating dendrites could be found in PCs (Fig. 4A, B; movie S2).
These penetrating dendrites always originate from the undersur-
face of the PC soma, are highly branched and are thinner than
surface dendrites. Apart from the difference in spatial distribution
and morphology, surface and penetrating dendrites exhibit
a distinct response to PA concentration in the matrix. While the
IKVAV-PA promotes the growth of penetrating dendrites in a dose
dependent manner (Fig. 3D), surface dendrite growth is stimulated
at lower PA concentrations and is strongly inhibited when the PA
concentration is high (>1 mg/ml). Quantification of the surface
growth by surface area and convex hull measurement (see
methods) shows that the optimum IKVAV-PA concentration for
maximal growth of surface dendrites is ~0.25 mg/ml, where the

A Calb + MAP2

Collagen / IK-PA

¢

i
Collagen / IK-PA

IK:PA 0 mghml

IK-PA 0.125 ma/mi

area and convex hull are 155 + 8% and 187 + 11% relative to
collagen control, respectively (Fig. 4C). Branched IKVAV/YIGSR-PA
produced similar effects on PC dendrite morphology (Fig. 4D).
The two types of dendritic growth observed here may represent
different PC response to laminin epitopes since their characteristics
are retained once originated from the cell soma. Specifically, we did
not observe any branches of surface dendrites entering the
substrate at some distance from the soma and acquiring a pene-
trating dendrite morphology, neither did the penetrating dendrites
resurface and transform into surface dendrites.

Supplementary video related to this article can be found at doi:
10.1016/j.biomaterials.2011.09.093

The axons of PCs also respond differentially to the presence of PA
in the substrate. On collagen, the axons extend exclusively at the
gel—solution interface region and show limited terminal branching
(Fig. 4E). In contrast, on gels containing low concentrations of PA
(0.125 mg/ml), we observed extensive terminal branching, often
associated with prominent invasion of the gel substrate. This effect
became much less prominent when the PA concentration was
increased. Interestingly, the penetration of dendrites and axons into
the substrate appears to be limited to PCs. Over the range of
concentrations studied here, other neuronal populations present in
the culture rarely extend their neurites into the substrate (Fig. 4A).

3.4. Development of synaptic connectivity

To assess whether the neurons cultured on the hybrid matrix
integrate into a functional network, we examined synaptic
connectivity and synaptically evoked electrical activity in PC
neurons. We observed that PC surface dendrites in mature culture
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Fig. 4. Effects of matrix composition on Purkinje cell (PC) morphology. (A) SFP (simulated fluorescence process) volume rendered images of PCs (Calbindin+, green) at 16 DIV,
cultured on either collagen (upper, side view) or collagen/IKVAV-PA (“IK-PA”, 1.0 mg/ml) hybrid matrix (middle, side view; lower, bottom view). The arrowhead points to a random
short incursion of PC dendrite in to the collagen substrate. Dendrite distribution of non-PC cerebellar neurons is shown in red (MAP2+). (B) Image pairs illustrate the top view and
side view of representative PC morphologies (16 DIV) observed on hybrid matrices containing increasing amount of IKVAV-PA. (C) Projected area and convex hull of PC surface
dendrites are plotted against IKVAV-PA concentration (***: p < 0.001, relative to pure collagen). (D) Comparison of the PC vertical span (perpendicular distance between the top
surface of soma and tip of the deepest dendrite), measured over a similar range of PA concentration. (E) Characteristic morphologies of PC axon terminals observed at various PA

concentrations. Scale bars (micron) A, 10; B and E, 20.
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receive a high density of synaptophysin-containing axon terminals
on their spines, mirroring normal synaptic contacts in vivo (Fig. 5A,
B). The presence of PA appears to increase spine density along
dendrites when compared to collagen, although this parameter has
not been quantified here. To examine if these physical connections
are functionally active, we recorded electrical activity from PCs; in
all recorded PCs (n = 7) we detected spontaneous excitatory post-
synaptic currents (Fig. 5C), indicative of active synaptic trans-
mission. In addition, the excitability of the PCs and their ability to
generate sodium and calcium action potentials were demonstrated
by injection of depolarizing current into PCs, triggering discharge
of both slow and fast action potentials characteristic of this
neuronal type.

4. Discussion

We have described here a bioactive supramolecular matrix that
supports the survival and normal functions of neurons from the
central nervous system. This matrix integrates the mechanical
functions of collagen with that of highly bioactive nanofibers dis-
playing laminin epitopes. This design allowed adjustment of the
laminin epitope density within the matrix over an order of
magnitude, without compromising its structural integrity. We have
further demonstrated that a functional neuronal network can be
constructed on this hybrid scaffold system, and neuronal survival
and morphology can be controlled by tuning the laminin epitope
density (Fig. 6B).

war WAL

The integration of collagen and a laminin mimic supramolecular
system to produce a hybrid matrix has allowed us to optimize both
the mechanical properties and bioactivity. Interestingly, previous
attempts to combine the functions of collagen and laminins in
a scaffold matrix using either native laminin protein or laminin rich
matrigel only led to a limited improvement of scaffold bioactivity
[47—49]. The major limitation of this approach has been linked to
an inhomogeneous distribution of laminin aggregates within the
collagen matrix, and a consequent deterioration of matrix
mechanical properties [50]. The formation of collagen fibers from
a solution of triple helical collagen molecules involves assembly in
both the longitudinal and lateral directions, with the formation of
intermediary microfibril structures [51,52] (Fig. 6A). In the supra-
molecular hybrid matrix studied here, we hypothesize that PA
cylindrical aggregates, known to be highly hydrated [53], become
embedded in the collagen fiber bundles with nanoscale dispersion.
Our proposed model is based on the observation that collagen
molecules interact with PA nanofiber assemblies at low pH, but
transform at physiological pH into surprisingly monodisperse
fibers, not observed in pure collagen matrix. This implies that both
collagen and the PA assemblies are closely associated in the
network fibers of fairly uniform diameter, and a plausible model
involves collagen molecules displacing the hydration shell in PA
assemblies. This arrangement would be entropically favored as
water molecules bound to PA molecules in their cylindrical aggre-
gates would be liberated and the volume replaced by collagen. We
also propose that the uniform diameter of the hybrid fibers,
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Fig. 5. Mature PCs on a hybrid matrix form synaptic connections and show electrical activity. (A) Cerebellar culture (22 DIV) on the hybrid matrix (IKVAV/YIGSR-PA 1 mg/ml),
stained for calbindin (blue), B-tubulin III (green) and synaptophysin (red) shows a high density of synaptic connections on PC dendrite. (B) Magnified view of a PC surface dendrite
segment (matrix PA concentration 0.5 mg/ml) reveals the presence of prominent spines. (C) Whole-cell patch clamp recording from a PC cultured on matrix identical to the one
used in (B); both spontaneous synaptic currents (left), and a characteristic action potential discharge following injection of a depolarizing current pulse (right) are observed. Scale

bars (micron) A, 5; B, 2.



S. Sur et al. / Biomaterials 33 (2012) 545—555 553

A

Collagen
molecule

Microfibril —

Q

Hybrid
nanofiber

Surface
dendrite

0 0.125 0.250

|
0.50 1.0 2.0

IKVAV-PA (mg/ml)

Fig. 6. (A) Schematic illustration of collagen type I fiber assembly from triple helix collagen molecule (left). Proposed model for hybrid nanofiber structure, which is formed upon
co-assembly of PA and collagen molecules (right; image not to scale). (B) Summary of PC response to hybrid matrix at various IKVAV-PA concentrations.

exceeding that of PA nanofibers, is rooted in a nucleation event that
offers an optimal structure containing the supramolecular aggre-
gates embedded in a collagen matrix. Given the aqueous environ-
ment in which these hybrid structures form, the surface of the
fibers must have exposed PA assemblies explaining the bioactivity
we observed. Modification of the collagen scaffold by covalent
grafting of YIGSR laminin epitope sequence has been previously
shown to promote neurite outgrowth in vitro [54] and axonal
regeneration in vivo [21]. Presentation of the laminin epitopes in
the matrix through the supramolecular assemblies of PA molecules
offers the advantage of tight control upon epitope density without

the need for complex chemical reactions to couple the peptide to
the matrix.

We have demonstrated here that PCs cultured on a hybrid
matrix substrate have two distinct forms of dendrite growth. The
surface dendrites are morphologically similar to the dendrites
found on 2D substrates or on pure collagen gels; they exhibit an
adhesive epitope density dependent biphasic response [55] with
the maximal growth observed at moderate laminin epitope
concentration (IKVAV-PA 0.25 mg/ml). In contrast, penetrating
dendrites develop better in a PA-rich matrix (>1 mg/ml), and are
absent in collagen gels even having a comparable stiffness and
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a much larger mesh size, indicating that the high level of laminin
epitope concentration offered by the supramolecular systems exert
an attractive guiding force toward growing dendrites. Thus, our
results suggest that laminin has at least two different modes of
influencing PC dendrite growth. In addition to dendrites, axon
morphology shows a substantial dependence on laminin epitope
density, with maximum terminal branching observed at an IKVAV-
PA concentration of 0.125 mg/ml, lower than the optimum
concentration for surface dendrite growth. Therefore, even though
the growth of dendrites and axons are often broadly considered
under the category of “neurite growth”, our results underline a very
different matrix requirement for their optimal development.

The possibility of controlling the density of laminin epitopes in
a mechanically stable hybrid matrix revealed a differential
response of morphological attributes from the same neuron.
However, we also observed that different neuronal populations
from the same brain region exhibit a distinct response to the
laminin epitope concentration in the surrounding matrix. While GC
survival is maximized at PA concentrations above 0.25 mg/ml, for
PCs this concentration is optimal and survival rate was found to
decrease at higher PA concentrations. Dendritic penetration into
the matrix was observed for PCs at higher PA concentrations, but
was never found in GCs over the entire range of PA concentration
tested. This variability can be explained by a difference in their
expression of integrin/non-integrin ECM receptors to which the
laminin epitopes bind [56]. The neuron-specific response to the
laminin epitopes could also explain why the IKVAV/YIGSR combi-
nation had no additional advantage over IKVAV on cerebellar
neurons, even though the combination was previously shown to
produce synergistic beneficial effects on the neurite growth of
pyramidal neurons [57] and non-additive effects on dorsal root
ganglion neurons [18]. Since neuronal development takes place in
a strictly sequential manner in the developing cerebellum [58]
accompanied by a fast spatial redistribution of laminin [59], we
assume that the differential effects observed here reflect their
in vivo response to laminin. From a substrate engineering point of
view, these observations underline the fact that the matrix
composition needs to be carefully tailored to match the require-
ments of specific sub-regions of the brain, and the tunable epitope
concentration afforded by self-assembling supramolecular systems
provide a useful way to achieve control over the development of
a targeted neuron population.

5. Conclusions

We have demonstrated that synthetic hybrid matrices formed
by co-assembly of ECM biopolymers and self-assembling bioactive
molecules can be molecularly tuned to support neuronal survival
and morphogenesis. The hybrid matrix approach, with its easily
adjusted epitope densities, offers the possibility of studying in vitro
the complex interaction of specific extracellular signals, their
concentration, and the matrix mechanical properties on the
responses of brain neurons. The matrix investigated here and
similar systems can also be translated to biodegradable and
bioactive scaffolds for nerve tissue regeneration.
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