
Optimization of Schedule Stability and Efficiency Under Processing Time Variability
and Random Machine Breakdowns in a Job Shop Environment

Selcuk Goren,1 Ihsan Sabuncuoglu,2 Utku Koc2

1 Department of Industrial Engineering, Istanbul Kemerburgaz University, Istanbul, Turkey

2 Department of Industrial Engineering, Bilkent University, Ankara, Turkey

Received 15 February 2010; revised 26 September 2011; accepted 4 October 2011
DOI 10.1002/nav.20488

Published online 8 November 2011 in Wiley Online Library (wileyonlinelibrary.com).

Abstract: The ability to cope with uncertainty in dynamic scheduling environments is becoming an increasingly important issue.
In such environments, any disruption in the production schedule will translate into a disturbance of the plans for several external
activities as well. Hence, from a practical point of view, deviations between the planned and realized schedules are to be avoided as
much as possible. The term stability refers to this concern. We propose a proactive approach to generate efficient and stable schedules
for a job shop subject to processing time variability and random machine breakdowns. In our approach, efficiency is measured by
the makespan, and the stability measure is the sum of the variances of the realized completion times. Because the calculation of
the original measure is mathematically intractable, we develop a surrogate stability measure. The version of the problem with the
surrogate stability measure is proven to be NP-hard, even without machine breakdowns; a branch-and-bound algorithm is developed
for this problem variant. A tabu search algorithm is proposed to handle larger instances of the problem with machine breakdowns.
The results of extensive computational experiments indicate that the proposed algorithms are quite promising in performance.
© 2011 Wiley Periodicals, Inc. Naval Research Logistics 59: 26–38, 2012

Keywords: proactive scheduling; job-shop scheduling; uncertainty; stability

1. INTRODUCTION

Uncertainty and disruptions have been a problem since
the beginning of systemized manufacturing and remain so
today [4]. In many manufacturing environments the sched-
uling process is generally as follows: An initial schedule is
generated for a certain period of time into the future (i.e., the
planning horizon). This schedule, which is sent to the shop
floor at the beginning of the planning horizon, is modified and
revised (i.e., the system is rescheduled) in response to unfore-
seen disruptions such as machine breakdowns, variations in
processing times, arrivals of rush orders, order cancellations,
etc. The extent of the revisions may range from minor changes
to a complete rescheduling of the system. At the end of the
planning horizon, we refer to the schedule that was actually
executed on the shop floor as the realized schedule.

There is a vast body of literature on production scheduling,
with original formulations dating back to the 1950s. However,
the majority of the models used in scholarly studies are deter-
ministic and static, in contrast to the stochastic and dynamic

Correspondence to: S. Goren (selcuk.goren@kemerburgaz.
edu.tr)

nature of shop floors in practice. Indeed, the failure of clas-
sical scheduling theory to adequately address uncertainties
encountered in the practical environment is often cited as
one of the major reasons for the gap between the theory and
practice [e.g., 8, 19, 23, 28]. Especially during the last two
decades, researchers have tried to bridge this gap. The sug-
gested approaches in the relevant literature can be broadly
categorized into two classes: reactive scheduling, where the
objective is to develop efficient and effective methods to
revise schedules in response to disruptions after they hap-
pen, and proactive scheduling, where initial schedules are
generated in anticipation of disruptions.

Schedules also guide activities such as the purchase and
delivery of raw materials, the (re)negotiation of due dates
with customers, and the assignment of tools and operators.
Disruptions in the schedule will disturb the programs of such
external activities. From a practical point of view, deviations
between the planned and realized schedules are to be avoided
as much as possible. The term stability refers to this concern.

Most studies on schedule stability focus on rescheduling
activities such that deviations between the original and new
schedules are minimal. One of the earliest studies in this area
is [6], where the system is rescheduled in response to machine

© 2011 Wiley Periodicals, Inc.



Goren, Sabuncuoglu, and Koc: Optimization of Schedule Stability and Efficiency 27

breakdowns to match up with the original schedule in the
future. Another match-up procedure for a modified flow shop
subject to machine breakdowns is developed in [3]. In another
line of research, explicit stability measures are developed and
minimized alongside traditional performance measures [e.g.,
1,7,26,35]. A detailed review of such reactive studies can be
found in [23, 25, 34].

The approach in this article is proactive, i.e., it introduces
stability into the initial schedule. The literature is rather
sparse on this subject. The usual approach consists of a two-
stage procedure: In the first stage, an efficient initial schedule
is generated, where efficiency is generally measured in terms
of a regular performance measure such as makespan or max-
imum lateness. In the second stage, additional idle times
are inserted into the schedule to protect it against the neg-
ative effects of possible disruptions or variations. Examples
of such studies include [17, 20–22, 32]. We refer the reader
to [4,14,27] for detailed reviews of the studies that endeavor
to cope with unforeseen disruptions and uncertainties.

In this article, we consider a job shop environment with
random machine breakdowns and processing time variabil-
ity. Our objective is to generate efficient and stable initial
schedules. Efficiency is measured in terms of makespan. We
assume that the decision-maker is willing to sacrifice from
the efficiency as long as the degradation is accompanied by a
significant gain in terms of schedule stability. Specifically, we
optimize schedule stability subject to an upper bound T on
the makespan. The threshold T denotes the maximum value
of the makespan of an efficient schedule according to the
decision-maker. To the best of our knowledge, this problem
is not considered in the proactive scheduling literature. The
formulation we use is, in a sense, dual to the models con-
sidered in the literature: instead of first optimizing efficiency
and then sacrificing from it to gain stability (e.g., by inserting
additional idle times), we first determine the acceptable max-
imum amount of efficiency degradation, and then optimize
stability, respecting the constraint on efficiency. The stability
measure that we consider is the sum of the variances of the
job completion times in the realized schedule. This stability
measure is studied in a single machine environment in [12].
Our study can be seen as an extension of [12], to the job shop
environment, but we consider schedule efficiency in addition
to stability. A similar bi-criteria approach is used in [11] in
a single machine environment, where the trade-off between
stability (measured by the total absolute difference of job
completion times between the initial and the realized sched-
ules) and efficiency (expected total tardiness/flow time of the
realized schedule) is handled by means of a weighted aver-
age of separate objectives. In this article, on the other hand,
stability is the main objective and efficiency is only consid-
ered to avoid an unacceptable performance of the generated
schedules. In other words, the nature of the trade-off between
the stability and the efficiency of the generated schedules, or

the shape of the Pareto frontier, is beyond the scope of this
study. We refer the reader to [31] for a comprehensive review
of how the trade-off between several performance measures
can be analyzed in a multi-criteria setting.

Since optimizing the actual stability measure is mathe-
matically intractable, we propose a surrogate measure. As
has been pointed out [20, 21], existing surrogate measures
do not make enough use of available information about the
uncertainties. Generally, the probability distributions of the
uncertain parameters are available to or can be estimated by
the decision-maker, but the literature merely only considers
their expectations. The surrogate measure we propose makes
use of the expectations and the variances of the processing
times, as well as machine up-times (when the machine is
in operation) and down-times (when the machine is not in
operation due to breakdown). We show that the version of
the problem with the surrogate stability measure is NP-hard,
even without machine breakdowns, and develop a branch-
and-bound algorithm for this case. We propose a tabu search
to handle larger instances of the problem with machine break-
downs. The results of our computational experiments indicate
that the proposed algorithms are quite effective.

The rest of the article is organized as follows: In Section
2, we define the problem and present the stability measure
on a disjunctive graph model. In Section 3, we explain our
branch-and-bound algorithm and the tabu search algorithm
In Section 4, we discuss the computational experiments and
the results. Finally, in Section 5, we present our concluding
remarks and discuss several future research directions.

2. PROBLEM DEFINITION

Consider the job shop scheduling problem with n jobs
and m machines. Each job consists of at most m operations.
Each of the operations associated with a job must be car-
ried out in sequence and each operation is associated with a
machine. The operation associated with machine i and job
j is called operation (i, j). The processing time of opera-
tion (i, j) is denoted by a random variable Xij with a general
cumulative distribution function Hij (t). Let aij = E[Xij ] and
bij = V[Xij ], where E and V are the expectation and variance
operators, respectively. The up-times for machine i have inde-
pendent and identical general distributions Gi1(t). Similarly,
the down-times are independent and identically distributed
according to a general distribution Gi2(t). Let Ui1, Ui2 . . . be
the sequence of up-times and Di1, Di2 . . . be the sequence
of down-times for machine i. That is, the machine is oper-
ational from time 0 until Ui1, when the first breakdown
occurs. The machine then takes time Di1 to be repaired and
is again available for processing from time Ui1 + Di1 until
time Ui1 + Di1 + Ui2, and so on. Let Cj(φ) denote the time
that job j completes its last operation in a schedule φ. We
assume that all n jobs are available for processing at t = 0.

Naval Research Logistics DOI 10.1002/nav



28 Naval Research Logistics, Vol. 59 (2012)

As pointed out in [24, Chapter 9], in stochastic schedul-
ing, certain conventions must be applied that are not needed
in deterministic scheduling. We refer to the set of sequences
of operations on machines as a solution throughout this arti-
cle. One needs to adapt a policy to transform a solution into
a schedule, which is defined as the set of completion times of
operations. Therefore, a schedule is a multivariate stochastic
variable, parameterized by a policy. In this study, we assume a
nonpreemptive static list policy [24]. Specifically, a sequence
of operations for each machine (i.e., a solution) is generated
in a proactive manner at the beginning of the planning horizon
(i.e., at time t = 0). During the execution of the generated
solution, the sequence of operations is not altered; whenever
a machine becomes free, the next operation in the sequence
begins processing. In other words, we assume that inserted
idle times are not allowed. The main motivation behind this
assumption is to maintain schedule efficiency. Moreover, in
certain environments, inserted idle times cannot be tolerated
due to the nature of the manufacturing process (e.g., in steel
rolling, a hot slab of steel can not wait too long to be rolled
because it would cool down). Similarly, preemptions are not
allowed (unless they are inevitable due to a machine break-
down) because they are expensive to implement in practice.
All machines are subject to random breakdowns. In a break-
down, the machine is unavailable until it is repaired. The
times for repair are random and independent of each other
and of the breakdown process. An operation is preempted in
the case of a breakdown and is processed for its remaining
processing time after the machine is available again (i.e., a
preempt-resume policy is assumed).

In applying a nonpreemptive static list policy, we also
differentiate between the initial and the realized schedule.
In the initial schedule (which will guide production and
other external activities), the completion times of operations
are taken as the expected realized completion times, calcu-
lated in accordance with the nonpreemptive static list policy
using Hij (t), Gi1(t), and Gi2(t). Note that the job completion
times are also random variables because processing times and
machine up- and down-times are random. One can use their
means as point estimators. In other words, it is reasonable
to base the plans for production and other external activities
on expected completion times. In the realized schedule, com-
pletion times are determined as the actual processing times
and machine up- and down-times unfold; thus the values of
these random variables materialize as time passes along the
schedule horizon.

The objective is to optimize schedule stability (i.e., to mini-
mize deviations between the initial and the realized schedule)
subject to an upper bound T on the expected makespan. The
threshold T denotes the maximum value of the expected
makespan a schedule can have and still be considered effi-
cient by the decision-maker. We use the sum of the variances
of the realized completion times as the stability measure

(SM). We refer to the problem of minimizing SM subject
to the expected makespan being lower than a threshold T in
a job shop environment with random machine breakdowns
and processing time variability as problem �. As discussed
later in this section, � is mathematically intractable. Hence,
a surrogate stability measure (SSM) is developed and the
efficiency constraint is relaxed (the expected makespan is
replaced by a lower bound) to manage the problem. This
version of the problem is called �′. The version of problem
�′ without machine breakdowns is called problem �′′. It is
proven in this section that �′′ (and therefore �′) is NP-hard.
An exact solution procedure (a branch-and-bound algorithm)
is proposed for �′′. As shown later, calculation of even the
surrogate measure SSM is not possible for �′ due to random
machine breakdowns. Therefore, a tabu search algorithm is
proposed to handle �′ as well as large instances of �′′.

2.1. Disjunctive Graph Model

The Jm//Cmax problem can be represented with a disjunc-
tive graph G = (N , A, E), as shown in [5]. With minor
changes, this representation can also be used for problems
where the completion time of each job must be calculated
individually, rather than just the maximum [24]. The set of
nodes N contains one source node S, one node for each oper-
ation (i, j), and n sink nodes (one for each job). The source
node S denotes the start of the schedule and the sink node
Vj represents the completion of job j . The set of conjunctive
arcs A contains the arcs that connect the nodes representing
each pair of consecutive operations, say, (i, j) and (k, j) of
job j (i.e., (i, j) → (k, j) ∈ A). Each arc (i, j) → (k, j) has
a length Xij and represents the constraint that operation (k, j)

may be started no fewer than Xij time units after operation
(i, j) has been started. Note that Xij is a random variable. The
node that represents the final operation of job j , say (h, j),
has an arc of length Xhj incident to Vj . The source node S

has n outgoing arcs, each one incident to the first operation
of job j , j = 1, . . . , n, with lengths equal to 0. Let Ni denote
the set of nodes corresponding to the operations processed on
machine i. The set of disjunctive arcs E has two arcs going
in opposite directions for every pair of nodes (i, j) and (i, k)

in Ni (i.e., (i, j) ↔ (i, k) ∈ E). The arc (i, j) → (i, k) has
length Xij and the arc (i, k) → (i, j) has length Xik . Each
pair of disjunctive arcs represents the fact that two operations
cannot be processed on the same machine simultaneously.
Orienting a disjunctive arc pair in one direction or the other
corresponds to a decision as to which operation comes first.
For instance, fixing arc (i, j) → (i, k) implies that operation
(i, k) is processed after operation (i, j). Figure 1 presents a
four-machine, three-job example.

Let σ(E) denote a selection of disjunctive arcs from E.
Any feasible schedule φ is equivalent to some σ(E), having

Naval Research Logistics DOI 10.1002/nav



Goren, Sabuncuoglu, and Koc: Optimization of Schedule Stability and Efficiency 29

Figure 1. Disjunctive graph representation.

exactly one arc from every disjunctive pair (i, j) ↔ (i, k),
such that the resulting graph G(N , A, σ(E)) is acyclic. Con-
versely, any selection σ(E) satisfying the above proper-
ties corresponds to a feasible schedule φ. Let Lσ(E)(O, O ′)
denote the distance from node O to node O ′ in the graph
G(N , A, σ(E)). If there is no path from O to O ′, then
Lσ(E)(O, O ′) is not defined. Note that Lσ(E)(O, O ′) is not
associated with a single concrete path from O to O ′ because
the arc lengths are random variables; any path from O to
O ′ can be a critical path with some positive probability.
Rather, Lσ(E)(O, O ′) is a random variable that represents
the minimum amount of time required for O ′ to be able to
start after operation O begins its processing. The comple-
tion time Cj(φ) of job j is equal to Lσ(E)(S, Vj ). There-
fore, Cj(φ) is also a random variable. Finally, we define a
mean-critical path from O to O ′ as a path whose expected
length L′

σ(E)(O, O ′) is the longest among all paths from O

to O ′.

2.2. Stability Measure

In the literature, schedule stability is generally measured in
terms of deviations in job completion times. A nondecreasing
function of the differences between job completion times in
the initial and realized schedules was usually employed as a
stability measure. The most frequently used function is the
sum of the absolute differences. The sum of the squared dif-
ferences is also considered in [12]. In this article, we use the
latter measure. Job completion times are random variables.
It is reasonable for a decision maker to base his/her plans on
their expected values. In other words, we minimize the devi-
ations between mean (i.e., planned) completion times and

realized completion times. Specifically, the stability measure
we consider is

SM =
∑

j

E[(E[Cj(ϕ)] − Cj(ϕ))2] =
∑

j

V[Cj(ϕ)]. (1)

Note that SM is not a regular performance measure; an
increase in Cj may decrease V[Cj ]. We can now define
problem � as

min
ϕ


SM =

∑
j

V[Cj(ϕ)] : E[Cj(ϕ)] ≤ T , j = 1, . . . , n


 .

(2)

For stochastic project networks, assuming discrete pro-
cessing times, Hagstrom [13] argues that the expected project
time cannot be computed efficiently. As pointed out in [18],
it seems unlikely that an efficient algorithm exists for more
complicated distributions of the processing times as well,
because the mean cannot be computed in a time polynomial
with the number of possible values of the makespan, unless
P = NP [13]. The difficulty arises from the fact that even if
the arc lengths are statistically independent from each other,
the lengths of the paths from the source to the sinks are cor-
related. The same difficulty makes the optimization of SM
computationally intractable.

Surrogate Stability Measure: The variance of the realized
completion time Cj(ϕ) of job j is estimated as the sum of the
variances of the arc lengths (bij ’s) that lie on the mean-critical
path from S to Vj (If there are more than one mean-critical
paths, the one with the maximum variance is selected).

Note that SSM is not a regular performance measure.

Naval Research Logistics DOI 10.1002/nav



30 Naval Research Logistics, Vol. 59 (2012)

The approximation of SM with SSM is similar to the
approximation of the variance of the project duration in PERT
networks. Recall that the calculation of E[Cj(ϕ)] is also
mathematically intractable. The efficiency constraint is there-
fore modified in a similar fashion. Specifically, E[Cj(ϕ)] is
estimated by the length of a mean-critical path from S to Vj ,
L′

σ(E)(S, Vj ). We now formulate problem �′ as

min
σ(E)

{
SSM : L′

σ(E)(S, Vj ) ≤ T , j = 1, . . . , n
}
. (3)

Recall that the version of problem �′ without machine
breakdowns is called problem �′′. Thus, �′ is at least as
hard as �′′, which is proven to be NP-hard in the following
theorem:

THEOREM 1: Problem �′′ is NP-hard.

PROOF: Consider an instance of Problem �′′ where vari-
ances of operation processing times are a constant multiple of
their expectations. Any mean-critical path is also the longest
in terms of variances. Hence, the objective function can be
computed as the sum of the “variance lengths” of mean-
critical paths. This makes the stochastic instance equivalent
to a deterministic Jm//

∑
Cj instance, in which the process-

ing times are taken as the processing time variances in the
�′′ instance. Jm//

∑
Cj is already known to be NP-hard [9],

which completes the proof. �

3. SOLUTION METHODOLOGY

Since the problems �′ and �′′ are NP-hard, no polyno-
mial time algorithm that solves those problems exists unless
P = NP. Hence, any solution approach will either resort to
an implicit enumeration procedure or to a heuristic method.
In this study, we propose a branch-and-bound algorithm
to exactly solve the relatively easier problem �′′. We also
propose a tabu search algorithm to handle machine break-
downs (problem �′), and large instances of problem �′′.
The branch-and-bound algorithm will restrict itself to the
class of so-called active schedules and the tabu search algo-
rithm will consider so-called semiactive schedules, as well
as active schedules [24]. We start with the branch-and-bound
algorithm.

3.1. Branch-and-Bound Algorithm

A schedule is called active if no other schedule can be con-
structed to have at least one operation finishing earlier without
delaying any other operation, by changing the order of pro-
cessing on the machines. A schedule is called semiactive if
no operation can be completed earlier without changing the
processing order on any machine [24]. Note that an off-line

schedule for problem �′′ cannot be identified as active or
semiactive without knowing the processing times in advance.
In this study, schedules are said to be active or semiactive with
respect to the mean processing times of the operations.

It can be easily proven that there exists at least one active
schedule that is optimal for problems with regular perfor-
mance measures. Since SSM is not a regular performance
measure and an optimal schedule that is active may not
exist, the search space for problem �′′ should be the set
of semiactive schedules, as inserted idle times not allowed.
Unfortunately, our pilot computational tests indicate that
a branch-and-bound algorithm that implicitly enumerates
all semiactive schedules requires too much computational
time to be of practical value. Therefore, the search space is
restricted to the class of active schedules, which is explored
using the branching scheme in [10].

A node in the proposed branch-and-bound tree consists
of a partial schedule and its disjunctive graph representa-
tion. The graph in the root node includes only conjunctive
arcs (precedence constraints imposed by job routings). Oper-
ations are scheduled one at a time. Nodes that are deeper in the
branching tree include more precedence constraints, imposed
by the disjunctive arcs whose orientations are decided. The
partial schedule constituted by those precedence constraints
develops into a complete feasible schedule at the leaf nodes.

Although the lower bound itself depends on the objective
function and the implemented branching scheme, one prop-
erty inherently holds in any branch-and-bound algorithm: the
lower bound of a child node is greater than or equal to the
lower bound of its parent node. Lower bounds that are used in
the job shop scheduling literature generally are based on the
objective function value of the partial schedule or the partial
graph at a node. For problem �′′, conventional lower bounds
used in the literature do not have the aforementioned prop-
erty. Inserting a new operation into a parent node’s partial
graph to create its children may result in longer mean-critical
paths, but these new paths may have lower total variance val-
ues. Hence, the objective function value of a partial schedule
is not a lower bound for SSM. This is because SSM is not a
regular performance measure.

To calculate a lower bound of a partial schedule with a
newly oriented disjunctive arc, we first examine the clique
that belongs to the machine on which the inserted opera-
tion is processed. The arcs that identify the sequence of the
scheduled operations on the machine are kept and the remain-
ing (redundant) disjunctive arcs are permanently excluded,
as they cannot lie on a mean-critical path. Figure 2 gives an
example with five operations.

In the figure, the clique corresponding to machine i is
examined. Since the order of operations on that machine is (1-
2-3-4-5), the arcs that identify this order are kept (solid arcs),
and the redundant ones (dashed arcs) are excluded because
they cannot lie on a mean-critical path.

Naval Research Logistics DOI 10.1002/nav



Goren, Sabuncuoglu, and Koc: Optimization of Schedule Stability and Efficiency 31

Figure 2. Examining disjunctive arcs on a machine clique.

Moreover, the partial schedule is further examined to iden-
tify additional redundant arcs. For any arc, say (i, j) → (k, l),
if there exists a longer path from (i, j) to (k, l), the arc is per-
manently removed from the disjunctive graph as it cannot be
in any mean-critical path.

After removing all redundant arcs, we temporarily insert,
in both directions, all disjunctive arcs (i, j) ↔ (i, k) that are
not yet oriented [i.e., both (i, j) → (i, k) and (i, k) → (i, j)

are inserted]. The shortest variance paths from S to Vj for
all j , are identified in the augmented graph using Dijkstra’s
algorithm. The sum of the path variances from S to Vj for all
j is a lower bound to SSM.

The performance of a branch-and-bound algorithm
depends on the branching order. The search strategies that
can be used when exploring the branch-and-bound tree can be
categorized into two classes: depth-first search and breadth-
first search. A depth-first search starts at the root node and
explores the tree as far as possible along each branch before
backtracking. A breadth-first search explores all the nodes on
a level before advancing to the next level. In a breadth-first
search, if the created children are stored in a priority queue
in accordance with their lower bounds, the resulting strategy
is called a best-first search. In a given amount of computa-
tional time, a depth-first search will reach a greater number
of leaf nodes (faster upper bound improvement) while a
best-first search will explore a wider part of the solution land-
scape (faster lower bound improvement). A depth-first search
requires much less storage space (i.e., memory) than a best-
first search. In our implementation, we use a hybrid search

to combine the advantages of both strategies to improve the
lower and the upper bounds as fast as possible so we can
obtain better optimality gaps at the end of the allowed com-
putational time period. Specifically, a best-first search (the
node with the best lower bound value is branched first) strat-
egy is used as long as the memory used to store unexplored
nodes of the branch-and-bound tree is below a threshold value
M1. The search strategy switches to depth-first search when
the memory requirement surpasses M1 and continues until
it reaches a threshold value M2, where M2 < M1. After this
point in time, the best-first search is back in use and the explo-
ration of the nodes continues in that fashion until an optimal
solution is found or the time limit is up.

3.2. Tabu Search Algorithm

The proposed branch-and-bound algorithm becomes
increasingly expensive in terms of computational time as
the problem size gets larger. In this section, we propose a
tabu search algorithm that can be used to solve large problem
instances.

We begin with a seed schedule, which is generated using
the shifting bottleneck heuristic proposed in [2]. At each iter-
ation, we generate the neighborhood of the current seed and
evaluate the objective function value of the schedules in the
neighborhood to select the best schedule to be the new seed
(if it satisfies the efficiency constraint on the makespan and
the move to generate it is not tabu). The generator creates
new schedules, which in turn are evaluated again. The search
continues in this fashion until the stopping criterion is met.

The neighborhood generator reverses the orientation of a
disjunctive arc on a mean-critical path to obtain a neighbor.
Note that the neighbors generated with this move cannot be
infeasible (otherwise the reversed arc would not be a part of a
mean-critical path, see [33, Lemma 2]). Moreover, the neigh-
bors need not be active, even if the seed is an active schedule.
Therefore, the search space for the proposed tabu search algo-
rithm is not restricted within the class of active schedules,
unlike the branch-and-bound algorithm. This neighborhood
generation mechanism is first proposed in [33] to schedule a
job shop using simulated annealing. The reversed arc is added
to the tabu list to prevent immediate backtracking. If the best
neighbor performs better than the current best solution so
far, it is taken as the new seed, even if the move needed to
generate it is tabu (aspiration criterion).

The proposed tabu search algorithm can also be used
for problem �′, where there is a machine breakdown/repair
process to be considered. Recall that the surrogate measure
SSM estimates stability as the sum of arc variances on the
mean-critical paths. In the presence of a breakdown/repair
process, however, it is difficult to calculate even SSM ana-
lytically because one does not know which operations will
be interrupted in advance. We use the common approach of

Naval Research Logistics DOI 10.1002/nav



32 Naval Research Logistics, Vol. 59 (2012)

inflating the processing times of the operations appropriately
to account for the effects of breakdowns [e.g., 20]. Specif-
ically, we preprocess the problem instance and modify the
means and variances of operation durations as follows:

µij = aij ×
(

1 + E[Di]
E[Ui]

)
, (4)

σ 2
ij = bij ×

(
aij

E[Ui] × V[Di]
)

, (5)

where Di and Ui are the independent and identically dis-
tributed random variables denoting down- and up-times for
machine i, respectively. The mean and the variance of the
processing time of operation (i, j) is taken as µij and σ 2

ij .
The tabu search algorithm works as if no breakdowns occur,
except that input mean and variance values are inflated as
explained earlier. One could consider inflating processing
times’ means and variances and using the proposed branch-
and-bound algorithm to handle machine breakdowns; how-
ever, the objective function values calculated using modified
mean and variance values are only estimates of the actual
SSM values because the breakdown process is approximated.
Such an approximation would therefore demote the proposed
branch-and-bound algorithm to a heuristic method, which
would be unacceptable because of the excessive amount of
computational effort a heuristic requires.

4. COMPUTATIONAL EXPERIMENTS

To assess the quality of the proposed branch-and-bound
and tabu search algorithms, several input problems are solved.
Since the objective function under study is the total vari-
ance on a mean-critical path, long arcs with small variances
are likely to be included in the critical paths of an optimal
solution. It is expected to take longer to solve the problem
optimally if fewer such arcs exist. In other words, the diffi-
culty of the problem instances is conjectured to be dependent
on the ratio of expectations and variances of the arcs. To inves-
tigate this conjecture, a computational test bed is prepared
to include three levels of the coefficient of variation (CV)
for the processing times of the operations. For this reason,
the processing times are taken to have Erlang distributions
because of the relative easiness of altering the CV for that
distribution. The three levels of the CV of the processing
times considered are: low (CV1), medium (CV2), and high
(CV3). The shape parameter k of the processing time distrib-
ution is uniformly sampled from U[100, 400], U[9, 25], and
U[2, 6] for CV1, CV2, and CV3, respectively. Therefore, the
CVs are in the ranges [0.05, 0.1], [0.2, 0.33], and [0.4, 0.7],
respectively. The scale parameter θ of the processing times
is selected such that all the mean processing times are in the
interval [100, 800]. In other words, the scale parameter θ of

the processing time distribution is uniformly sampled from
U[1, 2], U[11, 32], and U[50, 133] for CV1, CV2, and CV3,
respectively.

The effect of shop configuration is also examined. All jobs
have operations on all machines. Three levels of machine
routing are considered. On one extreme, all jobs are taken
to visit the machines in the same order (flow shop or fixed
routing). On the other extreme, all routings are randomly gen-
erated (job shop or random routing). The third level considers
a semirandom routing, in which the set of machines is parti-
tioned into two sets. All jobs must visit all machines in the
first set before visiting any machine in the second set.

In this article, a problem instance is called to be of size
n×m, if the number of jobs is n and the number of machines
is m. In our experiments, four levels of problem size are
considered: 5 × 5, 5 × 10, 10 × 5, and 10 × 10.

To sum up, the computational environment consists of 36
problem classes (4 levels of size ×3 levels of coefficient of
variation ×3 levels of machine routing). Ten instances of
each problem class are generated, resulting in a test bed of
360 instances.

The threshold value T for the makespan to ensure effi-
ciency is 10% higher than the makespan value obtained by
using the shifting bottleneck heuristic on a deterministic job
shop scheduling instance, where the processing times are
taken as the means of the actual random processing times.

The algorithms are coded in the C++ language and run on
a Linux box with eight GBs of physical memory, running
Debian Lenny (5.0.7) on eight Intel Xeon E5430 processors
at 2.66 GHz.

4.1. Problem �′′

The computational experiments in this section consider
problem �′′. We first investigate the effect of the test prob-
lem type (i.e., coefficient of variation, routing, size of the
problem instance) on the relative difficulty of the problem.
Next, we assess the performances of the proposed algorithms
with respect to the well-known shifting bottleneck algorithm
and 12 dispatching rules, given in Table 1. We begin with the
branch-and-bound algorithm.

4.1.1. Branch-and-Bound

The proposed branch-and-bound algorithm is allowed to
run for a maximum of two hours of computational time (7200
CPU seconds) for each instance. The threshold values M1

and M2 are set to approximately 12 and 10% of the available
physical memory, respectively, as we have eight CPUs each
solving a different problem instance and we do not want to
exhaust the memory. The optimality gaps and solution times
in CPU seconds are summarized in Table 2, where levels of
machine routing are shown in columns and the rows list the

Naval Research Logistics DOI 10.1002/nav



Goren, Sabuncuoglu, and Koc: Optimization of Schedule Stability and Efficiency 33

Table 1. Dispatching rules.

Rule Explanation

SVPT Select operation for the job with the smallest varience of processing time
LEPT Select operation for the job with the largest expected processing time
SEPT Select operation for the job with the smallest expected processing time
CV Select operation for the job with the highest coefficient of varience
MEWKR Select operation for the job that has most expected work remaining
MEWKR-P Select operation for the job that has most expected work remaining on operations subsequent to the “schedulable”

operation
MEWKR/P Select operation for the job that has greatest ratio between the expected work remaining and the processing time of the

“schedulable” operation
LEWKR Select operation for the job that has least expected work remaining
LEWKR-P Select operation for the job that has least expected work remaining on operations subsequent to the “schedulable”

operation
MOPNR Select operation for the job that has the most number of operations remaining to be processed
LOPNR Select operation for the job that has the least number of operations remaining to be processed
RAND Select operation at random

levels of the CV. Each number in Table 2 is the average of 10
instances of the corresponding experimental point. The first
number in each cell is the average optimality gap, which is
calculated as

Gap% = UB − LB

LB
× 100%, (6)

where UB is the SSM value of the best solution found so
far, and LB is the lower bound obtained within 7200 CPU
seconds. The second number is the average solution time in
CPU seconds.

On examining Table 2, we observe that the impact of an
increase in the number of jobs is more than the impact of
an increase in the number of machines on the computational
time and on the optimality gap.

For five-job problems, less computational time is needed
to solve the instances with random machine routings than
the instances with fixed or semi-random routings. Similar
results are also reported in the literature for regular perfor-
mance measures [15,29,30]. For 10-job problems, two hours
of CPU time is not enough to arrive at optimality but it can
still be said that the solution quality improves in terms of
average optimality gap as the shop configuration gets closer
to flow shop. This is because the procedures explained in
Section 3.1 that remove redundant arcs work better in flow
shops. Consequently, the lower bounds for flow shop prob-
lems are significantly tighter than those for the problems with
random machine routing for 10-job problems.

We note that the optimality gaps generally increase with
increasing levels of the CV. This can be better observed by
comparing gaps for CV1 with CV3. This observation could
be explained by the intuition that for smaller values of the
CV, the ranges of the arc variances are relatively narrower
and therefore the lower bounds are tighter on the average.

We next compare the performance of the proposed branch-
and-bound algorithm (B&B) with the shifting bottleneck
algorithm (SB) and the “best dispatching rule” method
(BDR). The BDR method runs all dispatching rules given
in Table 1 sequentially and returns a schedule with the min-
imum objective function value that respects the efficiency
constraint. Note that the dispatching rules may not yield a
schedule with a makespan value that is less than or equal to
T . If all 12 dispatching rules fail to find such a schedule, the
BDR method does not generate a solution. All 360 instances
are solved with the three algorithms (B&B, SB, and BDR).

Table 2. Results for branch-and-bound algorithm.

5 × 5 5 × 10

Fixed Semi Random Fixed Semi Random

CV1
0.00% 0.00% 0.00% 9.09% 30.32% 0.00%

31.01 162.65 3.60 5353.90 4520.98 60.18
CV2

0.00% 0.00% 0.00% 6.28% 51.05% 0.00%
58.39 104.46 1.86 4136.20 5387.18 27.30

CV3
0.00% 0.00% 0.00% 16.69% 27.33% 0.00%

103.39 69.98 2.42 5907.42 3444.32 161.41

10 × 5 10 × 10

CV1
161.80% 282.04% 398.95% 82.38% 364.41% 553.58%

7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
CV2
182.33% 276.48% 411.18% 124.49% 437.98% 492.62%

7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
CV3
194.28% 342.60% 440.70% 131.91% 408.24% 617.51%

7200.00 7200.00 7200.00 7200.00 7200.00 7200.00

Naval Research Logistics DOI 10.1002/nav



34 Naval Research Logistics, Vol. 59 (2012)

Table 3. Performance comparison for branch-and-bound
algorithm.

B&B SB BDR BDR (No.
Size Routing CV (%) (%) (%) of solved)

5 × 5 Flow CV1 0.00 10.80 5.06 6
5 × 5 Flow CV2 0.00 18.05 15.64 9
5 × 5 Flow CV3 0.00 12.70 13.86 8
5 × 5 Jobs CV1 0.00 12.46 11.72 10
5 × 5 Jobs CV2 0.00 13.33 20.52 9
5 × 5 Jobs CV3 0.00 17.67 13.16 10
5 × 5 Semi CV1 0.00 21.30 19.81 9
5 × 5 Semi CV2 0.00 27.68 32.62 9
5 × 5 Semi CV3 0.00 25.62 19.39 10
5 × 10 Flow CV1 0.00 12.37 9.08 9
5 × 10 Flow CV2 0.00 12.31 8.80 8
5 × 10 Flow CV3 0.00 18.05 9.25 10
5 × 10 Jobs CV1 0.00 11.08 9.69 10
5 × 10 Jobs CV2 0.00 10.01 9.23 10
5 × 10 Jobs CV3 0.00 15.00 13.28 10
5 × 10 Semi CV1 0.00 11.54 16.77 8
5 × 10 Semi CV2 0.00 19.19 28.76 9
5 × 10 Semi CV3 0.00 18.16 21.56 8
10 × 5 Flow CV1 2.82 4.41 3.64 10
10 × 5 Flow CV2 0.82 5.96 5.84 7
10 × 5 Flow CV3 0.59 0.59 4.70 6
10 × 5 Jobs CV1 0.33 2.86 3.74 6
10 × 5 Jobs CV2 0.00 5.58 15.32 7
10 × 5 Jobs CV3 0.02 6.93 15.18 9
10 × 5 Semi CV1 0.93 0.93 8.26 4
10 × 5 Semi CV2 0.00 0.81 11.50 2
10 × 5 Semi CV3 0.00 3.95 13.44 5
10 × 10 Flow CV1 1.10 2.59 3.73 8
10 × 10 Flow CV2 3.02 6.02 5.87 6
10 × 10 Flow CV3 3.30 8.32 5.21 10
10 × 10 Jobs CV1 0.89 1.18 6.38 10
10 × 10 Jobs CV2 1.21 3.23 5.23 7
10 × 10 Jobs CV3 0.00 0.50 5.90 8
10 × 10 Semi CV1 0.00 2.93 15.80 3
10 × 10 Semi CV2 0.00 4.31 16.67 1
10 × 10 Semi CV3 0.00 3.28 16.07 3

The results are summarized in Table 3, where each number
is the average of 10 instances of the corresponding prob-
lem class determined by the first three columns. The next
three columns give the average percentage deviation in per-
formance from the best solution obtained. The deviation is
calculated as

Deviation(a)%

= SSM(a) − min{SSM(B&B), SSM(SB), SSM(BDR)}
min{SSM(B&B), SSM(SB), SSM(BDR)}

× 100%. (7)

In (7), SSM(a) is the objective function value obtained using
algorithm a, where a is B&B, SB, or BDR. The last col-
umn shows the number of instances (out of 10) that BDR

can generate an efficient schedule. Note that BDR fails to
generate an efficient schedule in 86 instances out of 360.

Examining Table 3, we observe that B&B performs best for
five-job problems. For 10-job problems, even though 7200
CPU seconds is not enough to reach optimality, B&B still
outperforms SB and BDR.

4.1.2. Tabu Search

In this section, we test the performance of the proposed
tabu search (TS) algorithm. After some pilot experimentation,
we decided to allow a maximum of 5000 (20,000) iterations
and to use a tabu list of length 10 (40) for five- (10-) job
problems. We compare the performance of the proposed tabu
search algorithm with the SB and BDR methods. The last col-
umn displays the number of instances (out of 10) for which
the tabu search generates a semi-active schedule that is not
active. The results are summarized in Table 4.

One can observe in Table 4 that the proposed tabu search
algorithm performs significantly better than the SB and BDR
methods on each type of test problems. The difference is more
visible for 10-job problems or when the machine routing is
semirandom. One can also observe that for more than 90%
of the instances, the generated schedule is not active. This
result illustrates the merit of including semiactive schedules
in the search space.

We conclude that the proposed branch-and-bound algo-
rithm can be used to solve small instances of problem
�′′ to optimality. The proposed tabu search algorithm per-
forms very well in general and should be employed to solve
especially large instances of �′′.

4.2. Problem �′

In this section, we consider machine breakdowns. We
assess the performance of the proposed tabu search algorithm
under mild and heavy breakdowns. We use Gamma distribu-
tion as a busy-time distribution with a shape parameter of 0.7,
and a scale parameter arranged so that the mean busy-time is
4000 for mild breakdowns and 2000 for heavy breakdowns,
respectively. We use Gamma distribution with a shape para-
meter of 1.4 for the down-time distribution, as recommended
in [16]. The scale parameter of the down-time distribution is
arranged to have a mean repair duration of 500.

The benchmark algorithms are the same as before, namely,
SB and BDR. All the algorithms work as in the previ-
ous section, except that the mean and variance values of
the processing times are inflated according to (4) and (5),
respectively. Since the SSM values used by the algorithm
now become estimates, we compare the performance of the
mentioned algorithms by simulating the generated schedules
to approximate total completion time variances (SM itself).
Generated schedules are simulated 100 times. During the

Naval Research Logistics DOI 10.1002/nav



Goren, Sabuncuoglu, and Koc: Optimization of Schedule Stability and Efficiency 35

Table 4. Performance comparison for tabu search algorithm.

TS SB BDR TS (No. of
Size Routing CV (%) (%) (%) semiactive)

5 × 5 Flow CV1 1.06 15.62 12.46 8
5 × 5 Flow CV2 0.00 38.84 35.71 7
5 × 5 Flow CV3 0.73 24.48 22.93 6
5 × 5 Jobs CV1 0.00 16.67 15.92 8
5 × 5 Jobs CV2 0.00 22.44 27.93 9
5 × 5 Jobs CV3 1.18 23.41 19.04 8
5 × 5 Semi CV1 0.00 40.23 36.63 10
5 × 5 Semi CV2 0.00 45.63 49.80 9
5 × 5 Semi CV3 0.73 35.34 28.72 9
5 × 10 Flow CV1 1.62 13.74 11.12 10
5 × 10 Flow CV2 0.33 14.09 7.36 8
5 × 10 Flow CV3 1.42 23.21 13.74 8
5 × 10 Jobs CV1 0.00 9.68 8.36 7
5 × 10 Jobs CV2 0.00 10.90 10.03 6
5 × 10 Jobs CV3 0.12 15.14 13.40 10
5 × 10 Semi CV1 0.00 15.94 22.34 10
5 × 10 Semi CV2 0.00 24.34 33.54 9
5 × 10 Semi CV3 0.00 18.73 21.87 8
10 × 5 Flow CV1 0.00 98.55 97.28 10
10 × 5 Flow CV2 0.00 94.06 92.38 10
10 × 5 Flow CV3 0.00 89.21 95.45 10
10 × 5 Jobs CV1 0.00 79.73 81.46 10
10 × 5 Jobs CV2 0.00 81.89 94.01 10
10 × 5 Jobs CV3 0.00 85.29 99.88 10
10 × 5 Semi CV1 0.00 97.11 111.43 10
10 × 5 Semi CV2 0.00 103.58 135.35 10
10 × 5 Semi CV3 0.00 108.98 131.92 10
10 × 10 Flow CV1 0.00 54.82 55.11 10
10 × 10 Flow CV2 0.00 65.68 62.06 10
10 × 10 Flow CV3 0.00 67.25 63.07 10
10 × 10 Jobs CV1 0.00 42.04 49.33 10
10 × 10 Jobs CV2 0.00 47.79 49.00 10
10 × 10 Jobs CV3 0.00 45.28 53.93 10
10 × 10 Semi CV1 0.00 63.39 86.87 10
10 × 10 Semi CV2 0.00 72.98 93.26 10
10 × 10 Semi CV3 0.00 67.98 91.31 10

simulations, first, the processing times of operation (i, j) are
sampled from an Erlang distribution with mean aij and vari-
ance bij . Then, breakdown times and repair durations are
inserted into the schedule. Finally, job completion times are
recorded and their variances are calculated. The sum of the
completion time variances is taken as the performance mea-
sure (SM). The results are summarized in Tables 5 and 6, for
mild and heavy breakdowns, respectively.

One can observe in Tables 5 and 6 that the proposed tabu
search algorithm outperforms SB and BDR significantly. We
also observe that SB performs generally better than BDR. The
difference in the performances of the proposed tabu search
algorithm and the benchmark algorithms is magnified when

• The number of jobs increases,
• The severity of the breakdowns increases, and/or
• The shop configuration is semirandom.

Note that these three conditions increase the difficulty of
the problem in general. Therefore, it is expected that the
performance of the benchmark algorithms (SB and BDR)
will deteriorate under these conditions. Our computational
experiments indicate that the performance of the proposed
TS algorithm does not deteriorate as much as the benchmark
algorithms. In other words, the benefit of using the proposed
tabu search algorithm becomes greater as the problem gets
harder, which is an encouraging result.

In this article, we assume that the decision-maker is willing
to sacrifice from the efficiency as long as there is a signifi-
cant gain in terms of the stability of the schedules. In Table 7,
we quantify the percentage gain in terms of stability, which
accompanies a 10% degradation in the makespan. We assume
that the decision-maker would solve the problem using the
shifting bottleneck algorithm to minimize the makespan if
stability were not considered. The numbers in Table 7 are

Table 5. Performance comparison for tabu search under mild
breakdowns.

Size Routing CV TS (%) SB (%) BDR (%)

5 × 5 Flow CV1 0.00 23.69 55.28
5 × 5 Flow CV2 0.00 35.69 42.28
5 × 5 Flow CV3 1.67 27.17 35.84
5 × 5 Jobs CV1 0.02 37.83 27.41
5 × 5 Jobs CV2 6.16 18.43 13.15
5 × 5 Jobs CV3 5.24 29.17 19.40
5 × 5 Semi CV1 0.00 73.56 51.43
5 × 5 Semi CV2 0.00 59.60 71.89
5 × 5 Semi CV3 0.08 36.04 35.76
5 × 10 Flow CV1 3.75 16.87 62.73
5 × 10 Flow CV2 7.98 12.35 25.24
5 × 10 Flow CV3 4.49 22.31 24.10
5 × 10 Jobs CV1 4.35 20.81 18.60
5 × 10 Jobs CV2 4.49 22.14 18.49
5 × 10 Jobs CV3 2.52 14.11 15.43
5 × 10 Semi CV1 2.63 21.91 28.97
5 × 10 Semi CV2 1.35 36.23 36.03
5 × 10 Semi CV3 1.48 23.42 26.72
10 × 5 Flow CV1 0.00 124.34 122.74
10 × 5 Flow CV2 0.00 111.35 132.77
10 × 5 Flow CV3 0.00 96.27 121.03
10 × 5 Jobs CV1 0.00 135.88 113.10
10 × 5 Jobs CV2 0.00 108.14 109.43
10 × 5 Jobs CV3 0.00 95.44 99.35
10 × 5 Semi CV1 0.00 160.21 154.82
10 × 5 Semi CV2 0.00 128.75 160.94
10 × 5 Semi CV3 0.00 122.00 185.93
10 × 10 Flow CV1 0.00 120.52 141.11
10 × 10 Flow CV2 0.00 71.86 80.93
10 × 10 Flow CV3 0.00 62.21 85.05
10 × 10 Jobs CV1 0.00 99.32 82.94
10 × 10 Jobs CV2 0.00 72.97 46.00
10 × 10 Jobs CV3 0.00 50.92 49.40
10 × 10 Semi CV1 0.00 168.72 142.61
10 × 10 Semi CV2 0.00 133.39 224.49
10 × 10 Semi CV3 0.00 96.52 101.28

Naval Research Logistics DOI 10.1002/nav



36 Naval Research Logistics, Vol. 59 (2012)

Table 6. Performance comparison for tabu search under heavy
breakdowns.

Size Routing CV TS (%) SB (%) BDR (%)

5 × 5 Flow CV1 1.00 20.89 35.25
5 × 5 Flow CV2 0.00 39.07 54.99
5 × 5 Flow CV3 1.33 33.51 35.56
5 × 5 Jobs CV1 0.00 43.90 38.55
5 × 5 Jobs CV2 2.91 30.52 22.19
5 × 5 Jobs CV3 2.70 22.73 16.13
5 × 5 Semi CV1 0.00 65.77 62.07
5 × 5 Semi CV2 0.00 65.66 67.29
5 × 5 Semi CV3 0.80 40.63 34.84
5 × 10 Flow CV1 1.71 15.29 37.53
5 × 10 Flow CV2 7.07 7.82 14.62
5 × 10 Flow CV3 2.75 13.82 16.11
5 × 10 Jobs CV1 0.71 18.07 19.09
5 × 10 Jobs CV2 3.75 16.73 13.59
5 × 10 Jobs CV3 0.60 16.35 20.94
5 × 10 Semi CV1 0.09 19.02 28.48
5 × 10 Semi CV2 0.86 35.56 24.30
5 × 10 Semi CV3 0.45 37.84 36.61
10 × 5 Flow CV1 0.00 145.39 142.22
10 × 5 Flow CV2 0.00 146.25 149.12
10 × 5 Flow CV3 0.00 124.58 141.99
10 × 5 Jobs CV1 0.00 133.61 127.62
10 × 5 Jobs CV2 0.00 114.14 118.94
10 × 5 Jobs CV3 0.00 103.94 118.28
10 × 5 Semi CV1 0.00 172.54 176.08
10 × 5 Semi CV2 0.00 155.06 162.81
10 × 5 Semi CV3 0.00 137.49 169.62
10 × 10 Flow CV1 0.00 123.60 128.24
10 × 10 Flow CV2 0.00 89.96 104.84
10 × 10 Flow CV3 0.00 83.80 81.57
10 × 10 Jobs CV1 0.00 106.11 94.69
10 × 10 Jobs CV2 0.00 77.74 69.29
10 × 10 Jobs CV3 0.00 70.01 72.51
10 × 10 Semi CV1 0.00 155.06 175.77
10 × 10 Semi CV2 0.00 131.47 133.15
10 × 10 Semi CV3 0.00 120.46 130.11

percentage improvements in stability if the proposed tabu
search algorithm is employed under the condition that the
makespan is within 10% of the makespan value of the shift-
ing bottleneck schedule. For each instance, the percentage
improvement is calculated as

Improvement% = f (SB) − f (TS)

f (SB)
× 100%, (8)

where f (SB) and f (TS) are the stability values for the sched-
ules generated by the shifting bottleneck algorithm and the
proposed tabu search algorithm, respectively. In other words,
f (.) is the simulated SM in the presence of breakdowns, and
SSM otherwise. The three numbers in each cell correspond
to no breakdowns, mild breakdowns, and heavy breakdowns,
respectively.

On examining Table 7, we first observe that by sacrific-
ing 10% from efficiency, it is possible to gain significant

amounts of stability (up to 60%). The percentage improve-
ment in stability increases significantly with increasing job
number. Increasing the number of machines, however, has
an effect to the contrary. The percentage improvement in
stability is magnified when the job configuration is semiran-
dom. As the severity of the breakdowns increases, the gain in
stability also increases. In practice, stability is an important
measure, especially for shop floors experiencing significant
uncertainty. It is convenient that the improvement is more
when it is needed in the face of severe breakdowns. Finally,
we observe that improvement does not depend on the level
of the CV of processing times in general.

5. CONCLUDING REMARKS AND FUTURE
RESEARCH DIRECTIONS

In this article, we consider a job shop environment with
random machine breakdowns and processing time variability.
Our objective is to generate efficient and stable initial sched-
ules. Efficiency is measured in terms of makespan. We opti-
mize schedule stability under the condition that the makespan
is within a certain percentage of its best known value.
This problem is not considered in the proactive scheduling

Table 7. Percentage improvement in stability.

5 × 5 5 × 10

Fixed Semi Random Fixed Semi Random
(%) (%) (%) (%) (%) (%)

CV1
10.68 27.76 13.78 9.73 13.36 8.75
16.37 39.40 22.97 8.12 13.14 10.28
12.34 36.42 26.99 9.43 13.59 13.43

CV2
26.80 29.90 17.05 11.01 19.19 9.34
25.57 33.61 9.23 0.90 19.68 12.79
26.31 35.25 17.04 −0.77 21.65 9.59

CV3
17.06 24.01 17.21 16.39 14.97 12.60
17.73 24.23 16.94 13.59 14.75 9.30
20.89 25.87 14.63 8.32 23.52 12.25

10 × 5 10 × 10

CV1
49.51 49.07 44.24 35.22 38.61 29.31
53.69 60.03 55.90 52.32 61.79 48.52
58.37 62.43 56.41 54.55 60.22 50.94

CV2
48.25 50.57 44.78 39.20 41.93 32.11
51.58 54.75 50.36 39.60 55.83 39.28
59.12 59.89 52.36 46.35 55.99 42.38

CV3
46.79 51.89 45.94 39.93 40.19 30.98
46.68 53.10 47.80 37.48 46.53 32.94
54.94 57.21 50.27 43.22 54.29 38.50

Naval Research Logistics DOI 10.1002/nav



Goren, Sabuncuoglu, and Koc: Optimization of Schedule Stability and Efficiency 37

Figure 3. Stability-makespan trade-off curves. [Color figure
can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

literature to the best of our knowledge. A surrogate stability
measure is used to generate stable schedules since calcu-
lating the stability measure analytically is impractical. We
show that minimizing even the surrogate stability measure
is NP-hard. We develop a branch-and-bound algorithm that
optimizes the surrogate stability measure in the class of active
schedules. We also propose a tabu search algorithm to handle
large problems with machine breakdown/repair. Our compu-
tational experiments indicate that the proposed algorithms
perform quite well. The results also demonstrate that it is
possible to significantly improve schedule stability with only
a small compromise in efficiency.

We suggest several further research directions. First, the
proposed algorithms can be specialized to flow shop environ-
ments. Our computational experiments provide evidence that
machine routings may affect the solution quality. Algorithms
that are customized for a flow shop environment may per-
form better than the general job shop algorithms developed
in this article. In addition, the job population in this study is
fixed and all jobs are available at time zero. Including nonzero
ready times and dynamic job arrivals would likely be a useful
extension.

Second, our computational results provide evidence that
efficiency and stability may be conflicting objectives. Figure
3 demonstrates the stability-makespan trade-off curves for
an example instances. The x-axis in Fig. 3 correspond to the
maximum allowable percentage degradation in makespan and
the y-axis depict percentage improvement in stability. We
believe that a thorough analysis of the nature of the trade-
off between these two objectives would be of practical and
academic value.

Furthermore, as robustness and stability are important
performance measures for practitioners, similar algorithms
to generate robust job shop schedules can be developed.

Moreover, a bi-criteria algorithm that can handle both mea-
sures isofpractical importance.Therelationshipandthe trade-
off between robustness and stability can also be analyzed.

Finally, different stability measures and better surrogates
can also be developed. Even though our computational results
indicate that there is a high positive correlation between the
proposed stability measure and its surrogate, employing sim-
ulation in order to estimate the stability performance of the
schedules (in contrast to employing a surrogate measure) may
be beneficial.

REFERENCES

[1] R.J. Abumaizar and J.A. Svetska, Rescheduling job shops
under random disruptions, Int J Prod Res 35 (1997), 2065–
2082.

[2] J. Adams, E. Balas, and D. Zawack, The shifting bottleneck
procedure for job shop scheduling, Manage Sci 34 (1988),
391–401.

[3] M.S. Akturk and E. Gorgulu, Match-up scheduling under a
machine breakdown, Eur J Oper Res 112 (1999), 81–97.

[4] H. Aytug, M.A. Lawley, K. McKay, S. Mohan, and R. Uzsoy,
Executing production schedules in the face of uncertainties: A
review and some future directions, Eur J Oper Res 161 (2005),
86–110.

[5] E. Balas, Machine sequencing via disjunctive graphs: An
implicit enumeration algorithm, Oper Res 17 (1969), 941–957.

[6] J.C. Bean, J.R. Birge, J. Mittenthal, and C.E. Noon, Match
up scheduling with multiple resources release dates and
disruptions, Oper Res 39 (1991), 471–483.

[7] L.K. Church and R. Uzsoy, Analysis of periodic and event-
driven rescheduling policies in dynamic shops, Int J Comput
Integrated Manuf 5 (1992), 153–163.

[8] P.I. Cowling and M. Johansson, Using real-time information
for effective dynamic scheduling, Eur J Oper Res 139 (2002),
230–244.

[9] M.R. Garey, D.S. Johnson, and R. Sethi, The complexity of
flowshop and jobshop scheduling, Math Oper Res 1 (1976),
117–129.

[10] B. Giffler and G.L. Thompson, Algorithms for solving
production-scheduling problems, Oper Res 8 (1960), 487–503.

[11] S. Goren and I. Sabuncuoglu, Robustness and stability mea-
sures for scheduling: Single-machine environment, IIE Trans
40 (2008), 66–83.

[12] S. Goren and I. Sabuncuoglu, Optimization of schedule robust-
ness and stability under random machine breakdowns and
processing time variability, IIE Trans 42 (2010), 203–220.

[13] J.N. Hagstrom, Computational complexity of PERT problems,
Networks 18 (1988), 139–147.

[14] W. Herroelen and R. Leus, Project scheduling under uncer-
tainty: Survey and research potentials, Eur J Oper Res 165
(2005), 289–306.

[15] H.H. Holtsclaw and R. Uzsoy, Machine criticality measures
and subproblem solution procedures in shifting bottleneck
methods: A computational study, J Oper Res Soc 47 (1996),
666–677.

[16] A.M. Law and W.D. Kelton, Simulation modeling and analy-
sis, McGraw-Hill, Singapore, 2000.

[17] R. Leus and W. Herroelen, The complexity of machine sched-
uling for stability with a single disrupted job, Oper Res Lett
33 (2005), 151–156.

Naval Research Logistics DOI 10.1002/nav



38 Naval Research Logistics, Vol. 59 (2012)

[18] A. Ludwig, R.H. Möhring, and F. Stork, A computational study
on bounding the makespan distribution in stochastic project
networks, Annals Oper Res 49 (2001), 49–64.

[19] B.L. MacCarthy and J. Liu, Addressing the gap in scheduling
research: A review of optimization and heuristic methods in
production scheduling, Int J Prod Res 31 (1993), 59–79.

[20] S.V. Mehta and R. Uzsoy, Predictable scheduling of a job shop
subject to breakdowns, IEEE Trans Robot Autom 14 (1998),
365–378.

[21] S.V. Mehta and R. Uzsoy, Predictable scheduling of a sin-
gle machine subject to breakdowns, Int J Comput Integrated
Manuf 12 (1999), 15–38.

[22] R. O’Donovan, R. Uzsoy, and K.N. McKay, Predictable sched-
uling of a single machine with breakdowns and sensitive jobs,
Int J Prod Res 37 (1999), 4217–4233.

[23] D. Ouelhadj and S. Petrovic, A survey of dynamic scheduling
in manufacturing systems, J Scheduling 12 (2009), 417–431.

[24] M. Pinedo, Scheduling: Theory, algorithms, and systems,
Prentice Hall, New Jersey, 2002.

[25] A.S. Raheja and V. Subramaniam, Reactive recovery of job
shop schedules—A review, Int J Adv Manuf Technol 19
(2002), 756–763.

[26] R. Rangsaritratsamee, Ferrell W. G. Jr., and M.B. Kurz,
Dynamic rescheduling that simultaneously considers effi-
ciency and stability, Comput Ind Eng 46 (2004), 1–15.

[27] I. Sabuncuoglu and S. Goren, Hedging production sched-
ules against uncertainty in manufacturing environment with

a review of robustness and stability research, Int J Comput
Integrated Manuf 22 (2009), 138–157.

[28] C.S. Shukla and F.F. Chen, The state of the art in intelligent
real-time FMS control: A comprehensive survey, J Intelligent
Manuf 7 (1996), 441–455.

[29] M. Singer and M. Pinedo, A computational study of
branch and bound techniques for minimizing the total
weighted tardiness in job shops, IIE Trans 30 (1998), 109–
118.

[30] R.H. Storer, S.D. Wu, and R. Vaccari, New search spaces for
sequencing problems with application to job shop scheduling,
Manage Sci 38 (1992), 1495–1509.

[31] V. T’kindt and J.-C. Billaut, Multicriteria scheduling: Theory,
models and algorithms, Springer, Berlin, Germany, 2006.

[32] S. Van de Vonder, E. Demeulemeester, and W. Herroelen,
Proactive heuristic procedures for robust project schedul-
ing: An experimental analysis, Eur J Oper Res 189 (2008),
723–733.

[33] P.J.M. van Laarhoven, E.H.L. Aarts, and J.K. Lenstra, Job
shop scheduling by simulated annealing, Oper Res 40 (1992),
113–125.

[34] G.E. Vieira, J.W. Herrmann, and E. Lin, Rescheduling man-
ufacturing systems: A framework of strategies, policies, and
methods, J Scheduling 6 (2003), 39–62.

[35] S.D. Wu, R.H. Storer, and P. Chang, One-machine reschedul-
ing heuristics with efficiency and stability as criteria, Comput
Oper Res 20 (1993), 1–14.

Naval Research Logistics DOI 10.1002/nav


