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Early detection of colorectal cancer (CRC) is currently based on fecal occult blood testing (FOBT) and colonoscopy, both which can

significantly reduce CRC-related mortality. However, FOBT has low-sensitivity and specificity, whereas colonoscopy is labor- and

cost-intensive. Therefore, the discovery of novel biomarkers that can be used for improved CRC screening, diagnosis, staging and

as targets for novel therapies is of utmost importance. To identify novel CRC biomarkers we utilized representational difference

analysis (RDA) and characterized a colon cancer associated transcript (CCAT1), demonstrating consistently strong expression in

adenocarcinoma of the colon, while being largely undetectable in normal human tissues (p < 000.1). CCAT1 levels in CRC are on

average 235-fold higher than those found in normal mucosa. Importantly, CCAT1 is strongly expressed in tissues representing the

early phase of tumorigenesis: in adenomatous polyps and in tumor-proximal colonic epithelium, as well as in later stages of the

disease (liver metastasis, for example). In CRC-associated lymph nodes, CCAT1 overexpression is detectable in all H&E positive,

and 40.0% of H&E and immunohistochemistry negative lymph nodes, suggesting very high sensitivity. CCAT1 is also

overexpressed in 40.0% of peripheral blood samples of patients with CRC but not in healthy controls. CCAT1 is therefore a highly

specific and readily detectable marker for CRC and tumor-associated tissues.

Colorectal cancer (CRC) is a common disease affecting over

a million people annually, worldwide.1 Novel cytotoxic agents

alone or in combination with targeted systemic therapy sig-

nificantly improve median survival in patients with advanced

or metastatic CRC. These adjuvant therapeutic agents reduce

the risk of disease-recurrence in patients who undergo com-

plete resection of CRC, but are at high risk of disease relapse.

Despite major advances in systemic therapy for CRC, nearly

50% of patients diagnosed with this common malignancy will

recur and die of disease within 5 years of diagnosis and treat-

ment with curative intent.2 To improve overall outcome of

this disease, prevention and early detection through effective

screening methods are imperative.

Current CRC screening and diagnosis is based mainly on

fecal occult blood testing (FOBT) and fiber-optic colono-

scopy, both which have demonstrated clinical utility and effi-

cacy in early diagnosis and reduction of CRC-related mortal-

ity.3,4 Recently, stool-based DNA assays were developed for
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CRC screening and tested in clinical trials. These screening

assays are mainly based on genetic (somatic mutations) and

epigenetic changes typical for CRC,5,6 but have thus far not

achieved widespread population-based utilization.

Advancing screening and diagnostic capability in CRC

will certainly require the identification of novel disease-spe-

cific bio-markers. Unfortunately, mass screening of CRC tis-

sue samples using gene expression arrays have thus far failed

to identify CRC-related molecular markers with sufficiently

high sensitivity and specificity to be clinically useful for the

purpose of screening and diagnosis. Novel CRC-specific mol-

ecules undetectable in normal tissues are not only critical for

early diagnosis of CRC but may also serve as the fundamen-

tal basis for drug discovery and development of targeted ther-

apeutics. The aim of the present study was to identify specific

transcripts expressed uniquely in CRC that could be used for

screening, diagnosis and staging of CRC.

Methods

Cell lines and preparation of RNA

The colon cancer cell lines HCT116, Colo205, HT-29 and

SK-CO-10 were obtained from ATCC (Manassas, VA). Total

RNA was obtained either by the guanidinium isothiocyanate/

CsCl gradient purification method or via the TRIzol
VR
reagent

(Sigma-Aldrich, St. Louis, MO). Normal tissue RNA was

obtained from Clontech (Mountain view, CA).

Representational difference analysis, cDNA cloning and

rapid amplification of cDNA ends

Representational difference analysis (RDA) was performed as

described previously.7 Tester RNA was prepared from HT29

and RNA obtained from three normal (tumor-free) colon tis-

sue specimens were pooled and used as driver RNA. Three

rounds of amplification utilizing Tsp509I or DpnII as the

restriction endonuclease were performed. Fragments gener-

ated after the third amplification cycles were isolated and

sequenced. The partial length colon cancer associated tran-

script-1 (CCAT1) identified by RDA was used to screen a

Colo205 cDNA library in the k-ZAPII vector system (Strata-

gene, La Jolla, CA) by which the full length CCAT1 cDNA

was obtained. For 50 rapid amplification of cDNA ends

(RACE), we used CCAT1-specific primers corresponding to

bps 612–636 and 537–559, and the Marathon cDNA amplifi-

cation kit, with adaptor-ligated colon cDNA as substrate

(Clontech, Palo Alto, CA). Resulting bands were gel purified

and cloned into pGEM-T vector (Promega, Madison, WI).

Recombinant protein and polyclonal antibody generation

Recombinant peptides corresponding to the three longest

open reading frames (ORFs) of the CCAT1 gene (nt. 180–

293, 37aa; nt. 395–604, 69aa; nt. 1706–1855, 49aa) were

cloned and purified as DHFR fusion proteins in the pQE sys-

tem (Qiagen, Valencia, CA). Rabbit polyclonal antibodies

against all three fusion proteins were produced by Covance

(Denver, PA).

Patients and tissue specimen collection

Patients over the age of 18 years with histologically con-

firmed primary adenocarcinoma of the colon were offered

participation in the study. Patients who received prior radia-

tion or chemotherapy were ineligible for the study. The study

protocol was approved by the Institutional Review Board

(IRB, Helsinki Committee) of Hadassah-Hebrew University

Medical Center, the Memorial Sloan Kettering Cancer Cen-

ter—the New York Branch of the Ludwig Institute for Cancer

Research, and the Yuksek Ihtisas Training and Research Hos-

pital of Ankara. All samples were obtained from consenting

study subjects undergoing surgical tumor resection who

signed a written informed consent approved by their respec-

tive IRBs. All specimens underwent routine macroscopic and

microscopic analysis by the pathologist. Tissues identified as

CRC or adjacent normal tissues were then used for total

RNA preparation. Colon carcinoma, adjacent normal tissue

specimens and related tissues were provided by the New

York Branch of the Ludwig Institute (tumors nos. 4–29),

from the Hadassah-Hebrew University Medical Center

(tumors nos. 96–861, lymph nodes and adenoma tissue), or

from the Yuksek Ihtisas Hospital (CI, FC and SU).

Blood samples

Peripheral whole venous blood samples (15 ml) were

obtained at the Hadassah-Hebrew University Medical Center

from 20 patients with CRC participating in the study, 24 hr

before the tumor was resected. Blood samples were trans-

ferred to the laboratory immediately and peripheral blood

mononuclear cells (PBMC) were separated by the Ficoll gra-

dient method and stored at �70�C.

Surgical procedures

All patients underwent standard surgical resection of adeno-

carcinoma of the colon including a wedge of associated mes-

entery containing the draining regional lymphatics. Immedi-

ately following removal of the surgical specimen (colon and

mesentery), ex vivo lymphatic mapping was performed using

2–5 ml of Isosulfan blue dye (Patent Blue V, France), which

was injected (ex vivo) sub-serosally in four quadrants around

the tumor. The en-bloc resection specimen of tumor and

lymph nodes was then evaluated on the back table and all

blue nodes (sentinel lymph nodes, SLNs) from the mesentery

were dissected from the specimen. One half of the SLN(s)

was snap frozen in liquid nitrogen. A small portion (�25%

of the entire tumor volume) of the primary tumor and a

small sample (0.5 g) of normal mucosa were snap frozen

similarly. Separate instruments were used for the SLN(s) and

primary tumor dissection ex vivo to minimize tumor cell

contamination of the node(s). The primary tumor specimen

with attached mesentery and the remaining half of the

SLN(s) were then submitted for standard histopathological

examination including staining for cytokeratins as separately

labeled specimens. Formalin-fixed paraffin-embedded sentinel

E
ar
ly

D
et
ec
ti
o
n
an

d
D
ia
g
n
o
si
s

Nissan et al. 1599

Int. J. Cancer: 130, 1598–1606 (2012) VC 2011 UICC



nodes underwent serial step sectioning at 40–200 lm inter-

vals. Four 4-lm sections were stained with hematoxylin and

eosin (H&E) and two sections underwent immunhistochem-

sitry (IHC) using the avidin–biotin–peroxidase complex

method according to a standardized commercially available

pan-cytokeratin antibody cocktail protocol (Pan-keratin AE1/

AE3, CAM 5.2, 35bH11; Ventana Medical Systems, Tucson,

AZ). Patients with synchronous liver metastasis underwent

resection of the primary tumor with the draining lymph

nodes and resection of liver metastasis during the same surgi-

cal procedure. SLN biopsy was not performed in this group

of patients with liver metastases.

RNA extraction from tissues

Extraction of total RNA was performed for all samples (tis-

sues and blood) by the TriReagent
VR

method (Molecular

Research Center, Cincinnati, OH) according to the manufac-

turer’s instructions. Frozen samples were powdered in dry

ice, homogenized using a Polytron homogenizer in

TriReagentV
R

. RNA quality was confirmed by gel electrophore-

sis prior to the synthesis of cDNA.

Quantitative reverse-transcriptase

polymerase chain reaction

One microgram of total RNA was used for reverse transcrip-

tion with random primers in a 20 ll reaction of which 2 ll

was used for polymerase chain reaction (PCR). All experi-

ments were conducted in duplicate. Quantitative reverse-tran-

scriptase polymerase chain reaction (qRT-PCR) was per-

formed for 40 cycles (denaturation: 95�C � 15 sec;

annealing/extension: 60�C � 1 min) with the primers and

TaqMan
VR
probe specific for either GAPDH (Human GAPD

(GAPDH) Endogenous Control (VIC/MGB Probe, Primer

Limited, 4326317E) or for 18S (QuantumRNATM Universal

18S Internal StandardAM1718), obtained from Applied Bio-

systems, Foster City, CA.

For CCAT1 expression analysis, the primers and probe

used were as follows:

• forward primer: 50-TCACTGACAACATCGACTTTG

AAG;
• reverse primer: 50-GGAGAAAACGCTTAGCCATAC

AG;
• probe: 6Fam-CTGGCCAGCCCTGCCACTTACCA-Tamra.

Relative quantification was done according to the manu-

facturer’s instructions (Applied Biosystems, Foster City, CA;

User Manual 2). Each sample was normalized according to

its GAPDH or 18S content and also against a calibrator

which was either RNA obtained from normal lymph nodes,

or normal colon (AmbionV
R

Austin, TX). The relative quantity

was determined according to the DDCT method using the

formula: 2(DCTCCAT1
�DCT

GAPDH) or 2(DCTCCAT1
�DCT

18S). All

experiments were performed using an ABI Prism 7500 sys-

tem (Applied Biosystems, Foster City, CA). To generate cali-

brators for tumor cell RNA detection in blood, colon cancer

cells were mixed in increasing concentrations with previously

frozen PBMCs at ratios of 1:1 � 106, 5:1 � 106, 10:1 � 106,

50:1 � 106, 100:1 � 106 and 500:1 � 106. RNA was extracted

from each mixture and qRT-PCR was performed for CCAT1

as described above.

Statistical analysis

Summary statistics were performed using established meth-

ods. Association between categorical factors was studied with

Fisher’s exact test or Chi-square test, as appropriate. Associa-

tion between non-categorical (continuous) variables was per-

formed using Students-t test or ANOVA with Bonferroni

post hoc test. SPSS statistical package version 13.0 (SPSS, Chi-

cago, IL) was used for statistical analysis. Two sided p-value

�0.05 was considered significant.

Results

Identification of transcripts with preferential

expression in colon cancer

RDA analysis with HT29 as tester and normal colon RNA as

driver resulted in the identification of nine transcripts (Supple-

mental Table 1). Five of these (Bcl-x, MMP-7, ENC1, Met and

MALAT1) were known be upregulated in cancer,8,9 three were

reported to show ubiquitous expression (RNMT, LMAN1 and

BPTF),10,11 and one was a novel transcript (CCAT1). By

Northern analysis using the RDA-isolated fragments as probes,

we confirmed Bcl-x, MMP-7 and ENC1 upregulation in 21 of

22, 7 of 22 and 6 of 22 colon cancer cell lines, respectively. In

the same analysis, the CCAT1 RDA-probe hybridized to a sin-

gle RNA species, that was upregulated in 10 of the 22 of the

cell lines studied (Supplemental Fig. 1).

Characterization of the CCAT1 transcript

We used a CCAT1 RDA fragment to isolate the full-length

CCAT1 cDNA from a HT29 cDNA library. Additional 50

RACE analysis with HT29 RNA identified three transcripts

only one which had six additional nucleotides (Fig. 1).

CCAT1 is identical to an incompletely characterized cDNA,

AK125310, expressed in teratocarcinoma.12 Compared to

AK125310, CCAT1 lacks 222 nucleotides at its 50-end and

has an additional 227 nucleotides at the 30-end. The full-

length CCAT1 transcript is 2,628 nucleotides with two exons

corresponding to nucleotides 1–288 and 289–2612. The gene

has an unusually long intron of about 9 kb (Fig. 1). CCAT1

maps to chromosome 8q24.21 in close proximity to several

mutational hot-spots associated with various cancers, includ-

ing colorectal, prostate, breast and chronic lymphocytic leu-

kemia (Supplemental Fig. 2).

CCAT1 is putatively a non-coding RNA

CCAT1 RNA contains three short ORFs. None of the puta-

tive translation products, however, have homology to any

known or putative protein sequence. To test whether any of

these transcripts were translated in colon cancer cell lines
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expressing CCAT1 RNA, recombinant peptides correspond-

ing to all three ORFs (nucleotides: 95–208, 37aa; 310–519,

69aa; 1,621–1,770, 49aa; Fig. 1) were cloned and purified as

His-tagged DHFR fusion proteins using Ni-Cad chromatogra-

phy. Polyclonal antibodies were raised against all three fusion

proteins in rabbits. However, although polyclonal antibodies

recognized bacterially expressed CCAT1 peptides, none rec-

ognized a specific protein in cell lysates prepared from colon

carcinoma cell lines HT29, SW837 or LIM1215 (cell lines

with detectable CCAT1 RNA expression) when tested by

Western analysis (not shown). We, therefore, conclude that

CCAT1 is very likely a non-coding RNA species.

CCAT1 RNA is upregulated in colorectal cancer

We quantified CCAT1 expression by qRT-PCR in a panel of

18 normal tissues and compared them to HCT116, a colo-

rectal carcinoma cell line. HCT116 showed more than 100-

fold expression of CCAT1 over normal colon (Fig. 2).

Among other normal tissues, the highest expression was

observed in small intestine (33-fold relative increase in

expression) and esophagus (14-fold).

We then tested CCAT1 expression in 28 colorectal tumor

specimens and matching normal colon tissues. As shown in

Figure 3, 24 of 28 (85%) tissues showed more than 30-fold

upregulation of CCAT1 compared to normal colon (p <

0.0001). Seventeen (60%) had greater than 100-fold relative

increase in transcript expression (p < 0.0001). Upregulation

of CCAT1 was also detected in tumor-adjacent normal colo-

nic mucosa tissues, albeit to a lesser extent, with a mean up-

regulation of 12-fold over normal colon tissue. Only one tu-

mor-proximal tissue showed an upregulation of CCAT1

above 100-fold, relative to normal colon (Fig. 3). CCAT1

Figure 1. CCAT1 nucleotide sequence and predicted translational products. Full length CCAT1 transcript and 3 ORFs are shown (GeneBank

accession number: HM358356). Sequences corresponding to the RDA fragment are underlined. #: 50 end of the cDNA clone isolated from

the Colo205 library. : 50 ends of three 50-RACE transcripts. !: exon/intron junction. Forward and reverse qRT-PCR primers are boxed and

sequences corresponding to the probe are in bold font. Lower case letters correspond to additional sequences found in AK125310.

AK125310 lacks 277 nts included in CCAT1 30 end.
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expression was found to decrease dramatically in normal mu-

cosa obtained 5–40 cm proximal to three tumors (Supple-

mental Fig. 3). Only one tumor showed significant expression

in normal mucosa 5 cm proximal to the tumor, whereas no

significant CCAT1 expression was observed at sites obtained

from 10 cm or beyond.

CCAT1 expression in sentinel lymph nodes and peripheral

blood of colon cancer patients

To evaluate the potential role of CCAT1 in screening, diagnosis

and staging of CRC, we tested CCAT1 expression in lymph

node and peripheral blood samples from patients with CRC en-

rolled in the study. Six SLNs were obtained from four patients

with tumor-positive staining by H&E, and from five patients

that were tumor-negative by H&E and immunohistochemistry

(IHC) for cytokeratin. All nine patients strongly expressed

CCAT1 in their primary colon tumors. Compared to lymph

nodes obtained from patients without malignancy and commer-

cially available lymph node RNA, all lymph nodes from tumor

positive and two from tumor negative patients showed upregu-

lation of CCAT1 by more than 100-fold (Fig. 4).

To quantify CCAT1 RNA in the peripheral blood of

patients with CRC, we generated calibrator RNAs by mixing

HT-29 cells with blood mononuclear cells (PBMC) obtained

from peripheral whole venous blood, at ratios ranging from

1:106 to 500:106. Total RNA from these cell mixtures was

then tested for CCAT1 expression by qRT-PCR. Amplifica-

tion results showed a linear correlation between CCAT1 lev-

els as determined by qRT-PCR and tumor cell to PBMC

ratios (Supplemental Fig. 4). Total RNA from PBMCs were

obtained from eight healthy volunteers and 16 patients with

CRC, and amplification results were compared to those

obtained from the calibration experiment. CCAT1 expression

in healthy volunteer PBMCs ranged from 0.8- to 4.5-fold

compared to that obtained for the 1:106 dilution, while those

obtained from patients with CRC were between 0.1 and

1700-fold (Fig. 5). PBMCs from 7 of 16 (45%) patients

showed CCAT1 expression of more than 10-fold over that

obtained from the highest dilution of calibrator RNA, while 1

showed 1,700-fold upregulation of CCAT1 (Fig. 5).

CCAT1 expression in adenomatous polyps

and metastases from CRC

We next tested CCAT1 expression by qRT-PCR in tissues

obtained from seven patients with adenomatous polyps and

compared results to those obtained from four different colo-

nic mucosa samples from patients who underwent surgery

for non-cancer related causes, as well as to commercially

Figure 3. CCAT1 expression in colon carcinomas and adjacent normal tissues. qRT-PCR analysis of CCAT1 transcript levels in 28 colon

carcinomas (black) and adjacent normal tissue (gray) is shown. Values correspond to fold increase relative to colon RNA.

Figure 2. CCAT1 expression in normal tissues. Expression of the

CCAT1 transcript as detected by qRT-PCR in a panel of normal

tissues and in the colorectal cell line HCT116. Values correspond

to fold increase relative to colon RNA when GAPDH (gray bars) or

18S RNA (black bars) was used as control.
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available colon RNA. CCAT1 was upregulated more than

100-fold in all adenomatous polyps, when compared to nor-

mal colon tissue (mean upregulation: 155-fold; p < 0.0001);

Figure 6. CCAT1 was also significantly upregulated in meta-

static tissue. RNA obtained from five patients with CRC me-

tastases to either the liver or the peritoneal cavity showed

CCAT1 upregulation of more than 100-fold compared to

normal colonic tissue, with four showing upregulation of

over 450-fold (Fig. 6).

Discussion

CCAT-1 is a unique RNA upregulated in CRC compared to

healthy tissues with very high specificity and sensitivity.

CCAT1 upregulation is less pronounced when tumor-neigh-

boring tissue is compared to normal colonic tissue, suggesting

a ‘‘field effect.’’ Despite the fact that CCAT1 undergoes splic-

ing and poly-adenylation, no translational products are de-

tectable in colon cancer cell lines in our studies strongly sug-

gesting that CCAT1 is a non-coding RNA.

The well established biological model of sequential pro-

gression of colorectal tumorigenesis provides an excellent sys-

tem to critically assess biomarkers potentially useful for

screening and early detection of CRC. The development of

CRC generally occurs in a staged progression from normal

mucosa, to adenoma, carcinoma in situ and finally carci-

noma. In pre-malignant tissue (adenomatous polyps), we

Figure 5. CCAT1 expression in PBMC samples of colon cancer patients. CCAT1 transcript levels were determined by qRT-PCR in PBMCs of

control patients (NN1, �2, PBL1-10) and colon cancer patients (1–464). Values correspond to fold increase relative to that of the cell

mixture with HT29 to normal PBMC ratio of 1:106 (see Supplemental Fig. 4).

Figure 4. CCAT1 expression in normal and tumor-associated lymph node tissues. CCAT1 expression in commercial lymph node RNA

(Ambion NL) and three normal lymph node samples obtained from two healthy controls (341 LN NN and 444 LN NN) are shown (a). CAAT1

expression in sentinel lymph node tissue obtained from five patients with negative lymph-nodes by H&E and immunohistochemistry for

cytokertin staining (CO-662, �681, �712, �759, �828) and from those with positive lymph nodes (CO-612, �655, �698, �881 (three

samples)) are shown in gray (b). CCAT1 expression in tumors from the same individuals is shown in black. Values correspond to fold

increase relative to normal lymph node RNA (Ambion).
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could demonstrate consistently high CCAT1 expression sug-

gesting a putative role for this non-coding RNA in early

colorectal carcinogenesis. Importantly, we observed CCAT1

expression in regional nodal and distant liver metastasis, as

well as in blood samples of patients with CRC, suggesting

that testing for CCAT1 expression can detect small amounts

of tumor cells. This level of detection extends to both meta-

static tissue as well as circulating CRC tumor cells. Although

larger studies are necessary to establish a role for CCAT1 in

CRC diagnosis, the extremely high tumor to normal tissue

ratios of its transcript suggests an unprecedented specificity

for cancer with very high sensitivity. The overexpression of

CCAT1 in all stages of the well established adenoma-to-carci-

noma sequence singles it out as a potential biomarker for

screening, diagnosis, staging and perhaps overall prognostica-

tion of CRC.

Currently, the only generally accepted biomarkers in gen-

eral clinical use for patients with CRC are serum CEA and

CA-19-9, neither of which is sufficiently specific or sensitive

for use in disease screening or diagnosis.13,14 A large number

of genetic and epigenetic alterations have been studied as

potential biomarkers for screening, staging or determining

the prognosis in various common epithelial cancers, includ-

ing CRC.15 For example, a comprehensive screen for gene

alterations revealed the presence of about 93 driver mutations

frequently occurring in CRC, of which only 14 on average

are present in any given tumor from a given individual.16

Changes in DNA methylation patterns of specific regions

have also been reported as common molecular alterations in

cancer. Over 100 genes undergoing aberrant DNA methyla-

tion have been defined in CRC.17,18 Integrated approaches

consisting of both genetic and epigenetic analysis appear to

have improved sensitivity and specificity for defining sub-

types of CRC of varying biology.19 Despite these advances,

the scope and complexity of these alterations require the de-

velopment of an assay system whose complexity would make

it difficult to introduce into general clinical use.

The CRC transcriptome has also been studied. In one

study, about 0.48% of protein coding gene transcripts were

upregulated 4- to 10-fold relative to normal colonic tissue,20

while another transcriptomic study identified one transcript

that was upregulated as much as 50-fold in CRC over normal

tissues.21 Importantly, the innate design of most high-

throughput assays results in the complete exclusion of poten-

tially useful differentiating, non-coding transcripts from the

analyses. However, compared to mRNAs, there might be up

to five times more non-coding RNA species transcribed from

the genome, and more than half of these have been reported

to show tissue/cell line specificity.22 It is, therefore, not sur-

prising that two of the nine transcripts identified in this

study correspond to long non-coding RNAs. There are only a

few examples of heretofore described non-coding RNAs that

are highly expressed in neoplastic but not in normal tissues.

Some of these non-coding RNAs, like H-19, relate to loss of

imprinting in cancer. H-19 is highly expressed in tumors of

the bladder, endometrium, ovary and testis23; as well as in

liver metastasis originating from various epithelial cancer

types including CRC.24

Genome-wide association studies have revealed a concen-

tration of single nucleotide polymorphisms (SNPs) on

8q24.21 that are strongly associated with various cancers,25–28

clustered within position 128.0 Mb to 128.6 Mb, flanking the

Figure 6. CCAT1 expression in adenomatous polyps and CRC metastases. CCAT1 expression in healthy control RNA (Colon NN Ambion,

351NN, 537NN, 704NN, 814NN) and in RNA from adenomatous polyps from 7 patients (1013P1, 1030P1, 1052P1, 597P, 760P9, 844P1,

863P1) and in CRC metastases to liver and peritoneal surface from 5 patients (387, 406, 409, 446, 464; M1 and M2). Values correspond

to fold increase relative to normal colon RNA (Ambion).
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CCAT1 gene (Supplemental Fig. 2). A SNP strongly associ-

ated with chronic lymphocytic leukemia, rs2456449, is

located only 3 kb from the 30 end of CCAT1.28 No specific

transcript has been identified from this ‘‘hot-spot’’ thus far,

with the exception of CCAT1. This region of interest has

been shown to interact with MYC,29,30 and the SNP

rs6983267 at position 128.4 Mb, which influences MYC tran-

scription.31 Recently, another non-coding RNA, HOTAIR,

has been shown to directly alter chromatin modifications

resulting in upregulation of genes related to tumor invasive-

ness and metastasis.32 It will be important to determine

whether CCAT1 transcription has a direct effect on carcino-

genesis, or whether this non-coding RNA is a by-product of

the epigenetic alterations known to take place in its

vicinity.30

The fact that CCAT1 is expressed at very high levels

even in pathologically staged apparently node-negative (N0)

patients with colorectal carcinoma suggests that these

patients might have low-volume, nodal metastases that are

below the threshold of detection for nodal staging techni-

ques currently utilized in standard practice. It is well recog-

nized that the majority (70–75%) of conventionally staged

N0 patients will not develop recurrence of CRC, based on

an existing staging and treatment decision paradigm of

bivariate categorical nodal staging (positive or negative). The

discovery of CCAT1 comes at a time of an emerging para-

digm in nodal staging of CRC, one of quantifying tumor

cell volume using techniques such as qRT-PCR, in order to

stratify risk of disease recurrence with increasing, clinically

meaningful, accuracy. The exact biomarker-specific parame-

ters of nodal tumor volume correlating with recurrence risk

remain to be defined, and represents an unmet need in

CRC. Further studies will help define and validate a critical

positive predictive quantitative threshold of tumor CCAT1

in an effort to prospectively define homogeneous sub-popu-

lations of pathologically staged pN0 (node-negative) patients

who are at significant risk of recurrence that may benefit

from targeted therapies.
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