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Abstract We study a multicommodity routing problem faced by an intermodal ser-
vice operator that uses ground and maritime transportation. Given a planning horizon,
a set of commodities to be picked up at their release times and to be delivered not later
than their duedates, the problem is to decide on routes for these commodities using
trucks and scheduled and capacitated maritime services at minimum cost of trans-
portation and stocking at the seaports. Two mixed integer programming formulations
and valid inequalities are proposed for this problem. The results of a computational
study to evaluate the strength of the linear programming relaxations and the solution
times are reported.

Keywords Intermodal routing - Multicommodity flows - Scheduled services - Valid
inequalities

1 Introduction

Intermodal transportation can be broadly defined as the transportation of goods or
people using more than one transportation mode, in an integrated manner from an
origin to a destination (for more definitions, we refer the reader to Bontekoning et
al. [6]). In this paper, we use this term to refer to the transportation of containerized
goods by a same company using a mix of truck, rail, air and/or maritime transporta-
tion.

Even though some earlier examples are cited, the tremendous increase of inter-
modal transportation has followed the use of standardized containers (see, e.g., Slack
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[19]). The standardization in dimensions made it possible to use tools for loading
and unloading at the intermodal terminals and hence decreased the complexity and
the cost of these operations. The trend of increase has been amplified by the growth
in international trade in the last decades. The limitations posed, and the incentives
and subsidies given by governments with the aim of decreasing the ground traffic
have also contributed to the increase in volumes carried using different transportation
modes.

In this paper, we study a multicommodity network flow problem faced by a third
party logistics company. The company uses ground and maritime transportation. We
are given a set of commodities, which should be picked up from their origins at given
release times and should be delivered to their destinations no later than their duedates.
The commodities may be carried directly from their origins to their destinations on
trucks or they may be carried on trucks to a seaport, may visit several seaports using
maritime services, and then be carried to their destinations on trucks. As the company
rents trucks, there is no capacity and time limitation on the use of ground transporta-
tion. However the maritime services are scheduled in advance and the company has
limitations on the amounts of volume that it can carry on each service. Each maritime
service has a start time of loading and a cutoff time after which loading is not permit-
ted. For a commodity to be able to use a service, it should be available at the origin
seaport of the service before the cutoff time of this service. If a commodity arrives at
the origin seaport too early compared to the start of loading, then a cost is incurred
for stocking at the seaport. The aim is to determine routes for commodities in or-
der to minimize the total cost of shipments over a given time horizon, respecting the
capacity and time related constraints. The total cost has two components: the trans-
portation cost and the stocking cost at seaports. We call this problem the “Intermodal
Multicommodity Routing Problem with Scheduled Services (IMR-S)”.

Even though the study is motivated by an application in the context of freight
logistics and maritime transportation, the problem applies to more general intermodal
transportation settings, where some services are scheduled in advance of the routing
decisions. For instance, a company selling travel packages may need to route groups
of people from some origins to destinations using buses, which may be rented and
thus are available at any time, together with train and plane trips, which have fixed
schedules and on which the number of seats reserved to the company is limited. If
the travelers need to wait for long time periods before taking a vehicle, there may be
a need to provide accommodation at some additional cost. Even in cases where this
is not necessary, such long waiting times may decrease customer satisfaction. Hence,
it is reasonable to associate some cost for waiting times between transfers. Now, the
problem of finding time and capacity feasible and minimum cost routes for groups of
travelers can be modeled as IMR-S.

In this paper, we first investigate the computational complexity of our problem and
prove that it is NP-hard. Then we seek strong and small size formulations for IMR-S.
In the literature, similar problems are usually modeled using time-space networks.
As these networks expand the underlying transport networks with a time dimension,
they have large sizes. As a result, the formulations based on these networks use a
large number of variables to model routing decisions. Here, we propose a first mixed
integer programming formulation without resorting to a time-space network represen-
tation and strengthen it using variable fixing and valid inequalities. Next, we relax the
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capacity constraints in a Lagrangian manner and show that the relaxed problem de-
composes into a series of shortest path problems defined on networks augmented by
time for each commodity. The corresponding Lagrangian dual yields a lower bound,
which may be stronger than the one of the linear programming relaxation of our first
formulation. Then we provide an extended formulation, a formulation based on a
time-space network representation, whose linear programming relaxation gives the
same bound as the Lagrangian dual. The time-space network that forms the basis for
this formulation has a polynomial size in the size of the original service network. Fi-
nally, we report the results of our computational study where we compare the strength
and solution times for these two formulations. We observe that our first formulation
strengthened with the valid inequalities outperforms the time-space network based
extended formulation, even though the latter formulation is stronger and the size of
the time-space network grows polynomially with the size of the original network.
Hence our main contribution is the derivation of this smaller size formulation and
the associated valid inequalities, which enable us to solve larger instances for which
the extended formulation based on the time-space network representation is compu-
tationally not efficient.

Below, we first mention some important survey papers and then we summarize the
work done in the field of intermodal routing.

Bontekoning et al. [6] and Macharis and Bontekoning [15] survey the inland inter-
modal freight transportation literature. Macharis and Bontekoning [15] classify the
studies in this field using two criteria: type of operator and time horizon of opera-
tions. They identify four types of operators, namely, drayage, terminal, network, and
intermodal operators, and three planning levels, namely, strategic, tactical and opera-
tional. Our problem is an operational level planning problem faced by an intermodal
service operator according to this classification and there are only a few studies in
this category.

Crainic and Kim [11] survey the literature on problems encountered in operating a
container-based intermodal transportation network. A survey of the studies on cargo
shipping and planning problems in maritime transportation is given by Christiansen et
al. [10]. Bektas and Crainic [4] give an overview of intermodal transportation with the
shipper and the carrier perspectives and discuss several problems encountered in ser-
vice network design, operational planning, and intermodal terminals. Pedersen [18]
summarizes the development of intermodal transportation in Europe, outlines impor-
tant optimization problems encountered in this domain, and studies service schedul-
ing problems.

Barnhart and Ratliff [2] consider the problem of transporting commodities on an
uncapacitated rail-truck network with the aim of minimizing the total transportation
and inventory costs. When the transportation cost is charged on a per trailer basis,
the problem decomposes into a set of shortest path problems, one for each com-
modity. However, when the charge is on a per flatcar basis, the problem is modeled
as a matching problem under the assumption that each flatcar can transport at most
two trailers. Extensions to incorporate duedates and restrictions on flatcar configu-
rations are discussed. A chance constrained goal programming model to determine
intermodal routes to minimize cost and risks is given by Min [16]. On time service
requirements are included in this model. Boardman et al. [5] describe a decision sup-
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port system to choose the least cost combination of transportation modes on an inter-
modal network. Bookbinder and Fox [7] study the problem of finding optimal inter-
modal routes for Canada-Mexico shipments under NAFTA. Intermodal alternatives
on a network connecting five major Canadian cities and three major Mexican cities
are evaluated and nondominated solutions with respect to total time and total cost
objectives are identified. Kim et al. [14] consider the problem of determining the
flow and the number of vehicles of each transportation mode on a network in order
to minimize the sum of shipping and transportation costs under capacity and vehi-
cle restrictions. They derive a mixed integer programming model and present a case
study based on the container cargo data in Korea. Ziliaskopoulos and Wardell [22]
present an algorithm to compute intermodal time-dependent least travel time paths.
The algorithm takes into account the delays during the change of modes and the fixed
schedules. Boussedjra et al. [8] develop an exact method to find the least travel time
path between an origin destination pair in a time-dependent intermodal transporta-
tion network. They use the number of transshipments as a second criterion if there
exists a tie between two solutions. Song and Chen [20] consider the problem of find-
ing a least cost path between an origin destination pair with a delivery time limit on
an intermodal network with scheduled services. The total cost is the sum of trans-
portation cost, the transition cost, and the holding cost. They show that the problem
can be modeled as a shortest path problem on a time-space network. Grasman [13]
presents dynamic programming approaches to compute minimum cost path with on
time service requirements and minimum lead time path subject to cost restrictions for
intermodal networks.

The two closest studies to our problem are the ones by Chang [9] and Moccia
et al. [17]. Chang [9] studies the problem of determining routes of commodities on
international intermodal networks. The problem is a multiobjective intermodal mul-
ticommodity flow problem with time windows and concave costs. The objectives are
minimizing the total transportation cost and the total travel time. The transportation
cost is a concave piecewise linear function of total flow. A time window is associated
with each node to define the earliest and latest arrival times to the node in order to
use the services originating from this node. Both scheduled and time-flexible services
are considered. A commodity departs from a node after its service time or leaves the
node at a scheduled departure time if it is using a scheduled service. The demand of
a commodity may be split among several paths. This problem is converted into a sin-
gle objective problem by taking a weighted sum of the objectives. Then Lagrangian
relaxation is applied to decompose the problem. A heuristic to construct feasible so-
lutions from the solutions of the relaxed problem is presented. Finally the method is
tested on a small illustrative example and a larger network.

The problem studied by Moccia et al. [17] generalizes the problem in Chang [9]
by considering multiple time windows for pickup and deliveries and general (not nec-
essarily concave or convex) piecewise linear transportation costs. However, a single
objective, the one of minimizing the total transportation cost, is considered and sin-
gle path routing is imposed as a constraint in this study. The authors describe how to
represent their problem using a directed network where multiple copies of nodes are
created and some additional nodes are introduced to be able to model the multiple
time windows and scheduled departure times. Then two formulations, an arc-node
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and a path formulation, are given along with valid inequalities. Column generation
algorithms are designed to obtain lower bounds and are combined with heuristics to
get feasible solutions. The methods are tested on data obtained from an Italian freight
forwarder that uses rail and road transportation.

Our problem can be seen as a particular case of the problem that is studied by
Moccia et al. [17], where pickup time windows have lower and upper limits equal to
the release times and the delivery time windows are equal to the intervals starting at
the release times and ending at the duedates. Different from the problem of Moccia
et al. [17], we include penalty costs for waiting times spent at the seaports. However,
it is possible to handle these costs with the approach presented in Moccia et al. [17].
The approach we present here is tailored for our special case.

The paper is organized as follows. In Sect. 2, we give a detailed definition of our
problem IMR-S and prove that it is NP-hard. A first mixed integer programming for-
mulation is given in Sect. 3. In Sect. 4, we present results on variable fixing and valid
inequalities. Section 5 presents a Lagrangian relaxation and an extended formulation
derived using this relaxation. The results of a computational study comparing the
first model and the extended model and investigating the use of valid inequalities are
reported in Sect. 6. The paper is concluded with further research directions in Sect. 7.

2 Problem definition and complexity

Here, we first define our problem more formally and then establish its computational
complexity. We are given a directed network G = (N, A), which possibly contains
parallel arcs. Each node in this network corresponds to a seaport and each arc cor-
responds to a scheduled maritime service. For service a € A, s, denotes the origin
seaport, ¢, denotes the destination seaport, [e4, [;] denotes the time window (e, is the
start time of loading and [, is the cutoff time), ¢, denotes the cost of transporting a
unit volume, 7, denotes the travel time, and u, denotes the capacity of service a.

We denote by p; the cost of stocking a unit volume at seaport i € N for a unit
time.

The set of commodities is denoted by K. A commodity k € K has origin o,
destination dj, demand volume wy, release time r¢, and duedate gy.

For k € K, let ¢,,4, denote the unit cost of transporting commodity k from its
origin to its destination directly using trucks and ,, 4, denote the corresponding travel
time. For k € K and i € N, let ¢,,; and 1,,; denote the unit cost and time for carrying
commodity k from its origin to seaport i, and c;4, and 7,4, denote the unit cost and
time for carrying commodity k from seaport i to its destination directly using trucks,
respectively.

For a given commodity k € K, a time feasible intermodal route is a simple path
that starts at the origin oy at time ry, visits a set of seaports using a set of maritime
services respecting the cutoff times, and ends at the destination di not later than the
duedate gi. The cost of such a route is the sum of routing and waiting costs. For each
commodity, we decide either to route the commodity directly on trucks or to route
it on a time feasible intermodal route respecting the capacities of maritime services
with the aim of minimizing cost.

@ Springer



136 B. Ayar, H. Yaman

origin, ready at 4

3,[8,11], 12

destination, due by 25

Fig. 1 An example service network

We provide an example in Fig. 1 to clarify the definitions. Here, we have four
seaports and seven maritime services. Hence, N ={1,...,4}and A={1,...,7}. We
consider a single commodity whose release time is 4 and duedate is 25. Maritime
services are represented with solid lines and truck connections are represented with
dashed lines. To keep the example small, we assume that truck connections from the
origin to seaport 4 and from seaports 1, 2, and 3 to the destination are not available.
The numbers on truck connections are the corresponding travel times. For each mar-
itime service, we give the number of the service, the time window [the start time of
loading, the cutoff time], and the travel time. In our example, it is possible to trans-
port the commodity from its origin to its destination using trucks in 10 days. It is also
possible to go to seaports 1, 2, and 3 by trucks. If the commodity is transported to
seaport 1 on trucks, it arrives there at time 5. It is not possible to use maritime service
1 as its cutoff time is equal to 4, which is earlier than the arrival time of our commod-
ity. Maritime services 2 and 3 can be used. If service 2 is used, then the commodity
is loaded without waiting, leaves the seaport 1 at time 7 and arrives at seaport 3 at
time 13. On the other hand, if service 3 is used, then the commodity is stocked at
the seaport 1 for 3 units of time until the start of loading. Then it leaves seaport 1
at time 11 and arrives at seaport 4 at time 23. Alternatively, the commodity can be
transported using trucks to seaport 2, where it waits for 1 unit of time until the start of
loading, leaves seaport 2 using maritime service 4 at time 9, and arrives at seaport 3
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at time 17. There are three maritime services leaving seaport 3 and arriving at seaport
4. As the cutoff time for service 5 is equal to 15, it can be used only if we arrive at
seaport 3 using direct truck connection from the origin or using maritime service 2.
Maritime service 7 cannot be used, as it arrives at seaport 4 at time 26, which is later
than the duedate. Overall, there are seven time feasible routes for our commodity:

1. direct truck connection from origin to destination (arrival time 14)

2. truck connection from origin to seaport 1, waits at seaport 1 for 3 units of time,
maritime service 3, truck connection from seaport 4 to destination (arrival time 24)

3. truck connection from origin to seaport 1, maritime service 2, maritime service 5,
truck connection from seaport 4 to destination (arrival time 21)

4. truck connection from origin to seaport 1, maritime service 2, waits at seaport 3 for
3 units of time, maritime service 6, truck connection from seaport 4 to destination
(arrival time 24)

5. truck connection from origin to seaport 2, waits at seaport 2 for 1 unit of time, mar-
itime service 4, maritime service 6, truck connection from seaport 4 to destination
(arrival time 24)

6. truck connection from origin to seaport 3, waits at seaport 3 for 4 units of time,
maritime service 5, truck connection from seaport 4 to destination (arrival time
21)

7. truck connection from origin to seaport 3, waits at seaport 3 for 8 units of
time, maritime service 0, truck connection from seaport 4 to destination (arrival
time 24).

We define the decision version of the problem /MR-S as follows. Given the param-
eters of the problem and a scalar yy, does there exist a feasible solution with cost not
more than yy? Next, we prove that this problem is NP-complete using a polynomial
reduction from the 0-1 knapsack problem.

Proposition 1 The decision version of IMR-S is NP-complete.

Proof The decision version of IMR-S is in NP. Consider the decision version of
the 0-1 knapsack problem. Given a set I, nonnegative integers «; and fB; for each
i € I and two positive scalars «g and By, does there exist a subset S C I such that
Y iesi <apand ) ;¢ Bi = Po? This problem is NP-complete (see Garey and John-
son [12] problem [MP9]) even when «; = ; for all i € I.

Suppose that there are only two seaports 1 and 2, and that there is a single service
from 1 to 2 with capacity «g. For each item i in set /, define a commodity from node
1 to node 2 with demand volume equal to «;. The release time is 0 and the duedate is 1
for all commodities. Commodities can be transported at no cost and no time from their
origins to seaport 1 and from seaport 2 to their destinations. The maritime service
starts at time O and ends at time 1. The unit cost of using the service is equal to 1 and
the unit cost of delivering a commodity using trucks is 2. Under this specification of
parameters, the IMR-S reduces to the problem of finding a minimum cost partition
of the set of commodities / into two sets S and 7 \ S such that commodities S are
transported using the maritime service and commodities / \ S are transported using
trucks. Such a partition is feasible if ) _; cs @i < ap. The cost of the associated solution

is ) jesdi+ Zie[\S 200 =23 ey i — Y jes@i-Let yo =23 i — fo.
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Now there exists a solution to the 0-1 knapsack problem with 8; = «; foralli € 1
if and only if there exists a solution to the decision version of the problem IMR-S. [

3 A mixed integer programming model

In this section, we present a mixed integer programming model for /MR-S. In this
model, we use the following decision variables. For k € K, y* is 1 if commodity k
is transported directly from its origin to its destination on trucks and 0 otherwise.
Forke K andi e N, x](fk ; is 1 if commodity k is carried from its origin directly to

seaport i using trucks and 0 otherwise and xfdk is 1 if commodity k& is carried from
seaport i to its destination directly using trucks and O otherwise. Fork € K anda € A,
xé‘ is 1 if commodity k uses maritime service a and O otherwise. Finally, for k € K
andi e N, vf‘ denotes the arrival time of commodity k at seaport i if this seaport is
visited by this commodity and z?‘ is the amount of time for which commodity k waits
at the stocking area at seaport i.

Using the above decision variables, we derive the following mixed integer pro-
gramming formulation called M1.

min - wy (Z CoiXbi+ Y caxh + ) Ciagxly +coa Y+ piZf) ey

keK ieN acA ieN ieN
st Y xb ) =1 Vkek )
ieN
D oxb4xl,— > xh-xfy =0 VkeK, ieN 3)
acA:ty=i acA:s,=i
oxb 4y =1 Vkek 4)
ieN
D xb4xf,<1-y" Vkek, ieN )
acA:t,=i
Z wixk <u, VaeA (6)
keK
vk = Z (o + Ta)xs + (i + Toi)xl; VkeK, ieN (7
acA:ty=i
x> Z eaxk —vF VkekK,ieN (®)
acA:sq=i
vE < Y laxk+ (g —Tia)xly, VkeK,ieN 9)
acA:sq=i
e+ Toa Y <qe VkeK (10)
Xy i Xiy €{0.1} VkeK,ieN (11)
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xke{0,1) VkeK,acA (12)
yke{0,1} Vkek (13)
zfzo VkeK,ieN. (14)

Constraints (2)—(4), (12), and (13) ensure that either a commodity is transported
from its origin to its destination directly using trucks or there exists a path from its
origin to its destination that visits only seaports on its way. Constraints (5) eliminate
cycles. First observe that there always exists an optimal solution without any cycle
that does not intersect the path of a commodity, since costs are nonnegative. It is
also not possible to have a cycle that starts and ends at the origin or destination of
a commodity. Hence it is sufficient to ensure that each commodity can arrive at a
seaport at most once to eliminate cycles.

Constraints (6) ensure that total volume to be transported on a service cannot ex-
ceed the capacity of the service.

Constraints (7) compute the arrival times of commodities to seaports. If commod-
ity k arrives at seaport i using service a, then it leaves the origin seaport s, at time /,
and travels for t, time units, and hence arrives at i at time /, + 7,. If seaport i is the
first seaport that commodity k visits, i.e., if commodity k leaves its origin and comes
to i using trucks, then 7y is the time trucks leave the origin node and 7,,; is the trip
time. Hence, the arrival time is 7 + 7,,;. If commodity k does not visit seaport i then
its arrival time is taken to be zero.

If a commodity k arrives at seaport i before loading starts for its service, then it is
stocked at the seaport until the start time of loading for the service that it uses to leave
seaport i. Constraints (8) and (14) compute the amount of time for which commodity
k is stocked at seaport i.

Constraints (9) ensure that the commodities arrive before the cutoff time of the
service they would like to use and that they arrive at their destinations no later than the
duedates. Finally, constraints (10) avoid direct shipments by trucks if the commodity
cannot be on time using this transportation mode. These constraints can be dropped
by setting yk =0 for commodities k € K such that rx + 74,4, > gx.

The objective function (1) is the sum of the cost of transportation and the cost of
stocking at seaports.

Several problem variations can be modeled as follows.

In the above problem definition, we assume that commodities are picked up at
their origins at their release times. Hence a commodity that uses maritime services
arrives at the first seaport i at time r¢ 4 t,,;. If this time is earlier than the start time
of the maritime service that this commodity uses, then a stocking cost is incurred.
However, some clients may have depots where they can stock their goods until the
pickup time at no cost. In that case, it may be cheaper to pickup these commodities
later than their release times. Let K’ be the set of such commodities. To model this
variant, we replace constraints (8) with constraints

P> ) eaxf—vf VkeK\KieN (15)

acA:s(a)=i

<

@ Springer



140 B. Ayar, H. Yaman

> Z eqxt —vF — Mx,qi VkeK',ieN, (16)

acA:s(a)=i

where M is a large number. Constraints (15) are the same as constraints (8) and
model the waiting times for commodities that should be picked up at their release
times. Constraints (16) are for clients that have depots to stock their goods until
their pickup times. These constraints ensure that the waiting time at seaport i € N
is bounded below by a nonpositive number if i is the first seaport that commodity
k € K’ visits on its path. If i is not the first seaport, i.e., if x,x); = 0, then these
constraints are the same as (15).

To model situations where the departure times of maritime services are later than
the cutoff times, we replace constraints (7) with constraints

vf= > (batT)xh+ (h+T00)xk,; VkeK, ieN

acA:it,=i

where b, denotes the departure time for maritime service a € A.

In our model, we assume that the stocking penalties are linear functions of the
waiting time. We can easily model the situation where there is a period of stocking
free of charge and there is a limit on waiting times. Suppose that at seaport i € N,
it is possible to stock goods at no cost for a period of length x;, after which a cost
of m; units is charged per unit volume and unit time and the stocking period cannot
be longer than v; units of time. We can model these requirements by introducing the
variables nl’.‘ forall k € K andi € N, adding the constraints

nf‘sz‘—Xi VkeK,ieN
K<y VkeK,ieN
nf =0 VkeK, i€eN,
and replacing the objective function by
min Z Wi (Z cakixlgki + Z caxﬁ + Z Cidkxtkdk + cokdkyk + Zm nf‘) .
keK ieN acA ieN ieN

For those seaports i € N for which the stocking cost is positive, i.e., m; > 0, in an
optimal solution r}f.‘ = (zf — xi)™, and hence no stocking cost is paid for the first x;
units of the waiting time, and a stocking cost is charged for each unit of extra waiting
time.

4 Variable fixing and valid inequalities
In this section, we first present a simple result, which enables us to fix the values of
some of the variables. Then we derive some valid inequalities based on time restric-

tions.
Let F denote the set of feasible solutions to model M.
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Algorithm 1 Computation of earliest arrival times for a given commodity k € K
for alli € N do
Elk < I+ Topi
temp(i) <1
end for
while ), temp(i) # 0 do
Leti* € arg min{El(C 1i € N, temp(i) = 1}(break ties arbitrarily)
temp(i*) <0
for all « € A such that s, =i* and temp(t,) = 1 do
if Elk* <, and Et"(a) > 1, + 7, then
E[k(a) <l + 1,
end if
end for
end while

For each commodity k € K and node i € N, let E lk be the earliest time at which
commodity k can arrive at node i. These values can be computed using Algorithm 1,
which is a modification of Dijkstra’s algorithm (see [1]). Let k € K. The algorithm
starts with assigning the value ry + 7,,; to Elk for all i € N. At each iteration, a list
of temporarily labeled nodes is kept. Initially the set of temporarily labeled nodes
is equal to the set of nodes. A temporarily labeled node, say i*, with the smallest
Etk value is chosen as the next permanently labeled node. Then, for each service
a that starts at node i*, ends at a temporarily labeled node 7(a), and whose cutoff
time is not earlier than Elﬁ, we compute /, + 7,. This is the time we arrive at the
destination seaport ¢ (a) using maritime service a. If this value is less than the current
value of Et'z, then we update Efa as I, + t,. In other words, for a € A with s, = i*,
t(a) temporarily labeled, and El{‘* <l,, we update E{Z with min{Etlz 14+ 14} The
algorithm stops when no temporarily labeled node is left.

If the demand volume of a commodity exceeds the capacity of a service or if the
earliest time at which this commodity can arrive at the origin seaport of a service is
later than the cutoff time for that service, then clearly, this commodity cannot use that
service. Hence, we have the following result:

Proposition 2 Let k € K and a € A. Every feasible solution satisfies x{j =0 if wy >
k
uqg or Eg > ly.

Consider commodity k € K and seaport i € N. If commodity k travels directly
from its origin node o to seaport i, then it arrives there at time rx + 7,,;. It is not
possible for this commodity to use any service for which the origin seaport is node i
and the cutoff time is earlier than ry + 7,,;. The set OI.k ={acA:isyg=i,r+ 719>
1.} is the set of such services.

Similarly, if commodity k travels from seaport i directly to its destination dy, then
it should be ready to depart from i the latest at time g; — 7;4,. Hence any service a
that arrives at seaport i later than this time cannot be used by commodity k. The set
of such infeasible services is Df ={acA:ty,=il,+ 7+ g > qi}.
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Proposition 3 Fork € K and i € N, the inequalities

DD DA B (17)
an{‘
and
X+ Yo xb<1-y (18)
aED,{C
are valid for F .

Proof We give the proof for inequality (17). For commodity k € K, if y* = 1, then
commodity k is transported from its origin to its destination directly on trucks and
hence all associated x variables are zero. Otherwise, if x(]jki = 1, then by definition

of set O{‘, commodity k cannot use any service in this set and hence ), _« x"; =0.
Finally, if yk =0and x’(jkl. =0, then Za cok xt’l‘ < 1 as commodity k has to be carried
on a simple path. The proof for inequality (18) is similar. g

Fora € A, define A ={a":sy =t4,la+ 7 > ly}and A ={a' 1ty =14,1y +
T > 1, + t,4}. Observe that if a commodity k uses service a, then the time it reaches
the destination seaport ¢, is I, + t,. If a’ is a service that starts at node #, and if the
cutoff time for this service is earlier than /, 4 t,,, then the commodity cannot use this
service together with service a. Hence, the set A; is the set of services that start at
node #, and that cannot be used if service a is used to reach node #,. The set A, is
the set of services that arrive at node ¢, not earlier than service a.

Proposition4 Letk € K anda € A.
If ri + o, <la+ 1 and gy + 4 + 11,0, < qi, the inequality

Yok Y k=1 (19)
aeA; a’eA;’

is valid for F .
If ric + tops, > la + 10 and ly + 14 + T1,q, < g, the inequality

D DD D e 20)
a'en; a'eAt
is valid for F .
If ric + to1, <la + 74 and ly + vy + 1,0, > qi, the inequality
S k4 Y sy <1yt o
a'en; a'eA}
is valid for F .
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If ric + tops, > la + 10 and ly + T4 + Tr,q, > gk, the inequality

)t Y x>k af, <10k (22)

- +
a'eA; a'eA;

is valid for F .

Proof We give the proof for inequality (22). If y* = 1, then the vector x is a zero
vector. If yk =0and xé‘ =1,then ) a'eAr x;‘, = 0 since service a arrives at seaport ¢,
later than the cutoff time for these services, xt/fl d = 0 since it is not possible to meet
the. duedate as [, + ‘L'a.—l- Ti,dy .> qr, x'(jktﬂ + Za,eA;\{a} xg, =0 s.ince commodity k
arrives at seaport 7, using service a and cannot use any other service that ends at the
same seaport and cannot be carried to this seaport from its origin. Finally, if y* =0
k _ k k k k
apd x, =0, the.:n we know t.hat X1, T Za,eA; x;, <1and Za,eA: Xy X 40 < 1
since commodity k can arrive at and leave seaport #, at most once. Moreover, all
services in set A} arrive at #, too late to be able to use any service from set A} or
for the commodity to be delivered to its destination on time. Hence at most one of the
sums xé‘k[a + D wear x%, and Darent x]‘j/ + xz]f,dk can be 1. O

Before concluding this section, we note that an alternative formulation can be ob-
tained by dropping constraints (9) and using inequalities (17)—(22). But these inequal-
ities do not necessarily imply (9) in the linear programming relaxation. Hence, we
keep (9) in our model when we add valid inequalities (17)—(22) to obtain a stronger
formulation.

5 Lagrangian relaxation and an extended formulation

In the first model given above, the only constraints that link different commodities
together are the capacity constraints (6). Next, we investigate a Lagrangian relaxation
where these constraints are dualized. Let «, be the Lagrange multiplier associated
with constraint (6) for service a € A. For a given vector « > 0, the relaxed problem
disaggregates into | K| problems as follows.

LR(a) = — Zaaua + Z wi min{LR* (@), copa, }
acA keK ri+Topa, <qk

+ > wi LR ()

kGK:rk-‘rT,,kdk >qk

where
LRk(oc) = min Zcokix(]fki + Z(C‘l + ota)xs + Zcidkxl{‘dk + Zpizf (23)
ieN acA ieN ieN
st Y xbi=1 (24)
ieN
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Z x]a‘—l—xl(fki— Z x‘]f—xlkdk=0 VieN (25)
acA:t,=i a€A:sq=i
3ok, =1 (26)
ieN
> xk+4xf,<1 VieN (27)
acA:t,=i
vk = Z (la+ Ta)xh + (e + Toui)xk; VieN (28)
acA:t,=i
ng > Z eaxs — vf‘ Vie N (29)
acA:sq=i
v < D LaXh+ (g —Tia)xly, VieN (30)
acA:sq=i
XyiXhg €101} VieN (31)
xkef0,1} Vaea (32)
>0 vieN. (33)

For a given commodity k € K, the aim of the above problem is to find a time feasi-
ble intermodal path from the origin of commodity k to its destination that minimizes
the sum of transportation and stocking costs using scheduled services for a unit flow.
The cost of using service a € A is equal to ¢, + «, in this problem.

If it is feasible to route commodity & directly from its origin to its destination, i.e.,
if 7k 4 To,q, < gk, then to compute the contribution of commodity & to the objective
function value of the relaxed problem, we take the minimum cost choice among a best
intermodal route and the direct shipment. If rx 4 75,4, > gx, then the contribution of
commodity k to the objective function value of the relaxed problem is equal to the
routing and stocking costs on a best intermodal route computed solving the related
subproblem.

In the sequel, we assume that cycles do not occur due to the cost structure. For a
given commodity k € K, the above subproblem can be solved using a shortest path
algorithm on an acyclic graph. For i € N, let I; = {a € A : t;, =i} be the set of
services for which i is the destination seaport and Fik =U ael; {la + wa} U {re + 10,4}
be the set of possible arrival times at node i. Observe that the size of set Fik is at
most the number of incoming arcs of node i in the original graph G plus 1. Define
an auxiliary graph Gy = (Ng, Ag) where Ny = {or,d} U {(i,j):i € N,j € I'}k},
Ok = {(0k, (i, 1k + o)) i € N}, D = {((G, j),di) = (i, ) € Nk, j + Tigy < gk}
S = {((i1, j1), (G2, j2)) : (i1, J1), (2, jo) € Nk, Ja € Aisq =iy, ta =i, j1 Slayla +
7, = jo},and Ay = O U Dy U Si. The node set Ny includes the origin and destination
of commodity k and one node for each seaport i and a possible arrival time at i. The
arc set Oy consists of all arcs from the origin to nodes (i, rx + 7,,;), which represent
the seaports and the associated arrival times from the origin using trucks. The arc set
Dy, consists of all arcs from nodes (7, j) to the destination dj such that it is possible
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to arrive at the destination by the duedate if we leave seaport i using trucks at time j.
Finally, the arc set S consists of arcs from node (i1, ji) to node (i2, j») such that
there exists a maritime service from seaport i; to seaport i, whose cutoff time is not
earlier than j; and whose arrival time at seaport i3 is equal to j,. In other words, arc
((i1, j1), (i2, j2)) is in set Sk if and only if it is possible to travel from seaport i to
seaport i using a maritime service that arrives at seaport i, at time j, if we arrive at
seaport i1 at time ji.

First remark that graph G does not contain parallel arcs. Second, the number of
nodes in this graph is in the order of the number of maritime services, i.e., O(|A]|).
Third, if we assume that all travel times are positive, then the graph Gy is acyclic and
can be lexicographically ordered by sorting the nodes (i, j) in nondecreasing order
of j.

Consider a path from node oy to node d in this graph. If this path uses an arc
((i1, j1), (2, j2)), then the commodity arrives at seaport i1 at time j; and then travels
directly to seaport i» and arrives there at time j,. As this arc exists in graph G, we
know that there exists at least one maritime service that departs from seaport i; and
arrives at the destination seaport iy at time j, and for which the cutoff time is not
earlier than j;. Hence a path from node oy to node di in graph Gy is a path from
node oy to node dj, that satisfies all time restrictions.

Next, we define the lengths of the arcs. The length of arc (ox, (i, rk +7o;i)) € Oy is
equal to ¢,,; and the length of arc ((i, j), dx) € Dy is equal to ¢;4, . Finally, the length
of an arc ((i1, j1), (i2, j2)) € Sk is equal to minaeA:sazh Jda=i2,j1<la la+Ta=Jjn (ca+oq+
Diy (eq — j1)™). Here we look at all maritime services that travel from seaport i| to
seaport i>, whose cutoff times are not earlier than j; and whose arrival times are j,.
If a is such a service and if the commodity uses this service, then it waits at seaport i
until the start time of loading, i.e., for (e, — j DT units of time.

Song and Chen [20] use a graph generation procedure similar to ours. The differ-
ence is that they use both arrival and departure times in defining their nodes, whereas
we only use arrival times.

Now LR*(«) is equal to the length of a shortest path from the origin oy to the
destination dy in graph Gy. As the size of the graph Gy grows polynomially with the
size of the problem, LR(«) can be computed efficiently.

The Lagrangian dual bound is LD = maxy>¢ LR(«). This bound is at least as good
as the linear programming bound of model M. As the subproblems are shortest path
problems, we can derive an extended formulation whose linear programming relax-
ation yields the same bound as the Lagrangian dual.

For each commodity k € K, we define a graph where a simple path from origin
oy to destination dj defines a trip that starts at oy, ends at di, and respects all time
restrictions. We define the costs of arcs on the new graph in such a way that the
sum of costs of arcs on a path is equal to the transportation and stocking cost for the
corresponding trip. The problem IMR-S, then, is equivalent to the problem of finding
a path for each commodity k such that the capacity constraints are satisfied.

For each k € K, we define the following graph G = (N, A}). The set A} consists
of arcs of Oy and Dy, and a set of service arcs S,’{ defined as follows. For each service
a € A and nodes (i1, j1) and (iz, jo) in Ng such that s, =iy, 1, =iz, j1 <[, and
lg + t4 = jo, we add an arc w from node (i1, j;) to node (ip, j») with cost o, =
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ca + pi,(ea — j1)T. In other words, if it is possible to go from seaport i} to seaport iz
using maritime service a that leaves i; at a time not earlier than j; and arrives at i
at time j», then we add arc w. The unit cost associated with arc w is equal to the
unit transportation cost using maritime service a plus the cost of waiting at seaport i;
from time jj until time ¢,, the start time of loading for service a.

We define p(w) = a. For arc w = (o, (i, rx + To,i)) € Oy, we define o, = ¢y
and for arc w = ((i, j), d) € Dy, we define o, = ciq, .

Note that different from graph Gy, in graph G we may have parallel arcs with
different costs and/or capacities. Still, the number of arcs remains polynomial in the
number of maritime services.

For the extended formulation, we define the following additional variables. Let
k € K. For arc w = (ox, (i, 7k + 7o) € O, let f!,j be 1 if commodity k travels
directly from its origin to seaport i and arrives there at time ry + 7,,; and 0 otherwise.
For arc w = ((i, j), dy) € Dy, let f£ be 1 if commodity k arrives at seaport i at
time j and travels from i directly to its destination and O otherwise. Finally, for arc
w € S,’c from node (i1, j1) to (i2, j2), we define fa’j to be 1 if commodity k arrives at
seaport i1 at time j; and uses service p(w), which departs from seaport i1 and arrives
at seaport iy at time jp and O otherwise.

Let §~(k,il, j1) and 87 (k, i1, j1) be the sets of incoming and outgoing arcs of
node (i1, j1) € Ni in graph G.

The extended formulation, M2 is as follows.

min Z u)k( Z owfa]j + cokdkyk> (34)
keK wEAL

s.t. > fEeyk=1 vkek (35)

@=(0k, (i,rk+Toi)) € O

o= > fE=0 Vkek. (1.j1)eM (36)

wedt(k,il,j1) wes= (k,il,j1)

Yo fhha =1 Vkek (37
w=((i, j).dr) €Dy
Dwe Y fh<u, VaeA (38)
keK weS;:p(w)=a
e+ toa Y <qr VkeK (39)
fkef0,1) Vkek, we A (40)
y$e{0,1} VkeKk. (41)

Constraints (35)—(37) and (39)—(41) ensure that each commodity is routed on a
path that satisfies all time related constraints. Constraints (38) are the capacity con-
straints for the maritime services.

Here we remark that model M2 uses a time-space network to model time related
constraints. However, unlike most models based on time-space networks, the size of

@ Springer



An intermodal multicommodity routing problem with scheduled services 147

model M2 does not depend on the length of the planning horizon and is polynomial
in the number of commodities and number of services. This is due to the fact that the
services are scheduled and it is sufficient to consider only the arrival times at seaports
in generating the time-space network.

In the above formulation, if we define the direct shipments using arcs (o, di),
then we obtain an origin-destination integer multicommodity flow problem (see, e.g.,
Barnhart et al. [3]).

To conclude this section, we compare the strength of bounds we can obtain from
the linear programming relaxations of the models with and without variable fixing
and valid inequalities and the Lagrangian dual bound.

Let MIT be model M1 together with the constraints x"; =0 for all k € K and
a € A with Efa > [, and inequalities (17)—(22). In other words, MIT is model M1
strengthened with variable fixing and valid inequalities based on time restrictions.
Let MITC be model MIT together with the constraints x¥ = 0 for all k € K and
a € A with wg > uy,, i.e., the model M1 strengthened with variable fixing and valid
inequalities based on time restrictions and capacity constraints.

Let M2C be model M2 together with the constraints ) . S,:p@w)=a f!j =0 for all
k € K and a € A with wi > u,. Finally let LDC be the Lagrangian dual bound when
the same Lagrangian relaxation is applied to model M1 together with the constraints
xk=0forall k € K and a € A with wy > u,. Note that these additional constraints
can be handled by ignoring the corresponding services in constructing graph Gy.

For a given model M, let LP(M) be the optimal value of its linear programming
relaxation. The following theorem gives a comparison of the linear programming
bounds of several models and the Lagrangian Dual.

Theorem 1 LD = LP(M2) > LP(MIT) and LDC = LP(M2C) > LP(MITC).

Proof We give the proof for LD = LP(M2) > LP(MIT).
We first prove that the Lagrangian dual bound LD is equal to the linear program-
ming bound of M2.

First observe that LR(0t) = — >, 4 Calta + Y jek wkﬁk (o) where

ﬁk(a)zmin Z Uwf£+ Z(Uw +Olp(w))fa]§

@=(0k,(i,rk+7o,i)) €O weS;,

+ Z O—wfa]i +C0kdkyk
w=((i, j),dr)€ Dy

s.t. Z fEeyk=1 (42)

@0=(0k, ({,rk+7o;)) €O

Yooofa— D fa=0 YGijneNy 43

west(k,il,j1) wes—(k,il,j1)

> Y=t (44)

w=((i.}).dx)eDy
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fFef0,1y voeA,
y* e {0, 1}.

As the above problem is a shortest path problem, the convex hull of its feasible solu-
tions is described by constraints (42)—(44) and nonnegativity constraints on variables.
Hence the Lagrangian dual bound LD is equal to the linear programming bound of
M2 (see, e.g., Wolsey [21]).

Now suppose that we apply the Lagrangian relaxation to the model MIT. As the
constraints xé‘ =0forall k € K and a € A with Efa > [, and inequalities (17)—(22)
are redundant in the relaxed problem, we have that LD > LP(MIT).

The second statement can be proved in a similar way. g

6 Computational results

In this chapter, we first describe the test data and then present the results obtained by
solving our integer models.

We use two service networks in our computational study. The first one is the net-
work of the third party logistics company mentioned in the Introduction. This network
includes 34 important seaports in Europe, Russia, China, Hong Kong, Singapore, and
Malaysia and 167 services of the world’s major sea transportation operators. The
schedules of services are obtained from the company. These schedules are for the
services provided in March 2008. The other parameters we obtained from the com-
pany are the costs and capacities.

We named the company’s network as O1. We also generated a random network O2
with 66 nodes and 1200 arcs. For the instances on network O1, we randomly generate
the demands. For the other instances, we generate all data randomly.

For each service network, we generate 4 core instances with different number of
commodities, namely, | K| is equal to 400, 600, 800, and 1000.

For each core instance, we multiply the arc capacities by a capacity factor to cre-
ate three different instances with tight, medium, and loose capacities. The capacity
factor takes the values 2/3, 1, and 2. As a result, we have 24 problem instances. An
instance is named as follows: name of the service network-capacity factor-number of
commodities.

We solve our models using CPLEX 11.0. All runs are taken on a 2.67 GHz
2 xQuadcore Xeon Processor with 8 GB Ram.

To compare the performances of the two models and investigate the effect of vari-
able fixing and valid inequalities, we solve each problem instance using models M1,
M1v (the first model with valid inequalities), MIf (the first model with variable fix-
ing), MITC (the first model with variable fixing and valid inequalities), M2C (the ex-
tended model with variable fixing based on capacity restrictions). For each instance
and model, we report the duality gap, i.e., the percentage gap between the optimal
value of the integer model and the optimal value of its linear programming relax-
ation, the number of nodes in the branch and cut tree and the cpu time in seconds. We
impose a time limit of one hour. For the instances that are not solved to optimality
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Table 1 The duality gaps for

O1 instances Instance MI Mlv MIf MITC M2C
01-2/3-400 22.52 18.12 5.64 1.72 0.53
01-2/3-600 16.35 13.63 4.92 1.76 0.40
01-2/3-800 13.40 11.23 5.11 2.41 1.00
01-2/3-1000 11.39 9.96 4.79 2.74 1.74
01-1-400 19.56 12.69 12.38 2.59 1.71
01-1-600 14.73 10.27 10.45 3.90 1.68
01-1-800 12.36 8.73 9.53 4.77 1.71
0O1-1-1000 10.44 7.81 8.18 4.82 1.73
01-2-400 16.91 4.08 16.87 4.06 1.04
01-2-600 13.52 4.24 13.50 4.22 0.75
01-2-800 12.59 5.10 12.55 5.08 0.81
01-2-1000 11.08 5.35 11.02 5.30 0.86

Table 2 The number of nodes i

for O1 instances Instance MI Mlv MIf MITC M2C
01-2/3-400 830 0 786 0 0
01-2/3-600 - 0 - 0 1252
01-2/3-800 - 0 - 0 5235
01-2/3-1000 - 67 - 67 -
01-1-400 1054 0 992 0 1520
01-1-600 - 1 - 1 10195
01-1-800 - 1 - 1 -
01-1-1000 - 409 - 409 -
01-2-400 2887 10 2887 10 2729
01-2-600 - 96 - 96 -
01-2-800 - 221 - 201 -
01-2-1000 - 1259 - 1252 -

in one hour, we report the remaining percentage gap, as reported by the solver, in
parenthesis in tables reporting cpu times.

In Tables 1, 2 and 3, we report the duality gaps, the number of nodes, and the cpu
times for the instances on O1 network, respectively. We report the number of nodes
for the instances and models for which optimality could be proved in one hour.

In Table 1, we observe that with model M1, the duality gaps decrease as the num-
ber of commodities and the capacity factor increase. The effect of variable fixing is
stronger for the problems with tight capacities. This is expected as one of the variable
fixing rules is based on capacity constraints. The addition of valid inequalities results
in higher improvements for problems with larger capacity factors. After variable fix-
ing and the addition of valid inequalities, the duality gaps are improved significantly
but are still much higher compared to the duality gaps of model M2C.
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Table 3 The cpu times for Ol

instances Instance MI Mlv MIf MITC M2C

01-2/3-400  480.6 38.7 4415 379 44
01-2/3-600 1h(0.18) 58.0  1h(0.16) 579 428
01-2/3-800 1h(0.44) 76.0  1h(0.44) 67.4 1979
01-2/3-1000  1h(0.39) 109.3  1h(0.38) 108.6  1h(0.02)

01-1-400 812.4 475 7793 38.7 18.1
01-1-600 1h(0.58) 80.1  1h(0.58) 64.6 3342
01-1-800 1h(18.13) 108.7 1h(18.13) 105.6  1h(0.05)
0O1-1-1000 1h(21.12) 155.8 1h(21.10) 194.4  1h(0.11)

01-2-400 1131.4 474 10222 462 315

01-2-600 1h(1.74) 947 1h(1.74) 755 1h(0.13)
01-2-800 1h(2.44) 1374 1h(244) 1383  1h(0.21)
01-2-1000  1h(4.28)  303.3 1h(4.28) 2409  1h(0.24)

In Tables 2 and 3, we see that only instance with 400 commodities are solved to
optimality within one hour of CPU time with model M. Variable fixing does not
change this situation but results in a decrease in the number of nodes evaluated and
the solution times for the instances solved to optimality. For a few of the unsolved
instances, there is a slight decrease in the final gaps due to variable fixing. However,
with both models M1 and MIf, final gaps are very high for medium capacity fac-
tor problems with 800 and 1000 commodities. With formulation M2C, we can solve
larger instances to optimality for small capacity factors. However, for the large ca-
pacity factor, only the instance with 400 commodities has been solved to optimality
within the timelimit. With this formulation, the remaining gaps is less than 0.25% for
the unsolved problems.

All instances are solved to optimality in less than six minutes when the valid in-
equalities are added to model M. For the instances that are solved to optimality with
both M1v and M2C, we see that the solver enumerated a smaller number of nodes
with M1v even though this model results in larger duality gaps. This is probably due
to the set packing structure that is created by the valid inequalities and that enables
the solver to generate further valid inequalities.

Finally, we observe that even though variable fixing has a significant effect on the
duality gaps for some instances, it does not result in an improvement in solution times
for those instances.

Next, we report the results obtained for the instances on the randomly generated
network O2. This network contains about seven times more arcs than the original
graph O1. The results are given in Tables 4, 5 and 6.

Comparing Tables 1 and 4, we see that the duality gaps are much higher for the
random instances with model M1 for the small capacity factor. As in the case of Ol
instances, we see that the effect of valid inequalities is higher for problems with larger
capacity factors and the effect of variables fixing is higher for problems with smaller
capacity factors. Compared to the gaps with the O1 instances, with the O2 instances,
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Table 4 The duality gaps for

02 instances Instance MI Mlv MIf MITC M2C
02-2/3-400 43.48 40.47 8.78 4.08 0.84
02-2/3-600 40.22 37.27 9.72 5.07 1.28
02-2/3-800 35.55 32.02 10.31 8.26 1.82
02-2/3-1000 33.61 28.66 10.79 9.20 2.36
02-1-400 15.97 10.69 14.85 10.38 0.26
02-1-600 14.91 7.59 14.22 7.41 0.31
02-1-800 14.86 8.67 14.37 8.53 0.53
02-1-1000 14.85 13.01 14.48 12.91 0.50
02-2-400 15.84 10.55 14.59 10.13 0.03
02-2-600 14.54 7.17 13.77 6.91 0.01
02-2-800 14.35 7.80 13.79 7.61 0.01
02-2-1000 14.68 8.79 14.26 8.65 0.03

Table 5 The number of nodes

for O2 instances Instance Ml Mlv MIf MITC M2C
02-2/3-400 1640 0 1589 0 0
02-2/3-600 - 0 - 0 0
02-2/3-800 - 0 - 0 0
02-2/3-1000 - 0 - 0 0
02-1-400 69 0 69 0 0
02-1-600 495 0 487 0 0
02-1-800 - 33 - 33 0
02-1-1000 - 228 - 228 0
02-2-400 0 0 0 0
02-2-600 10 0 10 0
02-2-800 - 28 - 28 0
02-2-1000 - 111 - 111 0

the duality gaps with the first model MITC are higher and the ones with the second
model M2C are usually smaller.

We could solve larger instances to optimality with model M1 for the O2 network.
Still the instances with 800 and 1000 commodities are not solved to optimality in one
hour. The final gaps remain the same after variable fixing. With the addition of valid
inequalities, all instances are solved to optimality in maximum six minutes. Model
M2C could also solve all the instances optimally. From Table 5, we see that these
instances are solved at the root node without branching. Even though more nodes are
evaluated with model M1v, the solution times are shorter compared to the ones with
M2C.

As a summary, we could not solve large instances to optimality with the first model
without the valid inequalities. With the inclusion of the valid inequalities, model 1
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Table 6 The CPU times for O2

instances Instance MI Mlv MIf MITC  M2C

02-2/3-400 240.9 111.5 2328 101.9 272.1
02-2/3-600 1h(0.78) 166.4  1h(0.78) 183.7 298.2
02-2/3-800 1h(2.58)  231.1 1h(2.58)  247.1 503.9
02-2/3-1000  1h(4.04)  335.0  1h(4.04)  346.2 552.4

02-1-400 209.1 110.9 198.1 99.3 269.1
02-1-600 3211.9 1512 30543 136.4 378.5
02-1-800 1h(1.12)  227.0 1h(1.12)  219.2 468.2
02-1-1000 1h(2.74)  240.6 1h(2.74)  231.5 548.1
02-2-400 2323 103.6  229.1 101.2 254.0
02-2-600 667.1 1624  663.0 160.8 362.7
02-2-800 1h(0.60) 188.2  1h(0.60) 185.3 476.7
02-2-1000 1h(0.84)  418.7 1h(0.84)  414.2 572.3

outperformed the extended model in terms of computation times and could solve all
our instances to optimality in not more than six minutes.

7 Conclusion

In this paper, we considered an intermodal multicommodity routing problem with
scheduled and capacitated services. We established the computational complexity of
the problem and proposed two mixed integer programming formulations. We com-
pared our formulations using Lagrangian relaxation. We strengthened the first formu-
lation with valid inequalities that modeled conflicts due to time related restrictions.
Even though the first model strengthened with valid inequalities is still weaker than
the second model, it performed better in terms of solution times. We managed to solve
instances with 1000 commodities to optimality in maximum six minutes for the two
networks considered.

As a further research, we are considering to devise heuristic algorithms based
on Lagrangian relaxation. We tested some basic versions of this heuristic on the in-
stances used in the computational study, but we could not obtain acceptable gaps
in shorter times than the computation times of the first model with valid inequalities.
This was mainly because the subgradient algorithm converged very slowly. We inves-
tigate ways to make the convergence faster. We also believe that devising alternative
heuristic approaches such as tabu search or variable neighborhood search may be a
nice contribution.

Another area of research is to extend the problem proposed in this paper to model
more general cost structures and to include higher level decisions, such as the choice
of maritime service arcs and their schedules.
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